CHAPTER 14

ESTIMATING THE SPECTRUM

Several alternative methods for constructing reasonable estimators of the spectral den-
sity have been proposed and investigated over the years. We will highlight just a few of
them that have gained the most acceptance in light of present-day computing power.
So-called nonparametric estimation of the spectral density (that is, smoothing of the
sample spectral density) assumes very little about the shape of the “true” spectral den-
sity. Parametric estimation assumes that an autoregressive model—perhaps of high
order—provides an adequate fit to the time series. The estimated spectral density is then
based on the theoretical spectral density of the fitted AR model. Some other methods are
touched on briefly.

14.1 Smoothing the Spectral Density

The basic idea here is that most spectral densities will change very little over small
intervals of frequencies. As such, we should be able to average the values of the sample
spectral density over small intervals of frequencies to gain reduced variability. In doing
so, we must keep in mind that we may introduce bias into the estimates if, in fact, the
theoretical spectral density does change substantially over that interval. There will
always be a trade-off between reducing variability and introducing bias. We will be
required to use judgment to decide how much averaging to perform in a particular case.

Let f be a Fourier frequency. Consider taking a simple average of the neighboring
sample spectral density values centered on frequency f and extending m Fourier fre-
quencies on either side of f. We are averaging 2m + 1 values of the sample spectrum, and
the smoothed sample spectral density is given by

m .
S( = 2m1+1.z §(f+f—1) (14.1.1)
j=-m
(When averaging for frequencies near the end points of 0 and Y2, we treat the peri-

odogram as symmetric about 0 and ¥2.)
More generally, we may smooth the sample spectrum with a weight function or
spectral window W, (f) with the properties
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w,.(k)=0
W (k) = W _(-k)
" " (14.1.2)
m
Z W, (k) =1
k=-m
and obtain a smoothed estimator of the spectral density as
_ mn A k
S(f) = Z Wm(k)S(f+ ;) (14.1.3)

k=-m

The simple averaging shown in Equation (14.1.1) corresponds to the rectangular spec-
tral window

W, (k) =

" = 37 for-m<k<m (14.1.4)

For historical reasons, this spectral window is usually called the Daniell spectral win-
dow after P. J. Daniell, who first used it in the 1940s.

As an example, consider the simulated AR(1) series whose sample spectral density
was shown in Exhibit 13.20 on page 341. Exhibit 14.1 displays the smoothed sample
spectrum using the Daniell window with m = 5. The true spectrum is again shown as a
dotted line. The smoothing did reduce some of the variability that we saw in the sample
spectrum.

Exhibit 14.1 Smoothed Spectrum Using the Daniell Window With m=5
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win.graph (width=4.875,height=2.5,pointsize=8)
set.seed(271435); n=200; phi=-0.6
y=arima.sim(model=1ist (ar=phi) ,n=n)

k=kernel ('daniell',m=5)
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> sp=spec (y,kernel=k,log="'no',sub="'"',xlab="'Frequency',
ylab="'Smoothed Sample Spectral Density')

> lines (sp$freq, ARMAspec (model=1ist (ar=phi) , freg=spS$freq,
plot=F) $spec, lty="'dotted"')

If we make the smoothing window wider (that is, increase m) we will reduce the
variability even further. Exhibit 14.2 shows the smoothed spectrum with a choice of m =
15. The danger with more and more smoothing is that we may lose important details in
the spectrum and introduce bias. The amount of smoothing needed will always be a mat-
ter of judgmental trial and error, recognizing the trade-off between reducing variability
at the expense of introducing bias.

Exhibit 14.2 Smoothed Spectrum Using the Daniell Window With m = 15
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> k=kernel ('daniell',m=15)

> sp=spec (y,kernel=k,log="'no',sub="'",xlab="'Frequency',
ylab="'Smoothed Sample Spectral Density')

> lines (sp$freq, ARMAspec (model=1ist (ar=phi) , freg=spS$Sfreq,
plot=F) $spec, lty="'dotted")

Other Spectral Windows

Many other spectral windows have been suggested over the years. In particular, the
abrupt change at the end points of the Daniell window could be softened by making the
weights decrease at the extremes. The so-called modified Daniell spectral window sim-
ply defines the two extreme weights as half of the other weights still retaining the prop-
erty that the weights sum to 1. The leftmost graph in Exhibit 14.3 shows the modified
Daniell spectral window for m = 3.
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Exhibit 14.3 The Modified Daniell Spectral Window and Its Convolutions
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Another common way to modify spectral windows is to use them to smooth the
periodogram more than once. Mathematically, this amounts to using the convolution of
the spectral windows. If the modified Daniell spectral window with m = 3 is used twice
(convolved with itself), we in fact are using the (almost) triangular-shaped window
shown in the middle display of Exhibit 14.3. A third smoothing (with m = 3) is equiva-
lent to using the spectral window shown in the rightmost panel. This spectral window
appears much like a normal curve. We could also use different values of m in the various
components of the convolutions.

Most researchers agree that the shape of the spectral window is not nearly as impor-
tant as the choice of m (or the bandwidth—see below). We will use the modified Daniell
spectral window—possibly with one or two convolutions—in our examples.Jr

14.2 Bias and Variance

If the theoretical spectral density does not change much over the range of frequencies
that the smoothing window covers, we expect the smoothed estimator to be approxi-
mately unbiased. A calculation using this approximation, the spectral window properties
in Equations (14.1.2), and a short Taylor expansion produces

ESOL= 3w, 0s(r+ )
- imwm(k)[sq) +Es(p+ %(st'm}
or

E[S(N]1=S(NH+ ’;155—2@ i k2w, (k) (14.2.1)

k = —

TIn R, the modified Daniell kernel is the default kernel for smoothing sample spectra, and m
may be specified by simply specifying span = 2m + 1 in the spec function where span is an
abbreviation of the spans argument.
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So an approximate value for the bias in the smoothed spectral density is given by

s~ LS 2
bias = 32 z k=W, (k) (14.2.2)
k=-m
For the Daniell rectangular spectral window, we have
3 2

2 m>  mc m
KW (k) = —(— + =+ —) 14.2.3
m(K) n2(2m+ 1)\ 3 2 6 ( )

Mz

1
2
g

—m

and thus the bias tends to zero as n — o as long as m/n — 0.

Using the fact that the sample spectral density values at the Fourier frequencies are
approximately uncorrelated and Equation (13.6.5) on page 341, we may also obtain a
useful approximation for the variance of the smoothed spectral density as

VarlS(Hl~ 3 w}n(k)\/ar[ﬁ(ﬂ }’_;H © 3 W20S2()
k=-m k=-m
so that

Var[S ()] = S2(f) f W2 (k) (14.2.4)

k=-m
1
2m+1

m
Note that for the Daniell or rectangular spectral window z Wrzn(k) = SO
that as long as m — o (as n — o) we have consistency. k=-m

In general, we require that as n — o we have m/n — 0 to reduce bias and m — oo to
reduce variance. As a practical matter, the sample size n is usually fixed and we must
choose m to balance bias and variance considerations.

Jenkins and Watts (1968) suggest trying three different values of m. A small value
will give an idea where the large peaks in S(f) are but may show a large number of
peaks, many of which are spurious. A large value of m may produce a curve that is
likely to be too smooth. A compromise may then be achieved with the third value of m.
Chatfield (2004, p. 135) suggests using m = Jn . Often trying values for m of 2.n,
Jn, and Va/n will give you some insight into the shape of the true spectrum. Since the
width of the window decreases as m decreases, this is sometimes called window closing.
As Hannan (1973, p. 311) says, “Experience is the real teacher and cannot be got from a
book.”

14.3 Bandwidth

In the approximate bias given by Equation (14.2.2), notice that the factor S"'(f) depends
on the curvature of the true spectral density and will be large in magnitude if there is a
sharp peak in S(f) near f but will be small when S(f) is relatively flat near f. This makes
intuitive sense, as the motivation for the smoothing of the sample spectral density
assumed that the true density changed very little over the range of frequencies used in
the spectral window. The square root of the other factor in the approximate bias from
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Equation (14.2.2) is sometimes called the bandwidth, BW, of the spectral window,
namely

(14.3.1)

As we noted in Equation (14.2.3), for the Daniell window this BW will tend to zero as n
— oo as long as m/n — 0. From Equations (14.1.2) on page 352 a spectral window has
the mathematical properties of a discrete zero-mean probability density function, so the
BW defined here may be viewed as proportional to the standard deviation of the spectral
window. As such, it is one way to measure the width of the spectral window. It is inter-
preted as a measure of width of the band of frequencies used in smoothing the sample
spectral density. If the true spectrum contains two peaks that are close relative to the
bandwidth of the spectral window, those peaks will be smoothed together when we cal-
culate §(f) and they will not be seen as separate peaks. It should be noted that there are
many alternative definitions of bandwidth given in the time series literature. Priestley
(1981, pp. 513-528) spends considerable time discussing the advantages and disadvan-
tages of the various definitions.

14.4 Confidence Intervals for the Spectrum

The approximate distributional properties of the smoothed spectral density may be eas-
ily used to obtain confidence intervals for the spectrum. The smoothed sample spectral
density is a linear combination of quantities that have approximate chi-square distribu-
tions. A common approximation in such a case is to use some multiple of another
chi-square distribution with degrees of freedom obtained by matching means and vari-
ances. Assuming S (f) to be roughly unbiased with variance given by Equation (14.2.4),
matching means and variances leads to approximating the distribution of

vS ()
14.4.1
S0 (14.4.1)
by a chi-square distribution with degrees of freedom given by

_ 2

V= — (14.4.2)
S W2(k)
k=-m

Letting x% o2 be the 100(a/2)th percentile of a chi-square distribution with v
degrees of freedom, the inequality

2 vS(H _ .o
xv,a/2< S(f) <xv,1—cx/2

can be converted into a 100(1 — o) % confidence statement for S(f) as
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2 2
Xy, 1-a/2 Xy, a/2

In this formulation, the width of the confidence interval will vary with frequency. A
review of Equation (14.2.4) on page 355 shows that the variance of S (f) is roughly pro-
portional to the square of its mean. As we saw earlier in Equations (5.4.1) and (5.4.2) on
page 98, this suggests that we take the logarithm of the smoothed sample spectral den-
sity to stabilize the variance and obtain confidence intervals with width independent of
frequency as follows:

log[S(NH]+ log[ﬁ} <log[S(f)]<log[S(f)] + log |:x2v /J (14.4.4)

For these reasons it is common practice to plot the logarithms of estimated spectra. If we
redo Exhibit 14.2 on page 353 in logarithm terms, we obtain the display shown in
Exhibit 14.4, where we have also drawn in the 95% confidence limits (dotted) and the
true spectral density (dashed) from the AR(1) model. With a few exceptions, the confi-
dence limits capture the true spectral density.

Exhibit 14.4 Confidence Limits from the Smoothed Spectral Density
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set.seed (271435); n=200; phi=-0.6
y=arima.sim(model=1ist (ar=phi),h n=n)
k=kernel ('daniell',m=15)
sp=spec (y, kernel=k, sub="'"',6xlab="Frequency',

ylab="'Log (Smoothed Spectral Density)', ci.plot=T,ci.col=NULL)
> lines (sp$freq, ARMAspec (model=1ist (ar=phi) , sp$freq,plot=F) $spec,
lty="'dashed')

vV V. V V

Exhibit 14.5 shows a less cluttered display of confidence limits. Here a 95% confi-
dence interval and bandwidth guide is displayed in the upper right-hand corner—the
“crosshairs.” The vertical length gives the length (width) of a confidence interval, while
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the horizontal line segment indicates the central pointT of the confidence interval, and its
width (length) matches the bandwidth of the spectral window. If you visualize the guide
repositioned with the crosshairs centered on the smoothed spectrum above any fre-
quency, you have a visual display of a vertical confidence interval for the “true” spectral
density at that frequency and a rough guide of the extent of the smoothing. In this simu-
lated example, we also show the true spectrum as a dotted line.

Exhibit 14.5 Logarithm of Smoothed Spectrum from Exhibit 14.2
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> sp=spec (y,span=31,sub="'"',xlab="'Frequency',

ylab="'Log (Smoothed Sample Spectrum) ')
> lines (sp$freq, ARMAspec (model=1ist (ar=phi) , spSfreq,
plot=F) Sspec,lty="'dotted")

14.5 Leakage and Tapering

Much of the previous discussion has assumed that the frequencies of interest are the
Fourier frequencies. What happens if that is not the case? Exhibit 14.6 displays the peri-
odogram of a series of length n = 96 with two pure cosine-sine components at frequen-
cies f=0.088 and f'= 14/96. The model is simply

Y, = 3cos[27(0.088)1] + sin[zn(é—‘g)t] (14.5.1)

Note that with n =96, f=0.088 is not a Fourier frequency. The peak with lower power at
the Fourier frequency f= 14/96 is clearly indicated. However, the peak at f = 0.088 is not

T The central point is not, in general, halfway between the endpoints, as Equation (14.4.4)
determines asymmetric confidence intervals. In this example, using the modified Daniell
window with m = 15, we have v = 61 degrees of freedom, so the chi-square distribution
used is effectively a normal distribution, and the confidence intervals are nearly symmetric.
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there. Rather, the power at this frequency is blurred across several nearby frequencies,
giving the appearance of a much wider peak.

Exhibit 14.6 Periodogram of Series with Peaks at f= 0.088 and f= 14/96
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win.graph(width=4.875,height=2.5,pointsize=8)
t=1:96; £1=0.088; f2=14/96

y=3*cos (f1*2*pi*t)+sin (f2*2*pi*t)
periodogram(y) ; abline (h=0)
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An algebraic arlalysisT shows that we may view the periodogram as a “smoothed”
spectral density formed with the Dirichlet kernel spectral window given by

_ lsin(nmnf)
D(f) = 0 sin(ef) (14.5.2)
Note that for all Fourier frequencies f = j/n, D(f) = 0, so this window has no effect what-
soever at those frequencies. However, the plot of D(f) given on the left-hand side of
Exhibit 14.7 shows significant “side lobes” on either side of the main peak. This will
cause power at non-Fourier frequencies to leak into the supposed power at the nearby
Fourier frequencies, as we see in Exhibit 14.6.

Tapering is one method used to improve the issue with the side lobes. Tapering
involves decreasing the data magnitudes at both ends of the series so that the values
move gradually toward the data mean of zero. The basic idea is to reduce the end effects
of computing a Fourier transform on a series of finite length. If we calculate the peri-
odogram after tapering the series, the effect is to use the modified Dirichlet kernel
shown on the right-hand side of Exhibit 14.7 for n = 100. Now the side lobes have
essentially disappeared.

¥ Appendix K on page 381 gives some of the details.
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Exhibit 14.7 Dirichlet Kernel and Dirichlet Kernel after Tapering
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The most common form of tapering is based on a cosine bell. We replace the origi-
nal series Y; by Y, , with

Y, = hY (14.5.3)

where, for example, £, is the cosine bell given by
h, = 1{1 —COS[M}} (14.5.4)
2 n

A graph of the cosine bell with n = 100 is given on the left-hand side of Exhibit 14.8. A
much more common taper is given by a split cosine bell that applies the cosine taper
only to the extremes of the time series. The split cosine bell taper is given by

l{l—cos[n——(t:l—/z—)}} for 1 <t<m
2 m

h, =11 form+1<t<n-m (14.5.5)
l{l—cos[w}} forn-m+1<t<n
2 m

which is called a 100p% cosine bell taper with p = 2m/n. A 10% split cosine bell taper is
shown on the right-hand side of Exhibit 14.8 again with n = 100. Notice that there is a
10% taper on each end, resulting in a total taper of 20%. In practice, split cosine bell
tapers of 10% or 20% are in common use.
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Exhibit 14.8 Cosine Bell and 10% Taper Split Cosine Bell for n= 100
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We return to the variable star brightness data first explored on page 325. Exhibit
14.9 displays four periodograms of this series, each with a different amount of tapering.
Judging by the length of the 95% confidence intervals displayed in the respective
“crosshairs”, we see that the two peaks found earlier in the raw untapered periodogram
at frequencies f| = 21/600 and f ,= 25/600 are clearly real. A more detailed analysis of
the minor peaks shown best in the bottom periodogram are all in fact harmonics of the
frequencies f| and f». There is much more on the topic of leakage reduction and taper-
ing in Bloomfield (2000).
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Exhibit 14.9 Variable Star Spectra with Tapers of 0%, 10%, 20%, and 50%
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14.6 Autoregressive Spectrum Estimation

In the preceding sections on spectral density estimation, we did not make any assump-
tions about the parametric form of the true spectral density. However, an alternative
method for estimating the spectral density would be to consider fitting an AR, MA, or
ARMA model to a time series and then use the spectral density of that model with esti-
mated parameters as our estimated spectral density. (Section 13.5, page 332, discussed
the spectral densities of ARMA models.) Often AR models are used with possibly large
order chosen to minimize the AIC criterion.

As an example, consider the simulated AR series with ¢ = —0.6 and n = 200 that we
used in Exhibits 13.20, 14.1, 14.2, and 14.5. If we fit an AR model, choosing the order
to minimize the AIC, and then plot the estimated spectral density for that model, we
obtain the results shown in Exhibit 14.10.

Exhibit 14.10 Autoregressive Estimation of the Spectral Density
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> sp=spec (y,method="'ar',sub="'"',xlab="'Frequency',

ylab="'Log (AR Spectral Density Estimate')
> lines (sp$freq, ARMAspec (model=1ist (ar=phi) , freg=spsSfreq,
plot=F) $spec, lty="'dotted")

Since these are simulated data, we also show the true spectral density as a dotted
line. In this case, the order was chosen as p = 1 and the estimated spectral density fol-
lows the true density very well. We will show some examples with real time series in
Section 14.8.
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14.7 Examples with Simulated Data

A useful way to get a feel for spectral analysis is with simulated data. Here we know
what the answers are and can see what the consequences are when we make choices of
spectral window and bandwidth. We begin with an AR(2) model that contains a fairly
strong peak in its spectrum.

AR(2) with ¢4 = 1.5, ¢ = -0.75: A Peak Spectrum

The spectral density for this model contained a peak at about f = 0.08, as displayed in
Exhibit 13.14 on page 336. We simulated a time series from this AR(2) model with nor-
mal white noise terms with unit variance and sample size n = 100. Exhibit 14.11 shows
three estimated spectral densities and the true density as a solid line. We used the modi-
fied Daniell spectral window with three different values for span = 2m + 1 of 3, 9, and
15. A span of 3 gives the least amount of smoothing and is shown as a dotted line. A
span of 9 is shown as a dashed line. With span = 15, we obtain the most smoothing, and
this curve is displayed with a dot-dash pattern. The bandwidths of these three spectral
windows are 0.018, 0.052, and 0.087, respectively. The confidence interval and band-
width guide displayed apply only to the dotted curve estimate. The two others have
wider bandwidths and shorter confidence intervals. The estimate based on span =9 is
probably the best one, but it does not represent the peak very well.

Exhibit 14.11 Estimated Spectral Densities
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win.graph(width=4.875,height=2.5,pointsize=8)

set.seed(271435); n=100; phil=1.5; phi2=-.75

y=arima.sim(model=1ist (ar=c(phil,phi2) ), n=n)

spl=spec (y,spans=3,sub="'"',1lty="'dotted',xlab="'Frequency',
ylab='Log (Estimated Spectral Density) ')

sp2=spec (y, spans=9,plot=F); sp3=spec(y,spans=15,plot=F)

lines (sp2sfreq, sp2sspec, lty="dashed")

> lines (sp3S$freq, sp3sspec, lty="dotdash')

vV V. V V

vV Vv
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> f=seq(0.001, .5,by=.001)
> lines (f,ARMAspec (model=1ist (ar=c(phil,phi2)), freqg=£,
plot=F) $spec, lty="'solid")

We also used the parametric spectral estimation idea and let the software choose the
best AR model based on the smallest AIC. The result was an estimated AR(2) model
with the spectrum shown in Exhibit 14.12. This is a very good representation of the
underlying spectrum, but of course the model was indeed AR(2).

Exhibit 14.12 AR Spectral Estimation: Estimated (dotted), True (solid)
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> spé4=spec (y,method='ar',lty="'dotted',
xlab="'Frequency',ylab='Log(Estimated AR Spectral Density) ')

> f=seq(0.001,0.5, by 0.001)

> lines (f,ARMAspec (model=1ist (ar=c(phil,phi2)), freg=f,
plot=F) $spec, lty="'solid")

> sp4smethod # This will tell you order of the AR model selected

AR(2) with ¢4 = 0.1, ¢ = 0.4: A Trough Spectrum

Next we look at an AR(2) model with a trough spectrum and a larger sample size. The
true spectrum is displayed in Exhibit 13.15 on page 337. We simulated this model with
n = 200 and unit-variance normal white noise. The three smoothed spectral estimates
shown are based on spans of 7, 15, and 31. As before, the confidence limits and band-
width guide correspond to the smallest span of 7 and hence give the narrowest band-
width and longest confidence intervals. In our opinion, the middle value of span = 15,
which is about gives a reasonable estimate of the spectrum.
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Exhibit 14.13 Estimated Spectrum for AR(2) Trough Spectrum Model
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> Use the R code for Exhibit 14.11 with new values for the
> parameters.

Exhibit 14.14 shows the AR spectral density estimate. The minimum AIC was
achieved at the true order of the underlying model, AR(2), and the estimated spectral
density is quite good.

Exhibit 14.14 AR Spectral Estimation: Estimated (dotted), True (solid)
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> Use the R code for Exhibits 14.11 and 14.12 with new values
> for the parameters.
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ARMA(1,1) with ¢ = 0.5, 0 = 0.8

The true spectral density of the mixed model ARMA(1,1) with ¢ = 0.5 and 0 = 0.8 was
shown in Exhibit 13.17 on page 338. This model has substantial medium- and high-fre-
quency content but very little power at low frequencies. We simulated this model with a
sample size of n = 500 and unit-variance normal white noise. Using Jn ~22asa guide
for choosing m, we show three estimates with m of 11, 23, and 45 in Exhibit 14.15. The
confidence interval guide indicates that the many peaks produced when m = 11 are
likely spurious (which, in fact, they are). With such a smooth underlying spectrum, the
maximum smoothing shown with m = 45 produces a rather good estimate.

Exhibit 14.15 Spectral Estimates for an ARMA(1,1) Process
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win.graph(width=4.875,height=2.5,pointsize=8)

set.seed (324135); n=500; phi=.5; theta=.8

y=arima.sim(model=1ist (ar=phi, ma=-theta) ,h n=n)

spl=spec (y, spans=11,sub="'"',1lty="dotted',
xlab="'Frequency',ylab='Log(Estimated Spectral Density) ')

sp2=spec (y, spans=23,plot=F); sp3=spec(y,spans=45,plot=F)

lines (sp2Sfreq, sp2sspec, lty="dashed')

lines (sp3s$freq, sp3$spec, lty="'dotdash')

f=seq(0.001, .5,by=.001)

lines (f,ARMAspec (model=1ist (ar=phi,ma=-theta), £,
plot=F) $spec, lty="'solid")

vV V. V V

V V. V V V
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In this case, a parametric spectral estimate based on AR models does not work well,
as shown in Exhibit 14.16. The software selected an AR(3) model, but the resulting
spectral density (dotted) does not reproduce the true density (solid) well at all.

Exhibit 14.16 AR Spectral Estimate for an ARMA(1,1) Process
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> spé4=spec (y,method="ar',lty="'dotted',ylim=c(.15,1.9),
xlab="'Frequency',ylab="'Log (Estimated AR Spectral Density) ')
> f=seqg(0.001, .5,by=.001)
> lines (f,ARMAspec (model=1ist (ar=phi,ma=-theta), £,
plot=F) $spec,lty="'solid")

Seasonal MA with 6 =0.4,0=0.9, and s =12

For our final example with simulated data, we choose a seasonal process. The theoreti-
cal spectral density is displayed in Exhibit 13.19 on page 340. We simulated n = 144
data points with unit-variance normal white noise. We may think of this as 12 years of
monthly data. We used modified Daniell spectral windows with span = 6, 12, and 24
based on A/r_z ~ 12.

This spectrum contains a lot of detail and is difficult to estimate with only 144
observations. The narrowest spectral window hints at the seasonality, but the two other
estimates essentially smooth out the seasonality. The confidence interval widths (corre-
sponding to m = 6) do seem to confirm the presence of real seasonal peaks.
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Exhibit 14.17 Spectral Estimates for a Seasonal Process

Log(Estimated Spectral Density)

20 5.0

02 05

I
0.3

Frequency

> win.graph(width=4.875,height=2.5,pointsize=8)
> set.seed(247135); n=144; theta=.4;THETA=.9
> y=arima.sim(model=1ist (ma=c(-theta,rep(0,10),-THETA, theta*THETA

V V. V V V

)) ,n=n)

spl=spec (y,spans=7,sub="'"',1lty="'dotted',ylim=c(.15,9),
xlab="'Frequency',ylab="'Log(Estimated Spectral Density) ')

sp2=spec (y, spans=13,plot=F); sp3=spec(y,spans=25,plot=F)

lines (sp2$freq, sp2$spec, lty="dashed")

lines (sp3$freq, sp3sspec, lty="'dotdash')

f=seg(0.001, .5,by=.001)

lines (f, ARMAspec (model=1ist (ma=-theta, seasonal=1ist (sma=-THETA,
period=12)),freg=f,plot=F) $spec, lty="'solid")

Exhibit 14.18 AR Spectral Estimates for a Seasonal Process
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> sp4=spec (y,method='ar',ylim=c(.15,15),1lty="'dotted"',

xlab="'Frequency',ylab='Log(Estimated AR Spectral Density) ')
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> f=seq(0.001, .5,by=.001)
> lines (f,ARMAspec (model=1ist (ma=-theta, seasonal=1ist (sma=-THETA,
period=12) ), freqg=f,plot=F) $spec, lty="'solid")

Exhibit 14.18 shows the estimated spectrum based on the best AR model. An order
of 13 was chosen based on the minimum AIC, and the seasonality does show up quite
well. However, the peaks are misplaced at the higher frequencies. Perhaps looking at
both Exhibit 14.17 and Exhibit 14.18 we could conclude that the seasonality is real and
that a narrow spectral window provides the best estimate of the underlying spectral den-
sity given the sample size available.

As a final estimate of the spectrum, we use a convolution of two modified Daniell
spectral windows each with span = 3, as displayed in the middle of Exhibit 14.3 on page
354. The estimated spectrum is shown in Exhibit 14.19. This is perhaps the best of the
estimates that we have shown.

Exhibit 14.19 Estimated Seasonal Spectrum with Convolution Window
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> sp5=spec (y,spans=c(3,3),sub=""',1lty="'dotted’,

xlab="'Frequency',ylab="'Log (Estimated Spectral Density) ')

> f=seqg(0.001, .5,by=.001)

> lines (f,ARMAspec (model=1ist (ma=-theta, seasonal=1ist (sma=-THETA,
period=12) ), freg=f,plot=F) $spec, lty="'solid")

14.8 Examples with Actual Data

An Industrial Robot

An industrial robot was put through a sequence of maneuvers, and the distance from a
desired target end position was recorded in inches. This was repeated 324 times to form
the time series shown in Exhibit 14.20.
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Exhibit 14.20 Industrial Robot End Position Time Series
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> data (robot)
> plot (robot,ylab="'End Position Offset', xlab='Time"')

Estimates of the spectrum are displayed in Exhibit 14.21 using the convolution of
two modified Daniell spectral windows with m = 7 (solid) and with a 10% taper on each
end of the series. A plot of this spectral window is shown in the middle of Exhibit 14.3
on page 354. The spectrum was also estimated using a fitted AR(7) model (dotted), the
order of which was chosen to minimize the AIC. Given the length of the 95% confi-
dence interval shown, we can conclude that the peak at around a frequency of 0.15 in
both estimates is probably real, but those shown at higher frequencies may well be spu-
rious. There is a lot of power shown at very low frequencies, and this agrees with the
slowly drifting nature of the series that may be seen in the time series plot in Exhibit
14.20.

Exhibit 14.21 Estimated Spectrum for the Industrial Robot
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> spec (robot, spans=c(7,7),taper=.1,sub="'"',xlab="'Frequency',
ylab="'Log (Spectrum) ')

> s=spec (robot,method="ar',plot=F)

> lines (s$freq, sSspec,lty="dotted")

River Flow

Exhibit 14.22 shows monthly river flow for the Iowa River measured at Wapello, Iowa,
for the period September 1958 through August 2006. The data are quite skewed toward
the high values, but this was greatly improved by taking logarithms for the analysis.

Exhibit 14.22 River Flow Time Series
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> data(flow); plot (flow,ylab='River Flow')

The sample size for these data is 576 with a square root of 24. The bandwidth of a
modified Daniell spectral window is about 0.01. After some experimentation with sev-
eral spectral window bandwidths, we decided that such a window smoothed too much
and we instead used a convolution of two such windows, each with span = 7. The band-
width of this convolved window is about 0.0044. The smoothed spectral density esti-
mate is shown as a solid curve in Exhibit 14.23 together with an estimate based on an
AR(7) model (dotted) chosen to minimize the AIC. The prominent peak at frequency
1/12 represents the strong annual seasonality. There are smaller secondary peaks at
about f~ 0.17 and f'~ 0.25 that correspond to multiples of the fundamental frequency of
1/12. They are higher harmonics of the annual frequency.
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Exhibit 14.23 Log(Spectrum) of Log(Flow)
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> spec(log(flow) ,spans=c(7,7),ylim=c(.02,13),sub="",
ylab="'Log (Spectrum) ',xlab="'Frequency')

> s=spec (log(flow) ,method='ar', plot=F)

> lines(ssSfreq, s$spec,lty="dotted')
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Monthly Milk Production

The top portion of Exhibit 11.14 on page 264, showed U.S. monthly milk production
from January 1994 through December of 2005. There is a substantial upward trend
together with seasonality. We first remove the upward trend with a simple linear time
trend model and consider the residuals from that regression—the seasonals. After trying
several spectral bandwidths, we decided to use a convolution of two modified Daniell
windows, each with span = 3. We believe that otherwise there was too much smoothing.
This was confirmed by estimating an AR spectrum that ended up fitting an AR of order
15 with peaks at the same frequencies. Notice that the peaks shown in Exhibit 14.24 are
located at frequencies 1/12, 2/12,..., 6/12, with the peak at 1/12 showing the most
power.

Exhibit 14.24 Estimated Spectrum for Milk Production Seasonals
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> data (milk)

> spec (milk, spans=c(3,3),detrend=T, sub="",
ylab="'Estimated Log(Spectrum) ', xlab="'Frequency')

> abline (v=seq(1:6)/12,1lty="'dotted")

For a final example in this section, consider the time series shown in Exhibit 14.25.
These plots display the first 400 points of two time series of lengths 4423 and 4417,
respectively. The complete series were created by recording a trombonist and a eupho-
niumist each sustaining a B flat (just below middle C) for about 0.4 seconds. The origi-
nal recording produced data sampled at 44.1 MHz, but this was reduced by subsampling
every fourth data point for the analysis shown. Trombones and euphonia are both brass
wind instruments that play in the same range, but they have different sized and shaped
tubing. The euphonium has larger tubing (a larger bore) that is mostly conical in shape,
while the tenor trombone is mostly cylindrical in shape and has a smaller bore. The
euphonium sound is considered more mellow than the bright, brassy sound of the trom-
bone. When one listens to these notes being played, they sound rather similar. Our ques-
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tion is: Does the tubing shape and size affect the harmonics (overtones) enough that the
differences may be seen in the spectra of these sounds?

Exhibit 14.25 Trombone and Euphonium Playing Bb
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> win.graph(width=4.875,height=4,pointsize=8)
> data (tbone); data(euph); oldpar=par; par (mfrow=(c(2,1)))
> trombone= (tbone-mean (tbone)) /sd (tbone)
> euphonium= (euph-mean (euph) ) /sd (euph)
> plot (window (trombone, end=400) ,main="'Trombone Bb',

ylab="'Waveform',6 yaxp=c(-1,+1,2))
> plot (window (euphonium, end=400) ,main="'Euphonium Bb',
ylab='Waveform',yaxp=c(-1,+1,2)); par=oldpar

Exhibit 14.26 displays the estimated spectra for the two waveforms. The solid curve
is for the euphonium, and the dotted curve is for the trombone. We used the convolution
of two modified Daniell spectral windows, each with span = 11, on both series. Since
both series are essentially the same length, the bandwidths will both be about 0.0009
and barely perceptible on the bandwidth/confidence interval crosshair shown on the
graph.

The first four major peaks occur at the same frequencies, but clearly the trombone
has much more spectral power at distinct higher harmonic frequencies. It is suggested
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that this may account for the more brassy nature of the trombone sound as opposed to
the more mellow sound of the euphonium.

Exhibit 14.26 Spectra for Trombone (dotted) and Euphonium (solid)
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> win.graph(width=4.875,height=2.5,pointsize=8)

> spec (euph, spans=c(11,11),ylab='Log Spectra',
xlab="'Frequency',6 sub="")

> s=spec (tbone, spans=c(11,11) ,plot=F)

> lines (s$freq, s$Sspec,lty="dotted")

14.9 Other Methods of Spectral Estimation

Prior to widespread use of the fast Fourier transform, computing and smoothing the
sample spectrum was extremely intensive computationally —especially for long time
series. Lag window estimators were used to partially mitigate the computational diffi-
culties.

Lag Window Estimators

Consider the sample spectrum and smoothed sample spectrum. We have

i W(k)ﬁ(f+ S)

k=-m

S
ot 2mred))

3 W(k) 7e
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or

n—1 i
— _ A -L _onifi
S = Z ij(’)e nifj (14.9.2)
j=-n+1
where
; m —2nik i
w({—) = Z W(k)e (') (14.9.3)
k=-m
Equation (14.9.2) suggests defining and investigating a class of spectral estimators
defined as

=Sy w(%;)\//\jcos@nfj) (14.9.4)

j=-n+1
where the function w(x) has the properties
w(x) = w(—x)
w(0) = 1 (14.9.5)
w(x)<1 for |x] <1

The function w(x) is called a lag window and determines how much weight is given to
the sample autocovariance at each lag.
The rectangular lag window is defined by

w(x) =1 for x| <1 (14.9.6)

and the corresponding lag window spectral estimator is simply the sample spectrum.
This estimator clearly gives too much weight to large lags where the sample autocovari-
ances are based on too few data points and are unreliable.

The next simplest lag window is the truncated rectangular lag window, which sim-
ply omits large lags from the computation. It is defined as

w(%) =1 for |j| <m (14.9.7)

where the computational advantage is achieved by choosing m much smaller than n.
The triangular, or Bartlett, lag window downweights higher lags linearly and is
defined as

w(f) - 1-‘#” for |j| <m (14.9.8)

Other common lag windows are associated with the names of Parzen, Tukey-Ham-
ming, and Tukey-Hanning. We will not pursue these further here, but much more infor-
mation on the lag window approach to spectral estimation may be found in the books of
Bloomfield (2000), Brillinger (2001), Brockwell and Davis (1991), and Priestley
(1981).
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Other Smoothing Methods

Other methods for smoothing the sample spectrum have been proposed. Kooperberg et
al. (1995) proposed using splines to estimate the spectral distribution. Fan and
Kreutzberger (1998) investigated local smoothing polynomials and Whittle's likelihood
for spectral estimation. This approach uses automatic bandwidth selection to smooth the
sample spectrum. See also Yoshihide (2006), Jiang and Hui (2004), and Fay et al.
(2002).

14.10 Summary

Given the undesirable characteristics of the sample spectral density, we introduced the
smoothed sample spectral density and showed that it could be constructed to improve
the properties. The important topics of bias, variance, leakage, bandwidth, and tapering
were investigated. A procedure for forming confidence intervals was discussed, and all
of the ideas were illustrated with both real and simulated time series data.

EXERCISES

14.1 Consider the variance of S (f) with the Daniell spe/:\ctral window. Instead of using
Equation (14.2.4) on page 355, use the fact that 25(f)/S(f) has approximately a
chi-square distribution with two degrees of freedom to show that the smoothed
sample spectral density has an approximate variance of S 2()‘)/ 2m+1).

14.2 Consider various convolutions of the simple Daniell rectangular spectral window.
(a) Construct a panel of three plots similar to those shown in Exhibit 14.3 on page

354 but with the Daniell spectral window and with m = 5. The middle graph
should be the convolution of two Daniell windows and the leftmost graph the
convolution of three Daniell windows.

(b) Evaluate the bandwidths and degrees of freedom for each of the spectral win-
dows constructed in part (a). Use n =100.

(c¢) Construct another panel of three plots similar to those shown in Exhibit 14.3
but with the modified Daniell spectral window. This time use m = 5 for the
first graph and convolve two with m = 5 and m = 7 for the second. Convolve
three windows with m’s of 5, 7, and 11 for the third graph.

(d) Evaluate the bandwidths and degrees of freedom for each of the spectral win-
dows constructed in part (c). Use n =100.
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14.3

14.4

14.5

14.6

14.7

14.8

For the Daniell rectangular spectral window show that

13 e - k(W )

@5 2 Wl = 3 T T Y,

(b) Show that if m is chosen as m = ¢./n for any constant ¢, then the right-hand
side of the expression in part (a) tends to zero as n goes to infinity.

(¢) Show that if m = ¢ /n for any constant c, then the approximate variance of the
smoothed spectral density given by the right-hand side of Equation (14.2.4) on
page 355 tends to zero as n tends to infinity.

Suppose that the distribution of S(f) is to be approximated by a multiple of a

chi-square variable with degrees of freedom v, so that S ~ cxlz). Using the

approximate variance of S (f) given in Equation (14.2.4) on page 355 and the fact
that S(f) is approximately unbiased, equate means and variances and find the

values for ¢ and v (thus establishing Equation (14.4.2) on page 356).

Construct a time series of length n = 48 according to the expression

Y, = sin[27(0.28)1]

Display the periodogram of the series and explain its appearance.

Estimate the spectrum of the Los Angeles annual rainfall time series. The data are

in the file named larain. Because of the skewness in the series, use the logarithms

of the raw rainfall values. The square root of the series length suggests a value for

the span of about 11. Use the modified Daniell spectral window, and be sure to set

the vertical limits of the plot so that you can see the whole confidence interval

guide. Comment on the estimated spectrum.

The file named spots1 contains annual sunspot numbers for 306 years from 1700

through 2005.

(a) Display the time series plot of these data. Does stationarity seem reasonable
for this series?

(b) Estimate the spectrum using a modified Daniell spectral window convoluted
with itself and a span of 3 for both. Interpret the plot.

(c) Estimate the spectrum using an AR model with the order chosen to minimize
the AIC. Interpret the plot. What order was selected?

(d) Overlay the estimates obtained in parts (b) and (c) above onto one plot. Do
they agree to a reasonable degree?

Consider the time series of average monthly temperatures in Dubuque, Iowa. The

data are in the file named tempdub and cover from January 1964 to December

1975 for an n of 144.

(a) Estimate the spectrum using a variety of span values for the modified Daniell
spectral window.

(b) In your opinion, which of the estimates in part (a) best represents the spectrum
of the process? Be sure to use bandwidth considerations and confidence limits
to back up your argument.
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14.9 An EEG (electroencephalogram) time series is given in the data file named eeg.

An electroencephalogram is a noninvasive test used to detect and record the elec-

trical activity generated in the brain. These data were measured at a sampling rate

of 256 per second and came from a patient suffering a seizure. The total record
length is n = 13,000—or slightly less than one minute.

(a) Display the time series plot and decide if stationarity seems reasonable.

(b) Estimate the spectrum using a modified Daniell spectral window convolved
with itself and a span of 51 for both components of the convolution. Interpret
the plot.

(c) Estimate the spectrum using an AR model with the order chosen to minimize
the AIC. Interpret the plot. What order was selected?

(d) Overlay the estimates obtained in parts (b) and (c) above onto one plot. Do
they agree to a reasonable degree?

14.10 The file named electricity contains monthly U. S. electricity production values

from January 1994 to December 2005. A time series plot of the logarithms of

these values is shown in Exhibit 11.14 on page 264. Since there is an upward

trend and increasing variability at higher levels in these data, use the first differ-
ence of the logarithms for the remaining analysis.

(a) Construct a time series plot of the first difference of the logarithms of the elec-
tricity values. Does a stationary model seem warranted at this point?

(b) Display the smoothed spectrum of the first difference of the logarithms using
a modified Daniell spectral window and span values of 25, 13, and 7. Interpret
the results.

(c) Now use a spectral window that is a convolution of two modified Daniell win-
dows each with span = 3. Also use a 10% taper. Interpret the results.

(d) Estimate the spectrum using an AR model with the order chosen to minimize
the AIC. Interpret the plot. What order was selected?

(e) Overlay the estimates obtained in parts (c) and (d) above onto one plot. Do
they agree to a reasonable degree?

14.11 Consider the monthly milk production time series used in Exhibit 14.24 on page

374. The data are in the file named milk.

(a) Estimate the spectrum using a spectral window that is a convolution of two
modified Daniell windows each with span = 7. Compare these results with
those shown in Exhibit 14.24.

(b) Estimate the spectrum using a single modified Daniell spectral window with
span = 7. Compare these results with those shown in Exhibit 14.24 and those
in part (a).

(c) Finally, estimate the spectrum using a single modified Daniell spectral win-
dow with span = 11. Compare these results with those shown in Exhibit 14.24
and those in parts (a) and (b).

(d) Among the four different estimates considered here, which do you prefer and
why?
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14.12 Consider the river flow series displayed in Exhibit 14.22 on page 372. An esti-
mate of the spectrum is shown in Exhibit 14.23 on page 373. The data are in the
file named flow.

(a) Here n = 576 and /n = 24. Estimate the spectrum using span = 25 with the
modified Daniell spectral window. Compare your results with those shown in
Exhibit 14.23.

(b) Estimate the spectrum using span = 13 with the modified Daniell spectral
window and compare your results to those obtained in part (a) and in Exhibit
14.23.

14.13 The time series in the file named tuba contains about 0.4 seconds of digitized
sound from a tuba playing a B flat one octave and one note below middle C.

(a) Display a time series plot of the first 400 of these data and compare your
results with those shown in Exhibit 14.25 on page 375, for the trombone and
euphonium.

(b) Estimate the spectrum of the tuba time series using a convolution of two mod-
ified Daniell spectral windows, each with span = 11.

(¢) Compare the estimated spectrum obtained in part (b) with those of the trom-
bone and euphonium shown in Exhibit 14.26 on page 376. (You may want to
overlay several of these spectra.) Remember that the tuba is playing one
octave lower than the two other instruments.

(d) Do the higher-frequency components of the spectrum for the tuba look more
like those of the trombone or those of the euphonium? (Hint: The euphonium
is sometimes called a tenor tuba!)

Appendix K: Tapering and the Dirichlet Kernel

Suppose Yt = cos(2nf0t + ®) fort=1, 2,..., n, where fj is not necessarily a Fourier
frequency. Since it will not affect the periodogram, we will actually suppose that

2mifyt

Y, =e (14.K.1)

in order to simplify the mathematics. Then the discrete-time Fourier transform of this
sequence is given by

S =

n . n / —
S ¥, 2mift = ! ORI (14.K.2)
n
t=1 t=1
By Equations (13.J.7) and (13.J.8) on page 350, for any z,

o
1 i p2mizt = L omiz(e - 1)

n[=1 n (eZTCiZ_l)

= L rine 1) (€2 —eTTE)
n (eniz _ e—m’z)
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so that
l i elmizi— pmi(n+ l)z[lMJ (14.K.3)
n & n sin(nz)
The function
D(z) = Lsin(nnz) (14K .4)
n sin(mz)

is the Dirichlet kernel shown on the left-hand side of Exhibit 14.7 on page 360 for n =
100. These results lead to the following relationship for the periodogram of Y;:

1(f) = |D(f - fo)|? (14.K.5)

Remember that for all Fourier frequencies D(f) = 0, so that this window has no effect at
those frequencies. Leakage occurs when there is substantial power at non-Fourier fre-
quencies. Now consider tapering Y, with a cosine bell. We have

i/t = %{1 - cosliz———n(t; 05)}}&
(14.K.6)
_ le2nifot B le2nifot+ 2mi(t=Y2)/n leszot7 2ni(t—Y2)/n
2 4 2
and after some more algebra we obtain
1T& 5 -2nif
”;; Yie (14.K.7)
B ni(n+1)(fo—f)t[l ( B _1) 1o 1 ( B 1)}
=e 4Df Jo s +2D(f fo)+4Df f0+n
The function
D) = 10(ffy- 1) + 1Dy + 1D(r- 1y + 1) (14.K.8)
4 0 n 2 0 4 0 n e

is the tapered or modified Dirichlet kernel that is plotted on the right-hand side of
Exhibit 14.7 on page 360 for n = 100. The periodogram of the tapered series is propor-
tional to |(D()‘))f2 , and the side lobe problem is substantially mitigated.





