Homework 1

Hao Zhang

True or False questions

Please write T (for true) or F (for false) in the parenthesis. A correct answer is worth 1 point and a wrong answer is 0 points.

For problems 1-8, assume Y_1, Y_2, \ldots, Y_n are a random sample from $N(\mu, \sigma^2)$ with the sample mean $\overline{Y} = (1/n) \sum_{i=1}^n Y_i$ and sample variance S^2 .

1.
$$\bar{Y} = (1/n) \sum_{i=1}^{n} Y_i$$
 is $N(\mu, \sigma^2)$. ()

2.
$$\bar{Y} = (1/n) \sum_{i=1}^{n} Y_i$$
 is $N(\mu, \sigma^2/n)$. ()

3.
$$\frac{Y-\mu}{\sigma/\sqrt{n}} \sim N(0,1).$$
 ()

4.
$$\frac{Y-\mu}{S/\sqrt{n}} \sim N(0,1).$$
 ()

5.
$$\frac{\bar{Y}-\mu}{S/\sqrt{n}} \sim t_{n-1}.$$
 ()

6. \bar{Y} and S are independent. ()

7.
$$S^2$$
 has a χ^2 distribution. ()

8.
$$\left(\frac{\bar{Y}-\mu}{S/\sqrt{n}}\right)^2$$
 has an F distribution. ()

Short answer questions

Each problem is worth 3 points.

- 9. Explain the difference or differences between a treatment factor and a treatment.
- 10. Explain some differences between a completely randomized design and a randomized complete block design.
- 11. What are some potential negative consequences if the treatments are assigned to experimental units without randomization?