Chapter 7: Intervals From a Single Sample



Point estimates

Point Estimate A point estimate of a population parameter is a single
number calculated from the sample. For example

Mean Usually we estimate 1 by the sample mean, Z.

That is

p=1
Proportion We estimate the population proportion, p, by
the sample proportion p = X/n.
Estimator The estimator is the random variable whose value will be the
point estimate. For example X is the estimator of the
population mean.

Confidence Interval A confidence interval is an interval calculated from
the data that has a given probability of covering the true
parameter value.



Confidence interval when ¢ known

@ This is an artificial case — for illustration only.
@ We assume that the population is normal and ¢ is known. T hen
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will have a standard normal distribution.
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@ This implies that
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@ We construct the 95% confidence interval on 1 as
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Interpretation

If we were repeatedly to sample from the distribution, about 95% of the
intervals calculated in this way would cover the true mean .

T he calculation of the interval from one sample would be like
> str(samp <- rnorm(10, mean = 6.3, sd = 0.75))

num: [1:100 4.84 7.37 5.82 5.82 7.60 ...

> mean(samp)

[1] 5.218253

> mean(samp) + c{(lower = -1, upper = +1) * 1.96 * 0.75/sqrt (10)

lower upper
5.753398 6.683108



Confidence intervals from b0 simulations

> (samp <- matrix{(rnorm(50 * 10, m = 6.3, &d
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lower 5.486741 5.204261 5.76371 6.083943
upper 6.416451 6.223970 6.69342 7.013653
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5.823096
6.752806



Plots of simulated confidence intervals

In this case only 44 /50 or 88% of the intervals cover y = 6.3.
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Other levels of confidence

The multiplier 1.960 is determined from probabilities of the standard
normal curve. In general a 100(1 — a)% confidence interval on & (when &
is known) is
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Some common values of the multiplier are

100(1 —a)%  « af2 2y

80% 0200 0100 1.282
90% 0.100 0.050 1.645
95% 0.050 0025 1.960
99% 0.010 0.005 2.576

The numerical values come from the last row of table A.5 (p. 725),
reproduced on the inside back cover of the text.



Graph showing critical values

For a 90% confidence interval we use Zo/2 = 20,05 = 1.645. When the

standard normal curve is divided at -1.645 and +1.645 it has 5% of the
area in the left tail, 90% in the middle, and 5% in the right tail.
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