a.
$$E(\overline{X} - \overline{Y}) = E(\overline{X}) - E(\overline{Y}) = \mu_1 - \mu_2$$
; $\overline{X} - \overline{Y} = 8.141 - 8.575 = -.434$.

- **b.** $V(\overline{X} \overline{Y}) = V(\overline{X}) + V(\overline{Y}) = \sigma_{\overline{X}}^2 + \sigma_{\overline{Y}}^2 = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$ $\sigma_{\overline{X} \overline{Y}} = \sqrt{V(\overline{X} \overline{Y})} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$. The estimate would be $s_{\overline{X} \overline{Y}} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} = \sqrt{\frac{1.66^2}{27} + \frac{2.104^2}{20}} = .5687$.
- **c.** $\frac{s_1}{s_2} = \frac{1.660}{2.104} = .7890.$
- **d.** $V(X-Y) = V(X) + V(Y) = \sigma_1^2 + \sigma_2^2 = 1.66^2 + 2.104^2 = 7.1824.$

10.

a. The hint tells us that $E(\overline{X}^2) = V(\overline{X}) + [E(\overline{X})]^2$. We know that $E(\overline{X}) = \mu$ and $SD(\overline{X}) = \frac{\sigma}{\sqrt{n}}$, so $E(\overline{X}^2) = \left(\frac{\sigma}{\sqrt{n}}\right)^2 + [\mu]^2 = \frac{\sigma^2}{n} + \mu^2$. Since $E(\overline{X}^2) \neq \mu^2$, we've discovered that \overline{X}^2 is <u>not</u> an unbiased estimator of μ^2 !

In fact, the bias equals $E(\overline{X}^2) - \mu^2 = \frac{\sigma^2}{n} > 0$, so \overline{X}^2 is *biased high*. It will tend to *over* estimate the true value of μ^2 .

b. By linearity of expectation, $E(\overline{X}^2 - kS^2) = E(\overline{X}^2) - kE(S^2)$. The author proves in Section 6.1 that $E(S^2) = \sigma^2$, so $E(\overline{X}^2) - kE(S^2) = \frac{\sigma^2}{n} + \mu^2 - k\sigma^2$.

The goal is to find k so that $E(\overline{X}^2 - kS^2) = \mu^2$. That requires $\frac{\sigma^2}{n} - k\sigma^2 = 0$, or $k = \frac{1}{n}$.

a.
$$E\left(\frac{X_1}{n_1} - \frac{X_2}{n_2}\right) = \frac{1}{n_1}E(X_1) - \frac{1}{n_2}E(X_2) = \frac{1}{n_1}(n_1p_1) - \frac{1}{n_2}(n_2p_2) = p_1 - p_2$$
.

b.
$$V\left(\frac{X_1}{n_1} - \frac{X_2}{n_2}\right) = V\left(\frac{X_1}{n_1}\right) + V\left(\frac{X_2}{n_2}\right) = \left(\frac{1}{n_1}\right)^2 V(X_1) + \left(\frac{1}{n_2}\right)^2 V(X_2) = \frac{1}{n_1^2} (n_1 p_1 q_1) + \frac{1}{n_2^2} (n_2 p_2 q_2) = \frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}$$
, and the standard error is the square root of this quantity.

c. With
$$\hat{p}_1 = \frac{x_1}{n_1}$$
, $\hat{q}_1 = 1 - \hat{p}_1$, $\hat{p}_2 = \frac{x_2}{n_2}$, $\hat{q}_2 = 1 - \hat{p}_2$, the estimated standard error is $\sqrt{\frac{\hat{p}_1\hat{q}_1}{n_1} + \frac{\hat{p}_2\hat{q}_2}{n_2}}$.

d.
$$(\hat{p}_1 - \hat{p}_2) = \frac{127}{200} - \frac{176}{200} = .635 - .880 = -.245$$

e.
$$\sqrt{\frac{(.635)(.365)}{200} + \frac{(.880)(.120)}{200}} = .041$$

12.
$$E\left[\frac{\left(n_1-1\right)S_1^2+\left(n_2-1\right)S_2^2}{n_1+n_2-2}\right] = \frac{\left(n_1-1\right)}{n_1+n_2-2}E(S_1^2) + \frac{\left(n_2-1\right)}{n_1+n_2-2}E(S_2^2) = \frac{\left(n_1-1\right)}{n_1+n_2-2}\sigma^2 + \frac{\left(n_2-1\right)}{n_1+n_2-2}\sigma^2 = \sigma^2.$$

13.
$$\mu = E(X) = \int_{-1}^{1} x \cdot \frac{1}{2} (1 + \theta x) dx = \frac{x^2}{4} + \frac{\theta x^3}{6} \Big|_{-1}^{1} = \frac{1}{3} \theta \Rightarrow \theta = 3\mu$$
$$\Rightarrow \hat{\theta} = 3\overline{X} \Rightarrow E(\hat{\theta}) = E(3\overline{X}) = 3E(\overline{X}) = 3\mu = 3\left(\frac{1}{3}\right)\theta = \theta.$$

- **a.** $E(X) = \beta \cdot \Gamma\left(1 + \frac{1}{\alpha}\right)$ and $E(X^2) = V(X) + [E(X)]^2 = \beta^2 \Gamma\left(1 + \frac{2}{\alpha}\right)$, so the moment estimators $\hat{\alpha}$ and $\hat{\beta}$ are the solution to $\overline{X} = \hat{\beta} \cdot \Gamma\left(1 + \frac{1}{\hat{\alpha}}\right)$, $\frac{1}{n} \sum X_i^2 = \hat{\beta}^2 \Gamma\left(1 + \frac{2}{\hat{\alpha}}\right)$. Thus $\hat{\beta} = \frac{\overline{X}}{\Gamma\left(1 + \frac{1}{\hat{\alpha}}\right)}$, so once $\hat{\alpha}$ has been determined $\Gamma\left(1 + \frac{1}{\hat{\alpha}}\right)$ is evaluated and $\hat{\beta}$ then computed. Since $\overline{X}^2 = \hat{\beta}^2 \cdot \Gamma^2\left(1 + \frac{1}{\hat{\alpha}}\right)$, $\frac{1}{n} \sum \frac{X_i^2}{\overline{X}^2} = \frac{\Gamma\left(1 + \frac{2}{\hat{\alpha}}\right)}{\Gamma^2\left(1 + \frac{1}{\hat{\alpha}}\right)}$, so this equation must be solved to obtain $\hat{\alpha}$.
- **b.** From **a**, $\frac{1}{20} \left(\frac{16,500}{28.0^2} \right) = 1.05 = \frac{\Gamma \left(1 + \frac{2}{\hat{\alpha}} \right)}{\Gamma^2 \left(1 + \frac{1}{\hat{\alpha}} \right)}$, so $\frac{1}{1.05} = .95 = \frac{\Gamma^2 \left(1 + \frac{1}{\hat{\alpha}} \right)}{\Gamma \left(1 + \frac{2}{\hat{\alpha}} \right)}$, and from the hint, $\frac{1}{\hat{\alpha}} = .2 \Rightarrow \hat{\alpha} = 5$. Then $\hat{\beta} = \frac{\overline{x}}{\Gamma(1.2)} = \frac{28.0}{\Gamma(1.2)}$.

22.

- **a.** $E(X) = \int_0^1 x(\theta+1)x^{\theta} dx = \frac{\theta+1}{\theta+2} = 1 \frac{1}{\theta+2}$, so the moment estimator $\hat{\theta}$ is the solution to $\overline{X} = 1 \frac{1}{\hat{\theta}+2}$, yielding $\hat{\theta} = \frac{1}{1-\overline{X}} 2$. Since $\overline{x} = .80, \hat{\theta} = 5 2 = 3$.
- **b.** $f(x_1,...,x_n;\theta) = (\theta+1)^n (x_1x_2...x_n)^{\theta}$, so the log likelihood is $n\ln(\theta+1) + \theta \sum \ln(x_i)$. Taking $\frac{d}{d\theta}$ and equating to 0 yields $\frac{n}{\theta+1} = -\sum \ln(x_i)$, so $\hat{\theta} = -\frac{n}{\sum \ln(X_i)} 1$. Taking $\ln(x_i)$ for each given x_i yields ultimately $\hat{\theta} = 3.12$.

25.

- **a.** $\hat{\mu} = \overline{x} = 384.4; s^2 = 395.16$, so $\frac{1}{n} \sum (x_i \overline{x})^2 = \hat{\sigma}^2 = \frac{9}{10} (395.16) = 355.64$ and $\hat{\sigma} = \sqrt{355.64} = 18.86$ (this is <u>not</u> s).
- **b.** The 95th percentile is $\mu + 1.645\sigma$, so the mle of this is (by the invariance principle) $\hat{\mu} + 1.645\hat{\sigma} = 415.42$.
- 26. The mle of $P(X \le 400)$ is, by the invariance principle, $\Phi\left(\frac{400 \hat{\mu}}{\hat{\sigma}}\right) = \Phi\left(\frac{400 384.4}{18.86}\right) = \Phi(.80) = .7881$

a.
$$f(x_1,...,x_n;\alpha,\beta) = \frac{(x_1x_2...x_n)^{\alpha-1}e^{-\Sigma x_i/\beta}}{\beta^{n\alpha}\Gamma^n(\alpha)}$$
, so the log likelihood is
$$(\alpha-1)\sum \ln(x_i) - \frac{\sum x_i}{\beta} - n\alpha\ln(\beta) - n\ln\Gamma(\alpha)$$
. Equating both $\frac{d}{d\alpha}$ and $\frac{d}{d\beta}$ to 0 yields
$$\sum \ln(x_i) - n\ln(\beta) - n\frac{d}{d\alpha}\Gamma(\alpha) = 0$$
 and $\frac{\sum x_i}{\beta^2} = \frac{n\alpha}{\beta} = 0$, a very difficult system of equations to solve.

b. From the second equation in **a**, $\frac{\sum x_i}{\beta} = n\alpha \Rightarrow \overline{x} = \alpha\beta = \mu$, so the mle of μ is $\hat{\mu} = \overline{X}$.

4.

a.
$$58.3 \pm \frac{1.96(3)}{\sqrt{25}} = 58.3 \pm 1.18 = (57.1, 59.5).$$

b.
$$58.3 \pm \frac{1.96(3)}{\sqrt{100}} = 58.3 \pm .59 = (57.7, 58.9).$$

c.
$$58.3 \pm \frac{2.58(3)}{\sqrt{100}} = 58.3 \pm .77 = (57.5, 59.1).$$

- **d.** 82% confidence $\Rightarrow 1 \alpha = .02 \Rightarrow \alpha = .18 \Rightarrow \alpha/2 = .09$, and $z_{.09} = 1.34$. The interval is $58.3 \pm \frac{1.34(3)}{\sqrt{100}} = (57.9, 58.7)$.
- e. $n = \left[\frac{2(2.58)3}{1}\right]^2 = 239.62 \nearrow 240$.