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CHAPTER 11

TIME SERIES REGRESSION MODELS

In this chapter, we introduce several useful ideas that incorporate external information
into time series modeling. We start with models that include the effects of interventions
on time series’ normal behavior. We also consider models that assimilate the effects of
outliers—observations, either in the observed series or in the error terms, that are highly
unusual relative to normal behavior. Lastly, we develop methods to look for and deal
with spurious correlation—correlation between series that is artificial and will not help
model or understand the time series of interest. We will see that prewhitening of series
helps us find meaningful relationships.

11.1 Intervention Analysis 

Exhibit 11.1 shows the time plot of the logarithms of monthly airline passenger-miles in
the United States from January 1996 through May 2005. The time series is highly sea-
sonal, displaying the fact that air traffic is generally higher during the summer months
and the December holidays and lower in the winter months.† Also, air traffic was
increasing somewhat linearly overall until it had a sudden drop in September 2001. The
sudden drop in the number of air passengers in September 2001 and several months
thereafter was triggered by the terrorist acts on September 11, 2001, when four planes
were hijacked, three of which were crashed into the twin towers of the World Trade
Center and the Pentagon and the fourth into a rural field in Pennsylvania. The terrorist
attacks of September 2001 deeply depressed air traffic around that period, but air traffic
gradually regained the losses as time went on. This is an example of an intervention that
results in a change in the trend of a time series.

Intervention analysis, introduced by Box and Tiao (1975), provides a framework
for assessing the effect of an intervention on a time series under study. It is assumed that
the intervention affects the process by changing the mean function or trend of a time
series. Interventions can be natural or man-made. For example, some animal population
levels crashed to a very low level in a particular year because of extreme climate in that
year. The postcrash annual population level may then be expected to be different from
that in the precrash period. Another example is the increase of the speed limit from 65
miles per hour to 70 miles per hour on an interstate highway. This may make driving on

† In the exercises, we ask you to display the time series plot using seasonal plotting symbols
on a full-screen graph, where the seasonality is quite easy to see.
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the highway more dangerous. On the other hand, drivers may stay on the highway for a
shorter length of time because of the faster speed, so the net effect of the increased
speed limit change is unclear. The effect of the increase in speed limit may be studied by
analyzing the mean function of some accident time series data; for example, the quar-
terly number of fatal car accidents on some segment of an interstate highway. (Note that
the autocovariance function of the time series might also be changed by the intervention,
but this possibility will not be pursued here.)

Exhibit 11.1 Monthly U.S. Airline Miles: January 1996 through May 2005

> win.graph(width=4.875,height=2.5,pointsize=8)
> data(airmiles)
> plot(log(airmiles),ylab='Log(airmiles)',xlab='Year')

We first consider the simple case of a single intervention. The general model for the
time series {Yt}, perhaps after suitable transformation, is given by

(11.1.1)

where mt is the change in the mean function and Nt is modeled as some ARIMA pro-
cess, possibly seasonal. The process {Nt} represents the underlying time series were
there no intervention. It is referred to as the natural or unperturbed process, and it may
be stationary or nonstationary, seasonal or nonseasonal. Suppose the time series is sub-
ject to an intervention that takes place at time T. Before T, mt is assumed to be identi-
cally zero. The time series {Yt, t < T} is referred to as the preintervention data and can
be used to specify the model for the unperturbed process Nt.

Based on subject matter considerations, the effect of the intervention on the mean
function can often be specified up to some parameters. A useful function in this specifi-
cation is the step function

(11.1.2)
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that is 0 during the preintervention period and 1 throughout the postintervention period.
The pulse function

(11.1.3)

equals 1 at t = T and 0 otherwise. That is,  is the indicator or dummy variable flag-
ging the time that the intervention takes place. If the intervention results in an immedi-
ate and permanent shift in the mean function, the shift can be modeled as

(11.1.4)

where ω is the unknown permanent change in the mean due to the intervention. Testing
whether ω = 0 or not is similar to testing whether the population means are the same
with data in the form of two independent random samples from the two populations.
However, the major difference here is that the pre- and postintervention data cannot gen-
erally be assumed to be independent and identically distributed. The inherent serial cor-
relation in the data makes the problem more interesting but at the same time more
difficult. If there is a delay of d time units before the intervention takes effect and d is
known, then we can specify

(11.1.5)

In practice, the intervention may affect the mean function gradually, with its full force
reflected only in the long run. This can be modeled by specifying mt as an AR(1)-type
model with the error term replaced by a multiple of the lag 1 of :

(11.1.6)

with the initial condition m0 = 0. After some algebra, it can be shown that

(11.1.7)

Often δ is selected in the range 1 > δ > 0. In that case, mt approaches ω/(1 − δ) for
large t, which is the ultimate change (gain or loss) for the mean function. Half of the
ultimate change is attained when 1 − δ t−T = 0.5; that is, when t = T + log(0.5)/log(δ).
The duration log(0.5)/log(δ) is called the half-life of the intervention effect, and the
shorter it is, the quicker the ultimate change is felt by the system. Exhibit 11.2 displays
the half-life as a function of δ, which shows that the half-life increases with δ. Indeed,
the half-life becomes infinitely large when δ approaches 1.

Exhibit 11.2 Half-life based on an AR(1) Process with Step Function Input
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It is interesting to note the limiting case when δ = 1. Then mt = ω(T − t) for t ≥ T and
0 otherwise. The time sequence plot of mt displays the shape of a ramp with slope ω.
This specification implies that the intervention changes the mean function linearly in the
postintervention period. This ramp effect (with a one time unit delay) is shown in
Exhibit 11.3 (c).

Short-lived intervention effects may be specified using the pulse dummy variable

(11.1.8)

For example, if the intervention impacts the mean function only at t = T, then

(11.1.9)

Intervention effects that die out gradually may be specified via the AR(1)-type specifi-
cation

(11.1.10)

That is, mt = ωδT− t for t ≥ T so that the mean changes immediately by an amount ω and
subsequently the change in the mean decreases geometrically by the common factor of
δ; see Exhibit 11.4 (a). Delayed changes can be incorporated by lagging the pulse func-
tion. For example, if the change in the mean takes place after a delay of one time unit
and the effect dies out gradually, we can specify

(11.1.11)

Again, we assume the initial condition m0 = 0.
It is useful to write† the preceding model in terms of the backshift operator B,

where Bmt = mt − 1 and . Then . Or, we can write

(11.1.12)

Recall , which can be rewritten as .

† The remainder of this chapter makes use of the backshift operator introduced in Appendix
D on page 106. You may want to review that appendix before proceeding further.
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Exhibit 11.3 Some Common Models for Step Response Interventions 
(All are shown with a delay of 1 time unit)

Several specifications can be combined to model more sophisticated intervention
effects. 

For example,

(11.1.13)

depicts the situation displayed in Exhibit 11.4 (b) where ω1 and ω2 are both greater than
zero, and

(11.1.14)

may model situations like Exhibit 11.4 (c) with ω1 and ω2 both negative. This last case
may model the interesting situation where a special sale may cause strong rush buying,
initially so much so that the sale is followed by depressed demand. More generally, we
can model the change in the mean function by an ARMA-type specification

(11.1.15)

where ω(B) and δ(B) are some polynomials in B. Because , the
model for mt can be specified in terms of either the pulse or step dummy variable.
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Exhibit 11.4 Some Common Models for Pulse Response Interventions 
(All are shown with a delay of 1 time unit)

Estimation of the parameters of an intervention model may be carried out by the
method of maximum likelihood estimation. Indeed, Yt − mt is a seasonal ARIMA pro-
cess so that the likelihood function equals the joint pdf of Yt − mt, t = 1, 2,…, n, which
can be computed by methods studied in Chapter 7 or else by the state space modeling
methods of Appendix H on page 222.

We now revisit the monthly passenger-airmiles data. Recall that the terrorist acts in
September 2001 had lingering depressing effects on air traffic. The intervention may be
specified as an AR(1) process with the pulse input at September 2001. But the unex-
pected turn of events in September 2001 had a strong instantaneous chilling effect on air
traffic. Thus, we model the intervention effect (the 9/11 effect) as

where T denotes September 2001. In this specification, ω0 + ω1 represents the instanta-
neous 9/11 effect, and, for k ≥ 1,  gives the 9/11 effect k months afterward. It
remains to specify the seasonal ARIMA structure of the underlying unperturbed pro-
cess. Based on the preintervention data, an ARIMA(0,1,1)×(0,1,0)12 model was tenta-
tively specified for the unperturbed process; see Exhibit 11.5.
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Exhibit 11.5 Sample ACF for (1−B)(1−B12) Log(Air Passenger Miles) Over 
the Preintervention Period

> acf(as.vector(diff(diff(window(log(airmiles),end=c(2001,8)), 
12))),lag.max=48)

Model diagnostics of the fitted model suggested that a seasonal MA(1) coefficient
was needed and the existence of some additive outliers occurring in December 1996,
January 1997, and December 2002. (Outliers will be discussed in more detail later; here
additive outliers may be regarded as interventions of unknown nature that have a pulse
response function.) Hence, the model is specified as an ARIMA(0,1,1)×(0,1,1)12 plus
the 9/11 intervention and three additive outliers. The fitted model is summarized in
Exhibit 11.6.

Exhibit 11.6 Estimation of Intervention Model for Logarithms of Air Miles 
(Standard errors are shown below the estimates)

> air.m1=arimax(log(airmiles),order=c(0,1,1), 
seasonal=list(order=c(0,1,1),period=12), 
xtransf=data.frame(I911=1*(seq(airmiles)==69), 
I911=1*(seq(airmiles)==69)),transfer=list(c(0,0),c(1,0)), 
xreg=data.frame(Dec96=1*(seq(airmiles)==12), 
Jan97=1*(seq(airmiles)==13),Dec02=1*(seq(airmiles)==84)), 
method='ML')

> air.m1
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Model diagnostics suggested that the fitted model above provides a good fit to the
data. The open circles in the time series plot shown in Exhibit 11.7 represent the fitted
values from the final estimated model. They indicate generally good agreement between
the model and the data.

Exhibit 11.7 Logs of Air Passenger Miles and Fitted Values

> plot(log(airmiles),ylab='Log(airmiles)')
> points(fitted(air.m1)) 

The fitted model estimates that the 9/11 intervention reduced air traffic by 31% =
{1 − exp(−0.0949−0.2715)}×100% in September 2001, and air traffic k months later
was lowered by {1 − exp(−0.2715×0.8139k )}×100%. Exhibit 11.8 graphs the estimated
9/11 effects on air traffic, which indicate that air traffic regained its losses toward the
end of 2003.

Exhibit 11.8 The Estimated 9/11 Effects for the Air Passenger Series

> Nine11p=1*(seq(airmiles)==69)
> plot(ts(Nine11p*(-0.0949)+ 
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filter(Nine11p,filter=.8139,method='recursive', side=1)* 
(-0.2715),frequency=12,start=1996),ylab='9/11 Effects', 
type='h'); abline(h=0)

11.2 Outliers 

Outliers refer to atypical observations that may arise because of measurement and/or
copying errors or because of abrupt, short-term changes in the underlying process. For
time series, two kinds of outliers can be distinguished, namely additive outliers and
innovative outliers. These two kinds of outliers are often abbreviated as AO and IO,
respectively. An additive outlier occurs at time T if the underlying process is perturbed
additively at time T so that the data equal

(11.2.1)

where {Yt} is the unperturbed process. Henceforth in this section, Y ′ denotes the
observed process that may be affected by some outliers and Y the unperturbed process
should there be no outliers. Thus,  but  otherwise, so the time
series is only affected at time T if it has an additive outlier at T. An additive outlier can
also be treated as an intervention that has a pulse response at T so that .

On the other hand, an innovative outlier occurs at time t if the error (also known as
an innovation) at time t is perturbed (that is, the errors equal , where et
is a zero-mean white noise process). So,  but  otherwise. Suppose
that the unperturbed process is stationary and admits an MA(∞) representation

Consequently, the perturbed process can be written

or

(11.2.2)

where ψ0 = 1 and ψj = 0 for negative j. Thus, an innovative outlier at T perturbs all
observations on and after T, although with diminishing effect, as the observation is fur-
ther away from the origin of the outlier.

To detect whether an observation is an AO or IO, we use the AR(∞) representation
of the unperturbed process to define the residuals:

(11.2.3)

For simplicity, we assume the process has zero mean and that the parameters are known.
In practice, the unknown parameter values are replaced by their estimates from the pos-
sibly perturbed data. Under the null hypothesis of no outliers and for large samples, this
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has a negligible effect on the properties of the test procedures described below. If the
series has exactly one IO at time T, then the residual aT = ωI + eT but at = et otherwise.
So ωI can be estimated by  with variance equal to σ2. Thus, a test statistic for
testing for an IO at T is

(11.2.4)

which has (approximately) a standard normal distribution under the null hypothesis that
there are no outliers in the time series. When T is known beforehand, the observation in
question is declared an outlier if the corresponding standardized residual exceeds 1.96
in magnitude at the 5% significance level. In practice, there is often no prior knowledge
about T, and the test is applied to all observations. In addition, σ will need to be esti-
mated. A simple conservative procedure is to use the Bonferroni rule for controlling the
overall error rate of multiple tests. Let

λ1 = max1≤ t≤n |λ1,t | (11.2.5)

be attained at t = T. Then the T th observation is deemed an IO if λ1 exceeds the upper
0.025/n×100 percentile of the standard normal distribution. This procedure guarantees
that there is at most a 5% probability of a false detection of an IO. Note that an outlier
will inflate the maximum likelihood estimate of σ, so if there is no adjustment for outli-
ers, the power of most tests is usually reduced. A robust estimate of the noise standard
deviation may be used in lieu of the maximum likelihood estimate to increase the power
of the test. For example, σ can be more robustly estimated by the mean absolute residual
times .

The detection of an AO is more complex. Suppose that the process admits an AO at
T and is otherwise free of outliers. Then it can be shown that

(11.2.6)

where π0 = −1 and πj = 0 for negative j. Hence, at = et for t < T, aT = ωA + eT,
aT+1 = −ωAπ1 + eT+1, aT+2 = −ωAπ2 + eT+2, and so forth. A least squares estimator of ωA
is

(11.2.7)

where , with the variance of the estimate being
equal to ρ2σ2. We can then define

(11.2.8)

as the test statistic for testing the null hypothesis that the time series has no outliers ver-
sus the alternative hypothesis of an AO at T. As before, ρ and σ will need to be esti-
mated. The test statistic λ2,T is approximately distributed as N(0,1) under the null
hypothesis. Again, T is often unknown, and the test is applied repeatedly to each time
point. The Bonferroni rule may again be applied to control the overall error rate. Fur-
thermore, the nature of an outlier is not known beforehand. In the case where an outlier
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is detected at T, it may be classified to be an IO if |λ1,T| > | λ2,T| and an AO otherwise.
See Chang et al. (1988) for another approach to classifying the nature of an outlier.
When an outlier is found, it can be incorporated into the model, and the outlier-detection
procedure can then be repeated with the refined model until no more outliers are found.

As a first example, we simulated a time series of length n = 100 from the
ARIMA(1,0,1) model with φ = 0.8 and θ = −0.5. We then changed the 10th observation
from −2.13 to 10 (that is, ωA = 12.13); see Exhibit 11.9. Based on the sample ACF,
PACF and EACF, an AR(1) model was tentatively identified. Based on the Bonferroni
rule, the 9th, 10th, and 11th observations were found to be possible additive outliers
with the corresponding robustified test statistics being −3.54, 9.55, and −5.20. The test
for IO revealed that the 10th and 11th observations may be IO, with the corresponding
robustified test statistics being 7.11 and −6.64. Because among the tests for AO and IO
the largest magnitude occurs for the test for AO at T = 10, the 10th observation was ten-
tatively marked as an AO. Note that the nonrobustified test statistic for AO at T = 10
equals 7.49, which is substantially less than the more robust test value of 9.55, showing
that robustifying the estimate of the noise standard deviation does increase the power of
the test. After incorporating the AO in the model, no more outliers were found. How-
ever, the lag 1 residual ACF was significant, suggesting the need for an MA(1) compo-
nent. Hence, an ARIMA(1,0,1) + AO at T = 10 model was fitted to the data. This model
was found to have no additional outliers and passed all model diagnostic checks.

Exhibit 11.9 Simulated ARIMA(1,0,1) Process with an Additive Outlier

> The extensive R code for the simulation and analysis of this 
example may be found in the R code script file for Chapter 11.

For a real example, we return to the seasonal ARIMA(0,1,1)×(0,1,1)12 model that
we fitted to the carbon dioxide time series in Chapter 10. The time series plot of the
standardized residuals from this model, shown in Exhibit 10.11 on page 238, showed a
suspiciously large standardized residual in September 1998. Calculation shows that
there is no evidence of an additive outlier, as λ2, t is not significantly large for any t.
However, the robustified λ1 = max1≤ t≤n |λ1, t | = 3.7527, which is attained at t = 57, cor-
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responding to September 1998. The Bonferroni critical value with α = 5% and n = 132
is 3.5544. So our observed λ1 is large enough to claim significance for an innovation
outlier in September 1998. Exhibit 11.10 shows the results of fitting the ARIMA(0,1,1)
×(0,1,1)12 model with an IO at t = 57 to the CO2 time series. These results should be
compared with the earlier results shown in Exhibit 10.10 on page 237, where the outlier
was not taken into account. Notice that the estimates of θ and Θ have not changed very
much, the AIC is better (that is, smaller), and the IO effect is highly significant. Diag-
nostics based on this model turn out to be excellent, no further outliers are detected, and
we have a very adequate model for this seasonal time series.

Exhibit 11.10 ARIMA(0,1,1)×(0,1,1)12 Model with IO at t = 57 for CO2 Series

> m1.co2=arima(co2,order=c(0,1,1),seasonal=list(order=c(0,1,1), 
period=12)); m1.co2

> detectAO(m1.co2); detectIO(m1.co2)
> m4.co2=arimax(co2,order=c(0,1,1),seasonal=list(order=c(0,1,1), 

period=12),io=c(57)); m4.co2

11.3 Spurious Correlation

A main purpose of building a time series model is for forecasting, and the ARIMA
model does this by exploiting the autocorrelation pattern in the data. Often, the time
series under study may be related to, or led by, some other covariate time series. For
example, Stige et al. (2006) found that pasture production in Africa is generally related
to some climatic indices. In such cases, better understanding of the underlying process
and/or more accurate forecasts may be achieved by incorporating relevant covariates
into the time series model.

Let Y = {Yt} be the time series of the response variable and X = {Xt} be a covariate
time series that we hope will help explain or forecast Y. To explore the correlation struc-
ture between X and Y and their lead-led relationship, we define the cross-covariance
function γt,s(X,Y) = Cov(Xt,Ys) for each pair of integers t and s. Stationarity of a univari-
ate time series can be easily extended to the case of multivariate time series. For exam-
ple, X and Y are jointly (weakly) stationary if their means are constant and the
covariance γt,s(X,Y) is a function of the time difference t − s. For jointly stationary pro-
cesses, the cross-correlation function between X and Y at lag k can then be defined by
ρk(X,Y) = Corr(Xt ,Yt − k) = Corr(Xt + k ,Yt). Note that if Y = X, the cross-correlation
becomes the autocorrelation of Y at lag k. The coefficient ρ0(Y,X) measures the contem-
poraneous linear association between X and Y, whereas ρk(X,Y) measures the linear
association between Xt and that of Yt − k. Recall that the autocorrelation function is an

Coefficient θ Θ IO-57

Estimate 0.5925 0.8274 2.6770

Standard Error 0.0775 0.1016 0.7246

 = 0.4869: log-likelihood = −133.08, AIC = 272.16σ̂e
2
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even function, that is, ρk(Y,Y) = ρ−k(Y,Y). (This is because Corr(Yt,Yt − k) =
Corr(Yt − k ,Yt) = Corr(Yt ,Yt + k), by stationarity.) However, the cross-correlation function
is generally not an even function since Corr(Xt,Yt − k) need not equal Corr(Xt ,Yt + k).

As an illustration, consider the regression model

(11.3.1)

where the X’s are independent, identically distributed random variables with variance
and the e’s are also white noise with variance  and are independent of the X’s. It

can be checked that the cross-correlation function (CCF) ρk(X,Y) is identically zero
except for lag k = −d, where

(11.3.2)

In this case, the theoretical CCF is nonzero only at lag −d, reflecting the fact that X is
“leading” Y by d units of time. The CCF can be estimated by the sample cross-correla-
tion function (sample CCF) defined by

(11.3.3)

where the summations are done over all data where the summands are available. The
sample CCF becomes the sample ACF when Y = X. The covariate X is independent of Y
if and only if β1 = 0, in which case the sample autocorrelation rk(X,Y) is approximately
normally distributed with zero mean and variance 1/n, where n is the sample size—the
number of pairs of (Xt,Yt) available. Sample cross-correlations that are larger than

 in magnitude are then deemed significantly different from zero.
We have simulated 100 pairs of (Xt,Yt) from the model of Equation (11.3.1) with d

= 2, β0 = 0, and β1 = 1. The X’s and e’s are generated as normal random variables dis-
tributed as N(0,1) and N(0,0.25), respectively. Theoretically, the CCF should then be
zero except at lag −2, where it equals = 0.8944. Exhibit
11.11 shows the sample CCF of the simulated data, which is significant at lags −2 and 3.
But the sample CCF at lag 3 is quite small and only marginally significant. Such a false
alarm is not unexpected as the exhibit displays a total of 33 sample CCF values out of
which we may expect 33×0.05 = 1.65 false alarms on average.
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Exhibit 11.11 Sample Cross-Correlation from Equation (11.3.1) with d = 2

> win.graph(width=4.875,height=2.5,pointsize=8)
> set.seed(12345); X=rnorm(105); Y=zlag(X,2)+.5*rnorm(105)
> X=ts(X[-(1:5)],start=1,freq=1); Y=ts(Y[-(1:5)],start=1,freq=1)
> ccf(X,Y,ylab='CCF')

Even though Xt − 2 correlates with Yt , the regression model considered above is
rather restrictive, as X and Y are each white noise series. For stationary time series, the
response variable and the covariate are each generally autocorrelated, and the error term
of the regression model is also generally autocorrelated. Hence a more useful regression
model is given by

(11.3.4)

where Zt may follow some ARIMA(p,d,q) model. Even if the processes X and Y are
independent of each other (β1 = 0), the autocorrelations in Y and X have the unfortunate
consequence of implying that the sample CCF is no longer approximately N(0,1/n).
Under the assumption that both X and Y are stationary and that they are independent of
each other, it turns out that the sample variance tends to be different from 1/n. Indeed, it
may be shown that the variance of is approximately

(11.3.5)

where ρk(X) is the autocorrelation of X at lag k and ρk(Y) is similarly defined for the
Y-process. For refinement of this asymptotic result, see Box et al. (1994, p. 413). Sup-
pose X and Y are both AR(1) processes with AR(1) coefficients φX and φY, respectively.
Then rk(X,Y) is approximately normally distributed with zero mean, but the variance is
now approximately equal to

(11.3.6)
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When both AR(1) coefficients are close to 1, the ratio of the sampling variance of
rk(X,Y) to the nominal value of 1/n approaches infinity. Thus, the unquestioned use of
the 1/n rule in deciding the significance of the sample CCF may lead to many more false
positives than the nominal 5% error rate, even though the response and covariate time
series are independent of each other. Exhibit 11.12 shows some numerical results for the
case where φX = φY = φ.

Exhibit 11.12 Asymptotic Error Rates of a Nominal 5% Test of 
Independence for a Pair of AR(1) Processes

> phi=seq(0,.95,.15)
> rejection=2*(1-pnorm(1.96*sqrt((1-phi^2)/(1+phi^2))))
> M=signif(rbind(phi,rejection),2)
> rownames(M)=c('phi', 'Error Rate')
> M

The problem of inflated variance of the sample cross-correlation coefficients
becomes more acute for nonstationary data. In fact, the sample cross-correlation coeffi-
cients may no longer be approximately normally distributed even with a large sample
size. Exhibit 11.13 displays the histogram of 1000 simulated lag zero cross-correlations
between two independent IMA(1,1) processes each of size 500. An MA(1) coefficient
of θ = 0.8 was used for both simulated processes. Note that the distribution of r0(X,Y) is
far from normal and widely dispersed between −1 and 1. See Phillips (1998) for a rele-
vant theoretical discussion.

Exhibit 11.13 Histogram of 1000 Sample Lag Zero Cross-Correlations of 
Two Independent IMA(1,1) Processes Each of Size 500

φ = φX = φY 0.00 0.15 0.30 0.45 0.60 0.75 0.90
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> set.seed(23457)
> correlation.v=NULL; B=1000; n=500
> for (i in 1:B) {x=cumsum(arima.sim(model=list(ma=.8),n=n))
> y=cumsum(arima.sim(model=list(ma=.8),n=n))
> correlation.v=c(correlation.v,ccf(x,y,lag.max=1, 

plot=F)$acf[2])}
> hist(correlation.v,prob=T,xlab=expression(r[0](X,Y)))

These results provide insight into why we sometimes obtain nonsense (spurious)
correlation between time series variables. The phenomenon of spurious correlation was
first studied systematically by Yule (1926).

As an example, the monthly milk production and the logarithms of monthly elec-
tricity production in the United States from January 1994 to December 2005 are shown
in Exhibit 11.14. Both series have an upward trend and are highly seasonal.

Exhibit 11.14 Monthly Milk Production and Logarithms of Monthly 
Electricity Production in the U.S.

> data(milk); data(electricity)
> milk.electricity=ts.intersect(milk,log(electricity))
> plot(milk.electricity,yax.flip=T)

Calculation shows that these series have a cross-correlation coefficient at lag zero
of 0.54, which is “statistically significantly different from zero” as judged against the
standard error criterion of . Exhibit 11.15 displays the strong cross-
correlations between these two variables at a large number of lags.

Needless to say, it is difficult to come up with a plausible reason for the relationship
between monthly electricity production and monthly milk production. The nonstationar-
ity in the milk production series and in the electricity series is more likely the cause of
the spurious correlations found between the two series. The following section contains
further discussion of this example.
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Exhibit 11.15 Sample Cross-Correlation Between Monthly Milk Production 
and Logarithm of Monthly Electricity Production in the U.S.

> ccf(as.vector(milk.electricity[,1]), 
as.vector(milk.electricity[,2]),ylab='CCF')

11.4 Prewhitening and Stochastic Regression

In the preceding section, we found that with strongly autocorrelated data it is difficult to
assess the dependence between the two processes. Thus, it is pertinent to disentangle the
linear association between X and Y, say, from their autocorrelation. A useful device for
doing this is prewhitening. Recall that, for the case of stationary X and Y that are inde-
pendent of each other, the variance of is approximately

(11.4.1)

An examination of this formula reveals that the approximate variance is 1/n if either one
(or both) of X or Y is a white noise process. In practice, the data may be nonstationary,
but they may be transformed to approximately white noise by replacing the data by the
residuals from a fitted ARIMA model. For example, if X follows an ARIMA(1,1,0)
model with no intercept term, then

(11.4.2)

is white noise. More generally, if Xt follows some invertible ARIMA(p,d,q) model, then
it admits an AR(∞) representation

where the ’s are white noise. The process of transforming the X’s to the ’s via the fil-
ter π(B) = 1 − π1B − π2B2 −  is known as whitening or prewhitening. We now can
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study the CCF between X and Y by prewhitening the Y and X using the same filter based
on the X process and then computing the CCF of  and ; that is, the prewhitened Y
and X. Since prewhitening is a linear operation, any linear relationships between the
original series will be preserved after prewhitening. Note that we have abused the termi-
nology, as  need not be white noise because the filter π(B) is tailor-made only to trans-
form X to a white noise process—not Y. We assume, furthermore, that  is stationary.
This approach has two advantages: (i) the statistical significance of the sample CCF of
the prewhitened data can be assessed using the cutoff , and (ii) the theoretical
counterpart of the CCF so estimated is proportional to certain regression coefficients.

To see (ii), consider a more general regression model relating X to Y and, without
loss of generality, assume both processes have zero mean:

(11.4.3)

where X is independent of Z and the coefficients β are such that the process is
well-defined. In this model, the coefficients βk could be nonzero for any integer k. How-
ever, in real applications, the doubly infinite sum is often a finite sum so that the model
simplifies to

(11.4.4)

which will be assumed below even though we retain the doubly infinite summation
notation for ease of exposition. If the summation ranges only over a finite set of positive
indices, then X leads Y and the covariate X serves as a useful leading indicator for
future Y’s. Applying the filter π(B) to both sides of this model, we get

(11.4.5)

where .The prewhitening procedure thus orthogonal-
izes the various lags of X in the original regression model. Because  is a white noise
sequence and  is independent of , the theoretical cross-correlation coefficient
between  and  at lag k equals . In other words, the theoretical cross-
correlation of the prewhitened processes at lag k is proportional to the regression coeffi-
cient β−k.

For a quick preliminary analysis, an approximate prewhitening can be done easily
by first differencing the data (if needed) and then fitting an approximate AR model with
the order determined by minimizing the AIC. For example, for the milk production and
electricity consumption data, both are highly seasonal and contain trends. Consequently,
they can be differenced with both regular differencing and seasonal differencing, and
then the prewhitening can be carried out by filtering both differenced series by an AR
model fitted to the differenced milk data. Exhibit 11.16 shows the sample CCF between
the prewhitened series. None of the cross-correlations are now significant except for lag
−3, which is just marginally significant. The lone significant cross-correlation is likely a
false alarm since we expect about 1.75 false alarms out of the 35 sample cross-correla-
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tions examined. Thus, it seems that milk production and electricity consumption are in
fact largely uncorrelated, and the strong cross-correlation pattern found between the raw
data series is indeed spurious.

Exhibit 11.16 Sample CCF of Prewhitened Milk and Electricity Production

> me.dif=ts.intersect(diff(diff(milk,12)), 
diff(diff(log(electricity),12)))

> prewhiten(as.vector(me.dif[,1]),as.vector(me.dif[,2]), 
ylab='CCF')

The model defined by Equation (11.3.4) on page 262 is known variously as the
transfer-function model, the distributed-lag model, or the dynamic regression model.
The specification of which lags of the covariate enter into the model is often done by
inspecting the sample cross-correlation function based on the prewhitened data. When
the model appears to require a fair number of lags of the covariate, the regression coeffi-
cients may be parsimoniously specified via an ARMA specification similar to the case
of intervention analysis; see Box et al. (1994, Chapter 11) for some details. We illustrate
the method below with two examples where only one lag of the covariate appears to be
needed. The specification of the stochastic noise process Zt can be done by examining
the residuals from an ordinary least squares (OLS) fit of Y on X using the techniques
learned in earlier chapters.

Our first example of this section is a sales and price dataset of a certain potato chip
from Bluebird Foods Ltd., New Zealand. The data consist of the log-transformed
weekly unit sales of large packages of standard potato chips sold and the weekly aver-
age price over a period of 104 weeks from September 20, 1998 through September 10,
2000; see Exhibit 11.17. The logarithmic transformation is needed because the sales
data are highly skewed to the right. These data are clearly nonstationary. Exhibit 11.18
shows that, after differencing and using prewhitened data, the CCF is significant only at
lag 0, suggesting a strong contemporaneous negative relationship between lag 1 of price
and sales. Higher prices are associated with lower sales.

−15 −10 −5 0 5 10 15

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Lag

C
C

F



268 Time Series Regression Models

Exhibit 11.17  Weekly Log(Sales) and Price for Bluebird Potato Chips

> data(bluebird)
> plot(bluebird,yax.flip=T)

Exhibit 11.18 Sample Cross Correlation Between Prewhitened Differenced 
Log(Sales) and Price of Bluebird Potato Chips

> prewhiten(y=diff(bluebird)[,1],x=diff(bluebird)[,2],ylab='CCF')

Exhibit 11.19 reports the estimates from the OLS regression of log(sales) on price.
The residuals are, however, autocorrelated, as can be seen from their sample ACF and
PACF displayed in Exhibits 11.20 and 11.21, respectively. Indeed, the sample autocor-
relations of the residuals are significant for the first four lags, whereas the sample partial
autocorrelations are significant at lags 1, 2, 4, and 14.
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Exhibit 11.19 OLS Regression Estimates of Log(Sales) on Price

> sales=bluebird[,1]; price=bluebird[,2]
> chip.m1=lm(sales~price,data=bluebird)
> summary(chip.m1)

Exhibit 11.20 Sample ACF of Residuals from OLS Regression of 
Log(Sales) on Price

> acf(residuals(chip.m1),ci.type='ma')

Exhibit 11.21 Sample PACF of Residuals from OLS Regression of 
Log(Sales) on Price

> pacf(residuals(chip.m1))

 Estimate Std. Error t value Pr(>)

Intercept 15.90 0.2170 73.22 < 0.0001

Price −2.489 0.1260 −19.75 < 0.0001
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The sample EACF of the residuals, shown in Exhibit 11.22, contains a triangle of
zeros with a vertex at (1,4), thereby suggesting an ARMA(1,4) model. Hence, we fit a
regression model of log(sales) on price with an ARMA(1,4) error.

Exhibit 11.22 The Sample EACF of the Residuals from the OLS 
Regression of Log(Sales) on Price

> eacf(residuals(chip.m1))

It turns out that the estimates of the AR(1) coefficient and the MA coefficients θ1
and θ3 are not significant, and hence a model fixing these coefficients to be zero was
subsequently fitted and reported in Exhibit 11.23.

Exhibit 11.23 Maximum Likelihood Estimates of a Regression Model of 
Log(sales) on Price with a Subset MA(4) for the Errors

> chip.m2=arima(sales,order=c(1,0,4),xreg=data.frame(price))
> chip.m2
> chip.m3=arima(sales,order=c(1,0,4),xreg=data.frame(price), 

fixed=c(NA,0,NA,0,NA,NA,NA)); chip.m3
> chip.m4=arima(sales,order=c(0,0,4),xreg=data.frame(price), 

fixed=c(0,NA,0,NA,NA,NA)); chip.m4

Note that the regression coefficient estimate on Price is similar to that from the OLS
regression fit earlier, but the standard error of the estimate is about 10% lower than that
from the simple OLS regression. This illustrates the general result that the simple OLS
estimator is consistent but the associated standard error is generally not trustworthy.

AR/MA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

0 x x x x 0 0 x x 0 0 0 0 0 0 

1 x 0 0 x 0 0 0 0 0 0 0 0 0 0 

2 x x 0 x 0 0 0 0 0 0 0 0 0 0 

3 x x 0 x 0 0 0 0 0 0 0 0 0 0 

4 0 x x 0 0 0 0 0 0 0 0 0 0 0 

5 x x x 0 x 0 0 0 0 0 0 0 0 0 

6 x x 0 x x x 0 0 0 0 0 0 0 0 

7 x 0 x 0 0 0 0 0 0 0 0 0 0 0 

 Parameter θ1 θ2 θ3 θ4 Intercept Price 

Estimate 0 −0.2884 0 −0.5416 15.86 −2.468

Standard Error 0 0.0794 0 0 0.1167 0.1909 0.1100

σ2 estimated as 0.02623: log likelihood = 41.02, AIC = −70.05 
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The residuals from this fitted model by and large pass various model diagnostic
tests except that the residual ACF is significant at lag 14. As a result, some Box-Ljung
test statistics have p-values bordering on 0.05 when 14 or more lags of the residual auto-
correlations are included in the test. Even though the significant ACF at lag 14 may sug-
gest a quarterly effect, we do not report a more complex model including lag 14 because
(1) 14 weeks do not exactly make a quarter and (2) adding a seasonal MA(1) component
of period 14 only results in marginal improvement in terms of model diagnostics.

For a second example, we study the impact of higher gasoline price on public trans-
portation usage. The dataset consists of the monthly number of boardings on public
transportation in the Denver, Colorado, region together with the average monthly gaso-
line prices in Denver from August 2000 through March 2006. Both variables are skewed
to the right and hence are log-transformed. As we shall see below, the logarithmic trans-
formation also makes the final fitted model more interpretable. The time series plots,
shown in Exhibit 11.24, display the increasing trends for both variables and the seasonal
fluctuation in the number of boardings. Based on the sample ACF and PACF, an
ARIMA(2,1,0) model was fitted to the gasoline price data. This fitted model was then
used to filter the boardings data before computing their sample CCF which is shown in
Exhibit 11.25. The sample CCF is significant at lags 0 and 15, suggesting positive con-
temporaneous correlation between gasoline price and public transportation usage. The
significant CCF at lag 15, however, is unlikely to be real, as it is hard to imagine why the
number of boardings might lead the gasoline price with a lag of 15 months. In this case,
the quick preliminary approach of prewhitening the series by fitting a long AR model,
however, showed that none of the CCFs are significant. It turns out that even after differ-
encing the data, the AIC selects an AR(16) model. The higher order selected coupled
with the relatively short time span may substantially weaken the power to detect correla-
tions between the two variables. Incidentally, this example warns against simply relying
on the AIC to select a high-order AR model to do prewhitening, especially with rela-
tively short time series data.

Exhibit 11.24 Logarithms of Monthly Public Transit Boardings and 
Gasoline Prices in Denver, August 2000 through March 2006

> data(boardings)
> plot(boardings,yax.flip=T)
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Exhibit 11.25 Sample CCF of Prewhitened Log(Boardings) and Log(Price)

> m1=arima(boardings[,2],order=c(2,1,0))
> prewhiten(x=boardings[,2],y=boardings[,1],x.model=m1)

Based on the sample ACF, PACF, and EACF of the residuals from a linear model of
boardings on gasoline price, a seasonal ARIMA(2,0,0)×(1,0 ,0)12 model was tentatively
specified for the error process in the regression model. However, the φ2 coefficient esti-
mate was not significant, and hence the AR order was reduced to p = 1. Using the outlier
detection techniques discussed in Section 11.2, we found an additive outlier for March
2003 and an innovative outlier for March 2004. Because the test statistic for the additive
outlier had a larger magnitude than that of the innovative outlier (−4.09 vs. 3.65), we
incorporated the additive outlier in the model.† Diagnostics of the subsequent fitted
model reveals that the residual ACF was significant at lag 3, which suggests the error
process is a seasonal ARIMA(1,0,3)×(1,0,0)12 + outlier process. As the estimates of
the coefficients θ1 and θ2 were found to be insignificant, they were suppressed from the
final fitted model that is reported in Exhibit 11.26.

Diagnostics of the final fitted model suggest a good fit to the data. Also, no further
outliers were detected. A 95% confidence interval for the regression coefficient on
Log(Price) is (0.0249, 0.139). Note the interpretation of the fitted model: a 100%
increase in the price of gasoline will lead to about an 8.2% increase in public transporta-
tion usage.

† Subsequent investigation revealed that a 30 inch snowstorm in March 2003 completely shut
down Denver for one full day. It remained partially shut down for a few more days.
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Exhibit 11.26 Maximum Likelihood Estimates of the Regression Model of 
Log(Boardings) on Log(Price) with ARMA Errors

> log.boardings=boardings[,1]
> log.price=boardings[,2]
> boardings.m1=arima(log.boardings,order=c(1,0,0), 

seasonal=list(order=c(1,0,0),period=12), 
xreg=data.frame(log.price))

> boardings.m1
> detectAO(boardings.m1); detectIO(boardings.m1)
> boardings.m2=arima(log.boardings,order=c(1,0,3), 

seasonal=list(order=c(1,0,0),period=12), 
xreg=data.frame(log.price,outlier=c(rep(0,31),1,rep(0,36))), 
fixed=c(NA,0,0,rep(NA,5)))

> boardings.m2
> detectAO(boardings.m2); detectIO(boardings.m2)
> tsdiag(boardings.m2,tol=.15,gof.lag=24)

It is also of interest to note that dropping the outlier term from the model results in
a new regression estimate on Log(Price) of 0.0619 with a standard error of 0.0372.
Thus, when the outlier is not properly modeled, the regression coefficient ceases to be
significant at the 5% level. As demonstrated by this example, the presence of an outlier
can adversely affect inference in time series modeling.

11.5 Summary

In this chapter, we used information from other events or other time series to help model
the time series of main interest. We began with the so-called intervention models, which
attempt to incorporate known external events that we believe have a significant effect on
the time series of interest. Various simple but useful ways of modeling the effects of
these interventions were discussed. Outliers are observations that deviate rather substan-
tially from the general pattern of the data. Models were developed to detect and incorpo-
rate outliers in time series. The material in the section on spurious correlation illustrates
how difficult it is to assess relationships between two time series, but methods involving
prewhitening were shown to help in this regard. Several substantial examples were used
to illustrate the methods and techniques discussed.

Parameter φ1 θ3 Φ1 Intercept Log(Price) Outlier 

Estimate 0.8782 0.3836 0.8987 12.12 0.0819 −0.0643

Standard Error 0.0645 0.1475 0.0395 0.1638 0.0291 0.0109

 σ2 estimated as 0.0004094: log-likelihood = 158.02, AIC = −304.05
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EXERCISES

11.1 Produce a time series plot of the air passenger miles over the period January 1996
through May 2005 using seasonal plotting symbols. Display the graph full-screen
and discuss the seasonality that is displayed. The data are in the file named
airmiles.

11.2 Show that the expression given for mt in Equation (11.1.7) on page 251 satisfies
the “AR(1)” recursion given in Equation (11.1.6) with the initial condition m0 = 0.

11.3 Find the “half-life” for the intervention effect specified in Equation (11.1.6) on
page 251 when δ = 0.7.

11.4 Show that the “half-life” for the intervention effect specified in Equation (11.1.6)
on page 251 increases without bound as δ increases to 1.

11.5 Show that for the intervention effect specified by Equation (11.1.6) on page 251

11.6 Consider the intervention effect displayed in Exhibit 11.3, (b), page 253.
(a) Show that the jump at time T + 1 is of height ω as displayed.
(b) Show that, as displayed, the intervention effect tends to ω/(1 − δ) as t

increases without bound.
11.7 Consider the intervention effect displayed in Exhibit 11.3, (c), page 253. Show

that the effect increases linearly starting at time T + 1 with slope ω as displayed.
11.8 Consider the intervention effect displayed in Exhibit 11.4, (a), page 254.

(a) Show that the jump at time T + 1 is of height ω as displayed.
(b) Show that, as displayed, the intervention effect tends to go back to 0 as t

increases without bound.
11.9 Consider the intervention effect displayed in Exhibit 11.4, (b), page 254.

(a) Show that the jump at time T + 1 is of height ω1 + ω2 as displayed.
(b) Show that, as displayed, the intervention effect tends to ω2 as t increases with-

out bound.
11.10 Consider the intervention effect displayed in Exhibit 11.4, (c), page 254.

(a) Show that the jump at time T is of height ω0 as displayed.
(a) Show that the jump at time T + 1 is of height ω1 + ω2 as displayed.
(b) Show that, as displayed, the intervention effect tends to ω2 as t increases with-

out bound.
11.11 Simulate 100 pairs of (Xt,Yt) from the model of Equation (11.3.1) on page 261

with d = 3, β0 = 0, and β1 = 1. Use σX = 2 and σe = 1. Display and interpret the
sample CCF between these two series.

11.12 Show that when the X and Y are independent AR(1) time series with parameters
φX and φY, respectively, Equation (11.3.5) on page 262 reduces to give Equation
(11.3.6).

11.13 Show that for the process defined by Equation (11.4.5) on page 266, the
cross-correlation between  and  at lag k is given by .

mtδ 1→
lim

ω T t–( ) for t T≥,
0 otherwise,⎩

⎨
⎧

=

X̃ Ỹ β k– σ
X̃

σ
Ỹ

⁄( )
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11.14 Simulate an AR time series with φ = 0.7, μ = 0, = 1, and of length n = 48. Plot
the time series, and inspect the sample ACF and PACF of the series.
(a) Now add a step function response of ω = 1 unit height at time t = 36 to the

simulated series. The series now has a theoretical mean of zero from t = 1 to
35 and a mean of 1 from t = 36 on. Plot the new time series and calculate the
sample ACF and PACF for the new series. Compare these with the results for
the original series.

(b) Repeat part (a) but with an impulse response at time t = 36 of unit height, ω =
1. Plot the new time series, and calculate the sample ACF and PACF for the
new series. Compare these with the results for the original series. See if you
can detect the additive outlier at time t = 36 assuming that you do not know
where the outlier might occur.

11.15 Consider the air passenger miles time series discussed in this chapter. The file is
named airmiles. Use only the preintervention data (that is, data prior to September
2001) for this exercise.
(a) Verify that the sample ACF for the twice differenced series of the logarithms

of the preintervention data is as shown in Exhibit 11.5 on page 255.
(b) The plot created in part (a) suggests an ARIMA(0,1,1)×(0,1,0)12. Fit this

model and assess its adequacy. In particular, verify that additive outliers are
detected in December 1996, January 1997, and December 2002.

(c) Now fit an ARIMA(0,1,1)×(0,1,0)12 + three outliers model and assess its ade-
quacy.

(d) Finally, fit an ARIMA(0,1,1)×(0,1,1)12 + three outliers model and assess its
adequacy.

11.16 Use the logarithms of the Denver region public transportation boardings and Den-
ver gasoline price series. The data are in the file named boardings.
(a) Display the time series plot of the monthly boardings using seasonal plotting

symbols. Interpret the plot.
(b) Display the time series plot of the monthly average gasoline prices using sea-

sonal plotting symbols. Interpret the plot.
11.17 The data file named deere1 contains 82 consecutive values for the amount of

deviation (in 0.000025 inch units) from a specified target value that an industrial
machining process at Deere & Co. produced under certain specified operating
conditions. These data were first used in Exercise 6.33, page 146, where we
observed an obvious outlier at time t = 27.
(a) Fit an AR(2) model using the original data including the outlier.
(b) Test the fitted AR(2) model of part (a) for both AO and IO outliers.
(c) Now fit the AR(2) model incorporating a term in the model for the outlier.
(d) Assess the fit of the model in part (c) using all of our diagnostic tools. In par-

ticular, compare the properties of this model with the one obtained in part (a).

σe
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11.18 The data file named days contains accounting data from the Winegard Co. of Bur-
lington, Iowa. The data are the number of days until Winegard receives payment
for 130 consecutive orders from a particular distributor of Winegard products.
(The name of the distributor must remain anonymous for confidentiality reasons.)
These data were first investigated in Exercise 6.39, page 147, but several outliers
were observed. When the observed outliers were replaced by more typical values,
an MA(2) model was suggested.
(a) Fit an MA(2) model to the original data, and test the fitted model for both AO

and IO outliers.
(b) Now fit the MA(2) model incorporating the outliers into the model.
(c) Assess the fit of the model obtained in part (b). In particular, are any more out-

liers indicated?
(d) Fit another MA(2) model incorporating any additional outliers found in part

(c), and assess the fit of this model.
11.19 The data file named bluebirdlite contains weekly sales and price data for Bluebird

Lite potato chips. Carry out an analysis similar to that for Bluebird Standard
potato chips that was begun on page 267.

11.20 The file named units contains annual unit sales of a certain product from a widely
known international company over the years 1983 through 2005. (The name of
the company must remain anonymous for proprietary reasons.)
(a) Plot the time series of units and describe the general features of the plot.
(b) Use ordinary least squares regression to fit a straight line in time to the series.
(c) Display the sample PACF of the residuals from this model, and specify an

ARIMA model for the residuals.
(d) Now fit the model unit sales = AR(2) + time. Interpret the output. In particu-

lar, compare the estimated regression coefficient on the time variable obtained
here with the one you obtained in part (b).

(e) Perform a thorough analysis of the residuals from this last model.
(f) Repeat parts (d) and (e) using the logarithms of unit sales as the response vari-

able. Compare these results witjh those obtained in parts (d) and (e).
11.21 In Chapters 5–8, we investigated an IMA(1,1) model for the logarithms of

monthly oil prices. Exhibit 8.3 on page 178 suggested that there may be several
outliers in this series. Investigate the IMA(1,1) model for this series for outliers
using the techniques developed in this chapter. Be sure to compare your results
with those obtained earlier that ignored the outliers. The data are in the file named
oil.




