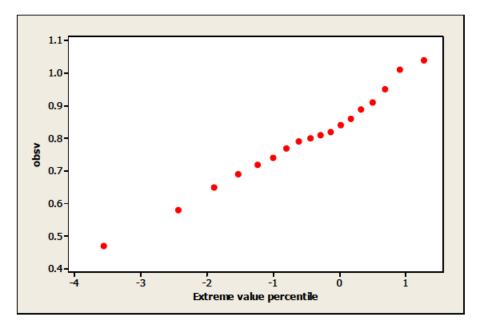
90. The Weibull plot uses ln(observations) and the extreme value percentiles of the p_i values given; i.e., $\eta(p) =$ ln[-ln(1-p)]. The accompanying probability plot appears sufficiently straight to lead us to agree with the argument that the distribution of fracture toughness in concrete specimens could well be modeled by a Weibull distribution.



(3)(64)

100.

a. Clearly $f(x) \ge 0$. Now check that the function integrates to 1:

$$\int_0^\infty \frac{32}{(x+4)^3} dx = \int_0^\infty 32(x+4)^{-3} dx = -\frac{16}{(x+4)^2} \bigg|_0^\infty = 0 - -\frac{16}{(0+4)^2} = 1.$$

b. For
$$x \le 0$$
, $F(x) = 0$. For $x > 0$,

$$F(x) = \int_{-\infty}^{x} f(y) dy = \int_{0}^{x} \frac{32}{(y+4)^{3}} dy = -\frac{1}{2} \cdot \frac{32}{(y+4)^{2}} \bigg|_{0}^{x} = 1 - \frac{16}{(x+4)^{2}}.$$
c. $P(2 \le X \le 5) = F(5) - F(2) = 1 - \frac{16}{81} - \left(1 - \frac{16}{36}\right) = .247.$
d. $E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx = \int_{-\infty}^{\infty} x \cdot \frac{32}{(x+4)^{3}} dx = \int_{0}^{\infty} (x+4-4) \cdot \frac{32}{(x+4)^{3}} dx$

$$= \int_{0}^{\infty} \frac{32}{(x+4)^{2}} dx - 4 \int_{0}^{\infty} \frac{32}{(x+4)^{3}} dx = 8 - 4 = 4 \text{ years.}$$
e. $E\left(\frac{100}{X+4}\right) = \int_{0}^{\infty} \frac{100}{x+4} \cdot \frac{32}{(x+4)^{3}} dx = 3200 \int_{0}^{\infty} \frac{1}{(x+4)^{4}} dx = \frac{3200}{(3)(64)} = 16.67.$

119.

a. $Y = -\ln(X) \Rightarrow x = e^{-y} = k(y)$, so $k'(y) = -e^{-y}$. Thus since f(x) = 1, $g(y) = 1 \cdot |-e^{-y}| = e^{-y}$ for $0 < y < \infty$. *Y* has an exponential distribution with parameter $\lambda = 1$.

b.
$$y = \sigma Z + \mu \Rightarrow z = k(y) = \frac{y - \mu}{\sigma}$$
 and $k'(y) = \frac{1}{\sigma}$, from which the result follows easily.

c. $y = h(x) = cx \implies x = k(y) = \frac{y}{c}$ and $k'(y) = \frac{1}{c}$, from which the result follows easily.

46.

a. The sampling distribution of \overline{X} is centered at $E(\overline{X}) = \mu = 12$ cm, and the standard deviation of the \overline{X} distribution is $\sigma_{\overline{X}} = \frac{\sigma_{\overline{X}}}{\sqrt{n}} = \frac{.04}{\sqrt{16}} = .01$ cm.

b. With n = 64, the sampling distribution of \overline{X} is still centered at $E(\overline{X}) = \mu = 12$ cm, but the standard deviation of the \overline{X} distribution is $\sigma_{\overline{X}} = \frac{\sigma_{\overline{X}}}{\sqrt{n}} = \frac{.04}{\sqrt{64}} = .005$ cm.

c. \overline{X} is more likely to be within .01 cm of the mean (12 cm) with the second, larger, sample. This is due to the decreased variability of \overline{X} that comes with a larger sample size.

49.

a. 11 P.M. - 6:50 P.M. = 250 minutes. With
$$T_o = X_1 + ... + X_{40}$$
 = total grading time,
 $\mu_{T_o} = n\mu = (40)(6) = 240$ and $\sigma_{T_o} = \sigma \cdot \sqrt{n} = 37.95$, so $P(T_o \le 250) \approx$
 $P\left(Z \le \frac{250 - 240}{37.95}\right) = P(Z \le .26) = .6026.$

b. The sports report begins 260 minutes after he begins grading papers.

$$P(T_0 > 260) = P(Z > \frac{260 - 240}{37.95}) = P(Z > .53) = .2981.$$

50.

a.
$$P(9,900 \le \overline{X} \le 10,200) \approx P\left(\frac{9,900-10,000}{500/\sqrt{40}} \le Z \le \frac{10,200-10,000}{500/\sqrt{40}}\right)$$

= $P(-1.26 \le Z \le 2.53) = \Phi(2.53) - \Phi(-1.26) = .9943 - .1038 = .8905.$

b. According to the guideline given in Section 5.4, *n* should be greater than 30 in order to apply the CLT, thus using the same procedure for n = 15 as was used for n = 40 would not be appropriate.

51. Individual times are given by $X \sim N(10, 2)$. For day 1, n = 5, and so

$$P(\overline{X} \le 11) = P\left(Z \le \frac{11-10}{2/\sqrt{5}}\right) = P(Z \le 1.12) = .8686.$$

For day 2, n = 6, and so

$$P(\overline{X} \le 11) = P(\overline{X} \le 11) = P\left(Z \le \frac{11-10}{2/\sqrt{6}}\right) = P(Z \le 1.22) = .8888$$
.

Finally, assuming the results of the two days are independent (which seems reasonable), the probability the sample average is at most 11 min on both days is (.8686)(.8888) = .7720.

52. We have $X \sim N(10,1)$, n = 4, $\mu_{T_o} = n\mu = (4)(10) = 40$ and $\sigma_{T_o} = \sigma\sqrt{n} = 2$. Hence, $T_o \sim N(40, 2)$. We desire the 95th percentile of T_o : 40 + (1.645)(2) = 43.29 hours.