2. $f(x)=\frac{1}{10}$ for $-5 \leq x \leq 5$ and $=0$ otherwise
a. $\quad P(X<0)=\int_{-5}^{0} \frac{1}{10} d x=.5$.
b. $P(-2.5<X<2.5)=\int_{-2.5}^{2.5} \frac{1}{10} d x=.5$.
c. $P(-2 \leq X \leq 3)=\int_{-2}^{3} \frac{1}{10} d x=.5$.
d. $\left.P(k<X<k+4)=\int_{k}^{k+4} \frac{1}{10} d x=\frac{1}{10} x\right]_{k}^{k+4}=\frac{1}{10}[(k+4)-k]=.4$.
3. 

a.

b. $\left.\quad P(X>0)=\int_{0}^{2} .09375\left(4-x^{2}\right) d x=.09375\left(4 x-\frac{x^{3}}{3}\right)\right]_{0}^{2}=.5$.

This matches the symmetry of the pdf about $x=0$.
c. $\quad P(-1<X<1)=\int_{-1}^{1} .09375\left(4-x^{2}\right) d x=.6875$.
d. $P(X<-.5$ or $X>.5)=1-P(-.5 \leq X \leq .5)=1-\int_{-.5}^{5} .09375\left(4-x^{2}\right) d x=1-.3672=.6328$.
5.
a. $\left.\quad 1=\int_{-\infty}^{\infty} f(x) d x=\int_{0}^{2} k x^{2} d x=\frac{k x^{3}}{3}\right]_{0}^{2}=\frac{8 k}{3} \Rightarrow k=\frac{3}{8}$.

b. $\left.\quad P(0 \leq X \leq 1)=\int_{0}^{1} \frac{3}{8} x^{2} d x=\frac{1}{8} x^{3}\right]_{0}^{1}=\frac{1}{8}=.125$.
c. $\left.\quad P(1 \leq X \leq 1.5)=\int_{1}^{1.5} \frac{3}{8} x^{2} d x=\frac{1}{8} x^{3}\right]_{1}^{1.5}=\frac{1}{8}\left(\frac{3}{2}\right)^{3}-\frac{1}{8}(1)^{3}=\frac{19}{64}=.296875$.
d. $\left.\quad P(X \geq 1.5)=1-\int_{1.5}^{2} \frac{3}{8} x^{2} d x=\frac{1}{8} x^{3}\right]_{1.5}^{2}=\frac{1}{8}(2)^{3}-\frac{1}{8}(1.5)^{3}=.578125$.
6.
a.

b. $\quad 1=\int_{2}^{4} k\left[1-(x-3)^{2}\right] d x=\int_{-1}^{1} k\left[1-u^{2}\right] d u=\cdots=\frac{4 k}{3} \Rightarrow k=\frac{3}{4}$.
c. $\quad P(X>3)=\int_{3}^{4} \frac{3}{4}\left[1-(x-3)^{2}\right] d x=.5$. This matches the symmetry of the pdf about $x=3$.
d. $\quad P\left(\frac{11}{4} \leq X \leq \frac{13}{4}\right)=\int_{11 / 4}^{13 / 4} \frac{3}{4}\left[1-(x-3)^{2}\right] d x=\frac{3}{4} \int_{-1 / 4}^{1 / 4}\left[1-u^{2}\right] d u=\frac{47}{128} \approx .367$.
e. $\quad P(|X-3|>.5)=1-P(|X-3| \leq .5)=1-P(2.5 \leq X \leq 3.5)=$
$1-\int_{-.5}^{5} \frac{3}{4}\left[1-u^{2}\right] d u=\cdots=1-.6875=.3125$.
11.
a. $\quad P(X \leq 1)=F(1)=\frac{1^{2}}{4}=.25$.
b. $\quad P(.5 \leq X \leq 1)=F(1)-F(.5)=\frac{1^{2}}{4}-\frac{.5^{2}}{4}=.1875$.
c. $\quad P(X>1.5)=1-P(X \leq 1.5)=1-F(1.5)=1-\frac{1.5^{2}}{4}=.4375$.
d. $.5=F(\tilde{\mu})=\frac{\tilde{\mu}^{2}}{4} \Rightarrow \tilde{\mu}^{2}=2 \Rightarrow \tilde{\mu}=\sqrt{2} \approx 1.414$.
e. $f(x)=F^{\prime}(x)=\frac{x}{2}$ for $0 \leq x<2$, and $=0$ otherwise.
f. $\left.\quad E(X)=\int_{-\infty}^{\infty} x \cdot f(x) d x=\int_{0}^{2} x \cdot \frac{x}{2} d x=\frac{1}{2} \int_{0}^{2} x^{2} d x=\frac{x^{3}}{6}\right]_{0}^{2}=\frac{8}{6} \approx 1.333$.
g. $\left.E\left(X^{2}\right)=\int_{-\infty}^{\infty} x^{2} f(x) d x=\int_{0}^{2} x^{2} \frac{x}{2} d x=\frac{1}{2} \int_{0}^{2} x^{3} d x=\frac{x^{4}}{8}\right]_{0}^{2}=2$, so $V(X)=E\left(X^{2}\right)-[E(X)]^{2}=$ $2-\left(\frac{8}{6}\right)^{2}=\frac{8}{36} \approx .222$, and $\sigma_{X}=\sqrt{.222}=.471$.
h. From g, $E\left(X^{2}\right)=2$.
12.
a. $\quad P(X<0)=F(0)=.5$.
b. $\quad P(-1 \leq X \leq 1)=F(1)-F(-1)=.6875$.
c. $\quad P(X>.5)=1-P(X \leq .5)=1-F(.5)=1-.6836=.3164$.
d. $f(x)=F^{\prime}(x)=\frac{d}{d x}\left(\frac{1}{2}+\frac{3}{32}\left(4 x-\frac{x^{3}}{3}\right)\right)=0+\frac{3}{32}\left(4-\frac{3 x^{2}}{3}\right)=.09375\left(4-x^{2}\right)$.
e. By definition, $F(\tilde{\mu})=.5 \cdot F(0)=.5$ from a above, which is as desired.
20.
a. For $0 \leq y<5, F(y)=\int_{0}^{y} \frac{u}{25} d u=\frac{y^{2}}{50}$; for $5 \leq y \leq 10$,
$F(y)=\int_{0}^{y} f(u) d u=\int_{0}^{5} f(u) d u+\int_{5}^{y} f(u) d u=\frac{5^{2}}{50}+\int_{5}^{y}\left(\frac{2}{5}-\frac{u}{25}\right) d u=\cdots=-\frac{y^{2}}{50}+\frac{2}{5} y-1$
So, the complete cdf of $Y$ is

$$
F(y)= \begin{cases}0 & y<0 \\ \frac{y^{2}}{50} & 0 \leq y<5 \\ -\frac{y^{2}}{50}+\frac{2}{5} y-1 & 5 \leq y<10 \\ 1 & y \geq 10 \\ \hline\end{cases}
$$

b. In general, set $F(y)=p$ and solve for $y$.

For $0<p<.5, p=F(y)=\frac{y^{2}}{50} \Rightarrow \eta(p)=y=\sqrt{50 p}$; for $.5 \leq p<1$,
$p=-\frac{y^{2}}{50}+\frac{2}{5} y-1 \Rightarrow \eta(p)=y=10-5 \sqrt{2(1-p)}$.
c. $E(Y)=5$ by straightforward integration, or by the symmetry of $f(y)$ about $y=5$.

Similarly, by symmetry $V(Y)=\int_{0}^{10}(y-5)^{2} f(y) d y=2 \int_{0}^{5}(y-5)^{2} f(y) d y=2 \int_{0}^{5}(y-5)^{2} \frac{y^{2}}{50} d y=\ldots=\frac{50}{12}=$
4.1667. For the waiting time $X$ for a single bus, $E(X)=2.5$ and $V(X)=\frac{25}{12}$; not coincidentally, the mean and variance of $Y$ are exactly twice that of $X$.
21. $E($ area $)=E\left(\pi R^{2}\right)=\int_{-\infty}^{\infty} \pi r^{2} f(r) d r=\int_{9}^{11} \pi r^{2} \frac{3}{4}\left(1-(10-r)^{2}\right) d r=\cdots=\frac{501}{5} \pi=314.79 \mathrm{~m}^{2}$.
22.
a. For $\left.1 \leq x \leq 2, F(x)=\int_{1}^{x} 2\left(1-\frac{1}{y^{2}}\right) d y=2\left(y+\frac{1}{y}\right)\right]_{1}^{x}=2\left(x+\frac{1}{x}\right)-4$, so the cdf is
$F(x)= \begin{cases}0 & x<1 \\ 2\left(x+\frac{1}{x}\right)-4 & 1 \leq x \leq 2 \\ 1 & x>2\end{cases}$
b. Set $F(x)=p$ and solve for $x: 2\left(x+\frac{1}{x}\right)-4=p \Rightarrow 2 x^{2}-(p+4) x+2=0 \Rightarrow$ $\eta(p)=x=\frac{(p+4)+\sqrt{(p+4)^{2}-4(2)(2)}}{2(2)}=\frac{p+4+\sqrt{p^{2}+8 p}}{4}$. (The other root of the quadratic gives solutions outside the interval $[1,2]$.) To find the median $\tilde{\mu}$, set $p=.5: \tilde{\mu}=\eta(.5)=\ldots=1.640$.
c. $\left.\quad E(X)=\int_{1}^{2} x \cdot 2\left(1-\frac{1}{x^{2}}\right) d x=2 \int_{1}^{2}\left(x-\frac{1}{x}\right) d x=2\left(\frac{x^{2}}{2}-\ln (x)\right)\right]_{1}^{2}=1.614$. Similarly, $\left.E\left(X^{2}\right)=2 \int_{1}^{2}\left(x^{2}-1\right) d x=2\left(\frac{x^{3}}{3}-x\right)\right]_{1}^{2}=\frac{8}{3} \Rightarrow V(X)=.0626$.
d. The amount left is given by $h(x)=\max (1.5-x, 0)$, so
$E(h(X))=\int_{1}^{2} \max (1.5-x, 0) f(x) d x=2 \int_{1}^{1.5}(1.5-x)\left(1-\frac{1}{x^{2}}\right) d x=.061$.
35.
a. $\quad P(X \geq 10)=P(Z \geq .43)=1-\Phi(.43)=1-.6664=.3336$.

Since $X$ is continuous, $P(X>10)=P(X \geq 10)=.3336$.
b. $\quad P(X>20)=P(Z>4) \approx 0$.
c. $\quad P(5 \leq X \leq 10)=P(-1.36 \leq Z \leq .43)=\Phi(.43)-\Phi(-1.36)=.6664-.0869=.5795$.
d. $P(8.8-c \leq X \leq 8.8+c)=.98$, so $8.8-c$ and $8.8+c$ are at the $1^{\text {st }}$ and the $99^{\text {th }}$ percentile of the given distribution, respectively. The $99^{\text {th }}$ percentile of the standard normal distribution satisfies $\Phi(z)=.99$, which corresponds to $z=2.33$.
So, $8.8+c=\mu+2.33 \sigma=8.8+2.33(2.8) \Rightarrow c=2.33(2.8)=6.524$.
e. From a, $P(X>10)=.3336$, so $P(X \leq 10)=1-.3336=.6664$. For four independent selections,
$P($ at least one diameter exceeds 10$)=1-P($ none of the four exceeds 10$)=$
$1-P($ first doesn't $\cap \ldots$ fourth doesn't $)=1-(.6664)(.6664)(.6664)(.6664)$ by independence $=$ $1-(.6664)^{4}=.8028$.
36.
a. $\quad P(X<1500)=P(Z<3)=\Phi(3)=.9987 ; P(X \geq 1000)=P(Z \geq-.33)=1-\Phi(-.33)=\quad 1-.3707=$ . 6293 .
b. $P(1000<X<1500)=P(-.33<Z<3)=\Phi(3)-\Phi(-.33)=.9987-.3707=.6280$
c. From the table, $\Phi(z)=.02 \Rightarrow z=-2.05 \Rightarrow x=1050-2.05(150)=742.5 \mu \mathrm{~m}$. The smallest $2 \%$ of droplets are those smaller than $742.5 \mu \mathrm{~m}$ in size.
d. $\quad P($ at least one droplet in 5 that exceeds $1500 \mu \mathrm{~m})=1-P($ all 5 are less than $1500 \mu \mathrm{~m})=1-(.9987)^{5}=$ $1-.9935=.0065$.
38. Let $X$ denote the diameter of a randomly selected cork made by the first machine, and let $Y$ be defined analogously for the second machine.
$P(2.9 \leq X \leq 3.1)=P(-1.00 \leq Z \leq 1.00)=.6826$, while
$P(2.9 \leq Y \leq 3.1)=P(-7.00 \leq Z \leq 3.00)=.9987$. So, the second machine wins handily.
50. We use a normal approximation to the binomial distribution: Let $X$ denote the number of people in the sample of 1000 who can taste the difference, so $X \sim \operatorname{Bin}(1000, .03)$. Because $\mu=n p=1000(.03)=30$ and $\sigma=\sqrt{n p(1-p)}=5.394, X$ is approximately $N(30,5.394)$.
a. Using a continuity correction, $P(X \geq 40)=1-P(X \leq 39)=1-P\left(Z \leq \frac{39.5-30}{5.394}\right)=$
$1-P(Z \leq 1.76)=1-\Phi(1.76)=1-.9608=.0392$.
b. $5 \%$ of 1000 is 50 , and $P(X \leq 50)=P\left(Z \leq \frac{50.5-30}{5.394}\right)=\Phi(3.80) \approx 1$.

