Homework10

- 51.
- Parameter of interest: $p_1 p_2$ = true difference in proportions of those responding to two different survey covers (1 = Plain, 2 = Picture).
- 2 $H_0: p_1 p_2 = 0$
- $H_a: p_1 p_2 < 0$
- $Z = \frac{\hat{p}_1 \hat{p}_2}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{m} + \frac{1}{n}\right)}}$
- 5 Reject H_0 if P-value < .10
- 6 $z = \frac{\frac{104}{207} \frac{109}{213}}{\sqrt{\left(\frac{213}{420}\right)\left(\frac{207}{420}\right)\left(\frac{1}{207} + \frac{1}{213}\right)}} = -.1910 ; P-value = .4247$
- Fail to Reject H_0 . The data does not indicate that plain cover surveys have a lower response rate.
- 52. Let $\alpha = .05$. A 95% confidence interval is $(\hat{p}_1 \hat{p}_2) \pm Z_{\alpha/2} \sqrt{(\frac{\hat{p}_1 \hat{q}_1}{m} + \frac{\hat{p}_2 \hat{q}_2}{n})}$ $= (\frac{224}{395} \frac{126}{266}) \pm 1.96 \sqrt{(\frac{(\frac{224}{395})(\frac{171}{395})}{395} + \frac{(\frac{126}{266})(\frac{140}{266})}{266})} = .0934 \pm .0774 = (.0160, .1708).$
- Let σ_1^2 = variance in weight gain for low-dose treatment, and σ_2^2 = variance in weight gain for control condition. We wish to test $H_0: \sigma_1^2 = \sigma_2^2$ v. $H_a: \sigma_1^2 > \sigma_2^2$. The test statistic is $f = \frac{s_1^2}{s_2^2}$, and we reject H_0 at level .05 if $f > F_{.05,19,22} \approx 2.08$. $f = \frac{(54)^2}{(32)^2} = 2.85 \ge 2.08$, so reject H_0 at level .05. The data does suggest that there is more variability in the low-dose weight gains.
- For the hypotheses $H_0: \sigma_1 = \sigma_2$ versus $H_a: \sigma_1 \neq \sigma_2$, we find a test statistic of f = 1.22. At df = $(47,44) \approx (40,40)$, 1.22 < 1.51 indicates the *P*-value is greater than 2(.10) = .20. Hence, H_0 is not rejected. The data does not suggest a significant difference in the two population variances.