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Abstract. We study a stationary random ®eld model that is composed of a signal of
an unknown number of sine and cosine functions, and a coloured noise. This model has
been used in image analysis and modelling spatial data, and is useful for signal
extraction in the presence of coloured noise. The problem is to estimate the number of
unknown frequencies and the unknown frequencies. The analogous time series model
and related problems have been extensively studied. Our approach is based on some
analytic properties of periodograms of stationary random ®elds that we establish in the
paper. In particular, we show that the periodogram of a stationary random ®eld of a
moving average has a uniform upper bound of O (ln(N2)) where N 2 is the sample size,
and that the periodogram of the observed process has a magnitude of the order N 2

uniformly in a neighbourhood of any hidden frequency, and much smaller outside.

Keywords. Mixed spectra; periodogram; random ®eld; spatial data; uniform upper
bound.

1. INTRODUCTION

We consider the following second-order stationary random ®eld model

y(m, n) �
Xp

k�1

fCk cos(mëk � nìk)� Dk sin(mëk � nëk)g � x(m, n)

m, n � 0, �1, �2, . . . (1)

where fCk , Dkg is a set of uncorrelated random variables and uncorrelated with
fx(m, n)g, Var(Ck) � Var(Dk), and fx(m, n), (m, n) 2 Z2g is a stationary ran-
dom ®eld with an absolutely continuous spectral distribution. The problem is to
estimate the number of frequencies p, and the unknown frequencies (ëk , ìk),
k � 1, 2, . . ., p, given observations y(m, n), m, n � 1, 2, . . ., N . When p is
known, estimation of the unknown frequencies can be given via the least squares
method ± see, for example, Kundu and Mitra (1996) and Bansal et al. (1999) ±
or the maximum likelihood method (Rao et al., 1994). However, determination
of p is a dif®cult problem.

The ®rst term on the right-hand side of (1) is usually called a signal (also
called a harmonic random ®eld), and the detection of signal is an im-
portant problem in signal processing. The ®rst term corresponds to the purely
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deterministic part in the Wold decomposition of fy(m, n)g and has a spectral
measure that concentrates on (ëk , ìk), k � 1, . . ., p, while the second term
corresponds to the regular part in the Wold decomposition (Helson and
Lowdenslager, 1958, 1962). Therefore, the spectrum of y(m, n) has both dis-
crete and continuous components. This observation leads to the detection of
signal and estimation of unknown frequencies through the analysis of
periodogram, an approach ®rst employed by Schuster (1898) who introduced
the periodogram to detect the hidden periodicities in a time series. Priestley
(1964) considered model (1) of mixed spectra and proposed a method for
detecting the signal under a more general scheme where the purely deter-
ministic part could have a spectral distribution concentrated on a set of zero
Lebesgue measure. Francos et al. (1993) used (1) to model some texture
images and estimated the unknown frequencies by choosing `the largest and
sharpest isolated peaks' of the periodogram of y(m, n). Our results in this
paper will help to consolidate the approach of Francos et al. and others on the
analysis of periodogram; see, for example, Ripley (1981, ch. 5) for an analysis
on agricultural uniformity trial data.

The analogous time series model has been extensively studied. Early works
include Schuster (1898), Fisher (1929) and Hartley (1949) for testing the
presence of hidden periodicities in which the noise is a Gaussian white noise.
Later on, research has been focused more on the detection of signal in the
presence of a coloured noise. In this case, the fundamental work was done
in Whittle (1952, 1954) and Priestley (1962a, b). We refer to Priestley (1997)
for a review of the history and different tests for the detection of signal, and
Brillinger (1987) for different procedures for estimating the discrete fre-
quencies of the signal. One of the open problems listed in Brillinger (1987)
was the estimation of the number of frequencies in the signal, p. Since then
much work has been done on the estimation of p. Some of the methods
employ the uniform upper bound of the periodogram of a stationary time
series established by Brillinger (1981, Thm 5.3.2) and An et al. (1983). For
example, Quinn (1989) and Wang (1993) proposed AIC type procedures by
adding a penalty term to the logarithm of the residual mean square of the
least squares estimation and choosing the penalty term to make the estimators
consistent. In a more direct way, Chen (1988) applied the uniform upper
bound to study the behaviour of the periodogram in and out of a small
neighbourhood of a hidden frequency, and proposed a method to obtain a
consistent estimator of p.

Since analogous results on the periodogram of a stationary random ®eld can
be established, some methods on estimating the frequencies and the number of
frequencies for a time series can be extended. In the present work, we propose
a method for estimating p and the hidden frequencies that is based on the
properties of the periodogram. As in the time series case, the periodogram is
important in the spectral analysis of random ®elds; see, for example, Yuan and
Subba Rao (1992, 1993). The periodogram of a stationary random ®eld y(m, n)
with observations y(m, n), m, n � 1, 2, . . ., N is de®ned as
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IN (ë, ì; y) � 1

(2ðN )2

����XN

m�1

XN

n�1

y(m, n)eÿi(më�nì)

����2
We will show in Theorem 1 that the periodogram of the regular random ®eld
x(m, n) has a uniform upper bound of O (ln(N2)) under some regularity con-
ditions. Since the periodogram of the harmonic ®eld has a magnitude of the
order N2 in a small neighbourhood of (ëk , ìk) for any k, and substantially
smaller outside these neighbourhoods, IN (ë, ì; y) is substantially larger in these
neighbourhoods. The behaviour of IN (ë, ì; y) is given in Theorems 2 and 3.
Based on these, consistent estimators of p and (ëk , ìk), k � 1, 2, . . ., p are
constructed in Theorem 4. Although this approach looks similar to that of Chen
(1988), it is not a direct extension of Chen. Here we have to deal with the fact
that when (ë, ì) is not close to a frequency (ëk , ìk), it is possible that ë is close
to ëk or ì is close to ìk and consequently IN (ë, ì; y) can be greater that an
O (ln N ) outside the small neighbourhood of (ëk , ìk).

Main results are presented in Section 2. An algorithm for estimation and
simulation results are presented in Section 3. Proofs of the theorems are
provided in the Appendix. Since each term in the harmonic ®eld can be written
as

Ck cos(ÿmëk ÿ nìk)ÿ Dk sin(ÿmëk ÿ nìk)

we assume that ìk > 0 for k � 1, 2, . . ., p to make the model identi®able, and
this assumption does not put any constraint on the model. Since the periodogram
is symmetric, i.e., IN (ë, ì; y) � IN (ÿë, ÿì; y), we restrict IN (ë, ì) to the set
Ð � (ÿð, ð] 3 [0, ð].

2. PROPERTIES OF PERIODOGRAM AND ESTIMATION OF THE HARMONIC FIELD

As we noted, the random ®eld fx(m, n)g is the regular component in the Wold
decomposition and therefore possesses a non-symmetric half-plane moving
average representation,

x(m, n) �
X1

j�ÿ1

X1
k�0

c( j, k)E(mÿ j, nÿ k)

where fE(m, n)g is the innovation process and the coef®cients c( j, k) are square
summable. To study the upper bound of the periodogram, the absolute
summability or stronger condition on c(i, j) is usually needed; see Brillinger
(1981) and An et al. (1983) for the time series case. He (1995) obtained the
O (ln(N2)) uniform upper bound for the periodogram of a stationary random
®eld that can be represented as a quarter-plane moving average:

x(m, n) �
X1
j�0

X1
k�0

c( j, k)E(mÿ j, nÿ k)
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where the coef®cients satisfy
P

j

P
k( j� k)jc( j, k)j,1.

Since we need an upper bound for the regular process fx(m, n)g represented
as a non-symmetric half-plane moving average, we cannot use the results of
He. We will ®rst obtain upper bounds for a stationary ®eld representable as a
moving average (of any kind) of a white noise with absolutely summable
coef®cients. We make the following assumption throughout this section.

ASSUMPTION 1. fx(m, n): m, n 2 Zg is a stationary random ®eld and can be
represented as

x(m, n) �
X1

j�ÿ1

X1
k�ÿ1

c( j, k)E(mÿ j, nÿ k) (2)

where c( j, k) are constants and absolutely summable, i.e.,X1
j�ÿ1

X1
k�ÿ1

jc( j, k)j,1 (3)

and fE(m, n), m, n 2 Zg is a double array of independent random variables with

EE(m, n) � 0 EE2(m, n) � 1 sup
m,n

EjE(m, n)jr ,1

for some r . 2.

Theorem 1 establishes upper bounds for the periodogram:

THEOREM 1. Let IN (ë, ì) be the periodogram of x(m, n) satisfying Assump-
tion 1, then

lim sup
N!1

IN (ë, ì)

ln ln N
< 2 f (ë, ì) for any (ë, ì)

Furthermore, if x(m, n) satis®es Assumption 1 with some r . 3,

lim sup
N!1

supë,ì IN (ë, ì)

ln(N2)
< 7k f k

where f is the spectral density function of x(m, n) and k f k � sup f (ë, ì).

Using Theorem 1, we can easily obtain Theorem 2 which says IN (ë, ì; y) has a
magnitude of the order N2 at any frequency (ë j, ì j), j � 1, 2, . . ., p, and
O (ln ln N ) elsewhere:

THEOREM 2. If y(m, n) satis®es (1) with x(m, n) satisfying Assumption 1,
then for any ®xed (ë, ì) 2 Ð
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IN (ë, ì; y) � (Aj N=(4ð))2 � o (N2) if (ë, ì) � (ëj, ìj) for some j

O (ln ln N ) otherwise

(

The next theorem states the uniform behaviour of IN (ë, ì; y) in and out of
neighbourhoods of (ë j, ì j). For á. 0, de®ne

Ä j,á � f(ë, ì) 2 Ð: jëÿ ë jj < ð=Ná, jìÿ ì jj < ð=Nág j � 1, . . ., p

Äá �
[p

j�1

Ä j,á

THEOREM 3. Suppose that y(m, n) satis®es (1) with x(m, n) satisfying
Assumption 1 with some r . 3. Then, with probability 1, for suf®ciently large N

inf
(ë,ì)2Ä j,1

IN (ë, ì; y) .
Aj N

ð3

� �2

and sup
(ë,ì)2Äc

á

IN (ë, ì; y) � O (N2á)

where Äc
á � ÐnÄá.

Theorems 2 and 3 provide ways to estimate p and the hidden frequencies in the
harmonic ®eld. We consider one approach here which can be easily implemented
on computers. Let á, â and c be constants such that

0 ,á, 1 2á, â, 2 c . 0

Let

Ù � f(ë, ì) 2 Ð: IN (ë, ì; y) . cNâg:
Theorem 3 clearly indicates that when N is suf®ciently large, Ù is contained in
Äá and Ù contains some `clusters' which occur around the frequencies (ë j, ì j).
To state it more mathematically, we de®ne a cluster as a subset S of Ù such that

1 the diameter of S is no greater than 2
���
2
p

ð=Ná, and
2 for any (ë, ì) 2 ÙnS, the diameter of f(ë, ì)g [ S is greater than

2
���
2
p

ð=Ná.

The diameter of a set S is de®ned as

ã(S) � supfr(x, y), x 2 S, y 2 Sg
where r(x, y) is the Euclidean distance between x and y.

Let pN be the number of clusters. The next theorem says pN is a consistent
estimator of p, the number of frequencies.

THEOREM 4. Under conditions in Theorem 3, with probability one, there will
be exactly pN � p clusters for large N each of which is of the form Ä j,á \Ù
and consequently for any (ë, ì) in a cluster, r((ë, ì), (ë j, ì j)) , 2

���
2
p

ð=Ná for
some j.
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3. AN ALGORITHM AND SIMULATION RESULTS

We present an algorithm and some numerical results in this section. For an
integer d . 0, let

ùd � jð

dN
,

kð

dN

� �
: j � 0, �1, . . ., �dN , k � 0, 1, . . ., N

� �
Ùd � Ù \ ùd

Our algorithm consists of the following steps:

1 Calculate IN (ë, ì; y) for (ë, ì) 2 ùd.
2 Identify the points in ùd where IN (ë, ì; y) . cNâ.
3 Identify the clusters through the de®nition.
4 Also, ®nd a value (ë, ì) that maximizes the periodogram in each of the

clusters and take this frequency as an estimator of a hidden frequency.

The results in the previous section are asymptotic so that the choices of the
constants á, â, c and d do not affect the results when the sample size is
suf®ciently large. For a ®xed sample size, the choices might be empirical. For
example, we should choose a small c if one of the amplitudes is deemed small,
but a too small value of c might lead to overestimating p. á should be chosen
closer to 1 to differentiate two frequencies which are close to each other.
Simulation results can help us gain insights into the choices of á, â, c and d
for ®nite sample sizes. We used

á � 3=4 â � 1:75 c � 6=ð6 d � 1 or 4

For the signal in model (1), we chose

p � 2 C1 � D1 � 1=
���
2
p

C2 �
���
3
p

D2 � 1

(ë1, ì1) � (ÿ0:1ð, 0:3ð) (ë2, ì2) � (ÿ0:5ð, 0:7ð),

and used four different noises:

1 i.i.d. standard normal
2 i.i.d. normal random ®eld with mean 0 and standard deviation 2
3 A moving average

x(m, n) � 1=
���
6
p X1

j�ÿ1

X1
k�0

2ÿj jjÿkE(mÿ j, nÿ k)

where E(m, n) are i.i.d. N(0, 1). We denote this noise by MA1.
4 A moving average

x(m, n) � 2=
���
6
p X1

j�ÿ1

X1
k�0

2ÿj jjÿkE(mÿ j, nÿ k)

where E(m, n) are i.i.d. N(0, 1). We denote this noise by MA2.
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Then Ex(m, n)2 � 1 and 4 for the MA1 noise and the MA2 noise respectively
and, therefore, we can compare the estimators from the coloured noises to those
that are from the white noises. For each of the four noises, we simulated
observations y(m, n), for m, n � 1, 2 . . ., 19 according to model (1) and the
above settings, and used the algorithm outlined in this section to estimate p and
the frequencies using d � 1 and d � 4. This procedure was repeated 100 times.
We intentionally chose a small value N � 19 to evaluate the performance of the
estimation for small samples. We expect larger sample sizes only yield better
estimators with the same choice of á, â, c and d.

The points where IN (ë, ì; y) . cNâ naturally occur in `clustered sets'.
However, we need to check each such `clustered set' has a diameter no larger
than 2

���
2
p

ð=Ná, and adding an additional point will increase the diameter to
more than 2

���
2
p

ð=Ná.
When we use d � 1, p is correctly estimated 100% of the time for i.i.d.

N(0, 1) and MA1 noises, and overestimated once ( p̂ � 3) for the i.i.d. N(0, 4)
noise, and overestimated twice ( p̂ � 3) and underestimated once ( p̂ � 1) for
the MA2 noise. The average of the estimated frequencies when p is correctly
estimated is shown in Table I. We see that a higher signal±noise ratio (hence a
smaller variance of the noise) generally improves the estimation of p, but does
not greatly affect the precision of the estimation of frequencies. Since the
coloured noise does not have a spectral density as ¯at as that of a white noise,
estimation of p may require larger sample sizes in the presence of coloured
noise. However, as seen from Table I, coloured noises do not greatly affect the
estimation of the frequencies if p is estimated correctly. Since the estimators
for the frequencies may be biased, the mean squared errors are reported.

Similar conclusions can be made with d � 4. When d is increased to 4,
estimation for p and the frequencies generally become better. The number p is
correctly estimated 100% of the time for all noises except the MA2 noise, for

TABLE I

AVERAGES OF ESTIMATES OF FREQUENCIES (IN MULTIPLES OF ð) WITH d � 1

Noise ë1=ð ì1=ð ë2=ð ì2=ð

i.i.d. N(0, 1) ÿ0.1052632 0.3157895 ÿ0.4978947 0.6842105
(0.0000277) (0.0002493) (0.0006925) (0.0002493)

i.i.d. N(0, 4) ÿ0.1052632 0.3135965 ÿ0.5010965 0.6842105
(0.0000277) (0.0002955) (0.0006925) (0.0002493)

MA1 ÿ0.1052632 0.3157895 ÿ0.4821053 0.6842105
(0.0000277) (0.0002493) (0.0006925) (0.0002493)

MA2 ÿ0.1030235 0.3101904 ÿ0.4837626 0.6842105
(0.0001220) (0.0003672) (0.0006925) (0.0002493)

Notes: Values in parentheses are the mean squared errors of the estimates. Results are based on
100 simulations.
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which p is correctly estimated 94 times and overestimated 6 times. The average
of the estimated frequencies when p is correctly estimated is shown in Table II.

We note that N � 19 is a small number. Even so, our choices of á, â, c and
d yielded fairly satisfactory results. We expect the estimation for p and the
frequencies become better with a larger N since the peak near a hidden
frequency will become stronger. In fact, we used N � 39 for the MA2 noise
and d � 4, which gave the worst estimation results for N � 19. Again, we ran
100 simulations. The number p was correctly estimated 100 times and the
averages of estimated frequencies and the mean squared of errors are provided
in Table III. The results become better.

APPENDIX

We provide proofs of the theorems in this appendix. Proof of Theorem 1 is the longest
one and is therefore postponed. Let us ®rst use Theorem 1 to prove Theorems 2, 3 and 4.

Let Aj . 0, öj 2 [0, 2ð) be such that Cj � Aj cosöj, Dj � Aj sinöj for j � 1; 2, . . ., p,
and extend ë j, ì j and öj to j � ÿ1, ÿ2, . . ., ÿ p by ë j � ÿëÿ j, etc. De®ne for j � 0,
�1, �2, . . ., � p, B0 � 0, Bj � Aj jjeiöj . We rewrite y(m, n) in model (1) as

TABLE II

AVERAGES OF ESTIMATES OF FREQUENCIES (IN MULTIPLES OF ð) WITH d � 4

Noise ë1=ð ì1=ð ë2=ð ì2=ð

i.i.d. N(0, 1) ÿ0.0994737 0.3018421 ÿ0.5 0.6981579

(0.0000429) (0.0000132) (0.0) (0.0000132)

i.i.d. N(0, 4) ÿ0.0993555 0.3018260 ÿ0.5 0.6981740
(0.0000432) (0.0000133) (0.0) (0.0000133)

MA1 ÿ0.0993555 0.3018260 ÿ0.5 0.6981740
(0.0000432) (0.0000133) (0.0) (0.0000133)

MA2 ÿ0.0983852 0.3002392 ÿ0.5 0.6973684
(0.0001166) (0.0000573) (0.0) (0.0000069)

Notes: Values in parentheses are the mean squared errors of the estimates. Results are based on
100 simulations.

TABLE III

AVERAGES OF ESTIMATES OF FREQUENCIES (IN MULTIPLES OF ð) WITH d � 4, N � 39

Noise ë1=ð ì1=ð ë2=ð ì2=ð

MA2 ÿ0.1003205 0.03 ÿ0.5 0.6987179
(0.0000095) (0.0000066) (0.0) (0.0000016)

Notes: Values in parentheses are the mean squared errors of the estimates. Results are based on
100 simulations.
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y(m, n) � 1

2

Xp

j�ÿ p

Bje
i(ë j m�ì j n) � x(m, n)

It is obvious that the periodogram of y(m, n) can be decomposed into three parts

IN (ë, ì; y) � IN (ë, ì; x)� 1

(4ðN )2

���� Xp

k�ÿ p

Bk HN (ëk ÿ ë)HN (ìk ÿ ì)

����2

� 1

(2ðN )2
Re

XN

m�1

XN

n�1

x(m, n)eÿi(më�nì)
Xp

k�ÿ p

Bk HN (ìk ÿ ë)HN (ëk ÿ ì)

0@ 1A
(4)

where Re(:) represents the real part of a complex number and

HN (x) �
XN

n�1

einx

HN (x) has the following property

jHN (x)j �
���� sin(Nx=2)

sin(x=2)

����� N if x � 0, mod 2ð
< 1=jsin(x=2)j for x 6� 0, mod 2ð

(5)

PROOF OF THEOREM 2. For any ®xed pair (ë, ì), let us ®rst consider (ë, ì) 6� (ë j, ì j),
8 j. Then from (5), ���� Xp

k�ÿ p

Bk HN (ëk ÿ ë)HN (ìk ÿ ì)

���� � O (N )

which, together with (4) and Theorem 1, implies IN (ë, ì; y) � O (ln ln N ). Now, suppose
(ë, ì) � (ë j, ì j) for some j � 1, . . ., p. Then

1

N 2

���� Xp

k�ÿ p

Bk HN (ëk ÿ ë)HN (ìk ÿ ì)

����! jBjj � Aj

We see (4) is dominated by the second term and

IN (ë, ì; y) � Aj N

4ð

� �2

�o (N 2)

PROOF OF THEOREM 3. It is well known that jHN (x)j is symmetric in (ÿ1, 1) and
decreasing in [0, ð=N ]. Thus

inf
jxj<ð=N

jHN (x)j � jHN (ð=N )j � 1

sin(ð=2N )
. 2N=ð

If follows, for any j,

inf
(ë,ì)2Ä j,1

jBj HN (ë j ÿ ë)HN (ì j ÿ ì)j. 4jBjjN 2

ð2
:

For any k 6� j, we get from (5) that

sup
(ë,ì)2Ä j,1

jBk HN (ëk ÿ ë)HN (ìk ÿ ì)j � O (N )
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Therefore, for suf®ciently large N ,

inf
(ë,ì)2Ä j,1

���� Xp

k�ÿ p

Bk HN (ëk ÿ ë)HN (ìk ÿ ì)

����. 4jBjjN2

ð2

Applying this inequality, (4) and (5) gives

inf
(ë,ì)2Ä j,1

IN (ë, ì; y) > inf
(ë,ì)2Ä j,1

(4ðN )ÿ2

���� Xp

k�ÿ p

Bk HN (ëk ÿ ë)HN (ìk ÿ ì)

����2

ÿ sup
(ë,ì)2Ä j,1

(ðN )ÿ1
����������������������
IN (ë, ì; x)

p ���� Xp

k�ÿ p

Bk HN (ëk ÿ ë)HN (ìk ÿ ì)

����
. A2

j N2=ð6:

For any (ë, ì) 2 Äc
á, and for any j � 1, 2, . . ., p, at least one of jë j ÿ ëj, jì j ÿ ìj is

greater than ð=Ná. Since

sup
ðNÿá<jxj<2ðÿðNÿá

jHN (x)j < 1

sin(ð=2Ná)
<

4Ná

ð

we get

sup
(ë,ì)2Äc

á

jHN (ëÿ ë j)HN (ìÿ ì j)j < N � 4Ná

ð

Consequently, IN (ë, ì; y) is dominated by

1

(4ðN )2

Xp

j�ÿ p

jBjjN 4Ná

ð

 !2

� O (N 2á)

The second assertion follows.

PROOF OF THEOREM 4. It follows Theorem 3 that when N is suf®ciently large Ù is a
subset of Äá, and hence

Ù �
[p

j�1

(Ä j,á \Ù)

Write S j � Ä j,á \Ù, j � 1, . . ., p. Then each S j contains Ä j,1 and is not empty. The
diameter of S j is bounded by that of Ä j,á which is 2

���
2
p

ð=Ná. For any (ë, ì) 2 ÙnS j, it
belongs to some (ë, ì) 2 Sk for a k 6� j. For any (ë9, ì9) 2 S j, using the Triangle
Inequality twice, gives

r((ë, ì), (ë9, ì9))

> r((ë9, ì9), (ëk , ìk))ÿ r((ëk , ìk), (ë, ì))

> r((ë j, ì j), (ëk , ìk))ÿ r((ë j, ì j), ë9, ì9))ÿ r((ëk , ìk), (ë, ì))

We see that the diameter of the set f(ë, ì)g [ S j is greater than or equal to

r((ë j, ì j), (ëk , ìk))ÿ 2
2
���
2
p

ð

Ná

which exceeds 2
���
2
p

ð=Ná when N is suf®ciently large. Thus for large N , each S j is a
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cluster by de®nition and there are exactly p clusters. For any (ë, ì) in a cluster, say S j, the
distance between (ë, ì) and (ë j, ì j) is no larger than the diameter of S j. The theorem is
proved. j

We need the following lemma for the proof of Theorem 1, which is a two-dimensional
version of Theorem 8(i) of Lai and Wei (1982). The proof being the same as in Lai and
Wei (1982) is omitted.

LEMMA 1. Let fE(m, n): m, n 2 Zg be a double array of independent random vari-
ables such that

EE(m, n) � 0, EE2(m, n) � 1: sup
m,n

EjE(m, n)jr ,1

for some constant r . 2.
For N > 1, let faN (m, n): m, n 2 Zg be a double array of constants such that

AN �
X1

m�ÿ1

X1
n�ÿ1

a2
N (m, n) ,1 lim

N!1
AN � 1

and

sup
m,n

a2
N (m, n) � o (AN (ln AN )ÿr) 8r. 0

Suppose also there exist constants ái . 0, d . 2=r, such that for some M0 . 0 and all
N . M > M0, X1

m�ÿ1

X1
n�ÿ1

(aN (m, n)ÿ aM (m, n))2 <
XN

i�M�1

ái

 !d

(6)

and as N !1,

XN

i�M0

ái

0@ 1Ad

� O (AN )

Let

SN �
X1

m�ÿ1

X1
n�ÿ1

aN (m, n)E(m, n): ó 2
N � Var(SN ) � AN

Then

lim sup
N!1

jSN j
(2ó 2

N ln ln ó 2
N )1=2

< 1

PROOF OF THEOREM 1. De®ne

S�N (è) �
XN

m�1

XN

n�1

x(m, n)fcos(më� nì)� sin(më� nì)g

SÿN (è) �
XN

m�1

XN

n�1

x(m, n)fcos(më� nì)ÿ sin(më� nì)g

where è � (ë, ì). Then
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Var(S�N ) � (2ðN )2E(IN (è))

� 2 Cov
XN

m�1

XN

n�1

x(m, n) cos(më� nì),
XN

m�1

XN

n�1

x(m, n) sin(më� nì)

 !

Analogous to the time series case, the periodogram is asymptotically unbiased, and the
real part and the imaginary part of the ®nite Fourier transformation of x(m, n) are
asymptotically uncorrelated. Therefore,

(2ðN )ÿ2 Var(S�N )! f (ë, ì)

Since

IN (è) � 1

2(2ðN )2
((S�N )2 � (SÿN )2)

it suf®ces to show

lim sup
N!1

jS�N (è)j����������������������������������������������������������
2 Var(S�N (è)) ln ln Var(S�N (è))

q < 1 for any è (8)

lim sup
maxèjS�N j��������������������

N 2 ln(N 2)
p < 2ð

���������
7j f j

p
(9)

We only prove (8) and (9) for S�N . Proofs of (8) and (9) for SÿN are similar. Let us rewrite
S�N (è) as

S�N (è) �
X1

i�ÿ1

X1
j�ÿ1

aN (i, j, è)E(i, j)

where

aN (i, j; è) �
XN

m�1

XN

n�1

c(mÿ i, nÿ j)fcos(më� nì)� sin(më� nì)g

Then

kak � sup
N ,i, j,è
jaN (i, j, è)j < 2

X1
i�ÿ1

X1
j�ÿ1

jc(i, j)j,1 (10)

AN �def
X1

i, j�ÿ1
a2

N (i, j; è) � Var(S�N ) ,1 and
AN

(2ðN )2
! f (è)

Note also, for any N . M . 0,

624 H. ZHANG AND V. MANDREKAR

# Blackwell Publishers Ltd 2001



X1
m�ÿ1

X1
n�ÿ1

(aN (m, n; è)ÿ aM (m, n; è))2 � E(S�N (è)ÿ S�M (è))2

�
�ð
ÿð

�ð
ÿð

���� X
m,n2DN

(cos(më� nì)� sin(më� nì)) exp(i(m~ë� n~ì))

����2 f (~ë, ~ì) d~ë d~ì

< k f k
�ð
ÿð

�ð
ÿð

���� X
m,n2DN

(cos(më� nì)� sin(më� nì)) exp(i(m~ë� n~ì))

����2 d~ë d~ì

� k f k(2ð)2
X

m,n2DN

(cos(më� nì)� sin(më� në))2

< 2(2ð)2k f k(N2 ÿ M2) <
XN

i�M�1

ái

where DN � f(m, n) 2 Z2, M , m < N , or M , n < Ng, ái � 4(2ð)2k f ki, i � M �
1, . . ., N . Applying Lemma 1 with d � 1 . 2=r, gives (8).

To prove (9), we need to truncate E(m, n). Let

~E(i, j) � ~E(i, j, è) � E(i, j)fjaN (i, j, è)E(i, j)j, N=ln(N 2)g

~SN (è) �
X1

i�ÿ1

X1
j�ÿ1

aN (i, j, è)~E(i, j) and S�N � ~SN (è)ÿ E( ~SN (è))

where, for brevity, fjaN (i, j, è)E(i, j)j, N=ln(N2)g denotes the indicator function of the
corresponding event.

We will ®rst show, for any á. 7=2,

lim sup
N!1

maxèjS�N (è)j��������������������
N 2 ln(N 2)

p < 2ð
��������������
2ák f k

p
(11)

For this end, let us show for any ®xed è, and for any â.á. 7=2,

P(jS�N (è)j. 2ð(2âk f kN 2 ln(N2))0:5) < 2Nÿ2á (12)

for all N . N0, where N0 does not depend on è.
Since E~E(i, j)2 < EE(i, j)2 � 1,

E(S�N (è)2) < E(SN (è)2) �
�ð
ÿð

�ð
ð

����XN

m�1

XN

n�1

eÿi(më�nì)

����2 f (ë, ì) dë dì < (2ð)2k f kN2

and supi, jjaN (i, j, è)j j~E(i, j)ÿ E~E(i, j)j < 2N=ln(N2), we can apply Lemma 3 (i) of Lai
and Wei (1982, p. 329) to S�N (è) with

A � (2ð)2k f kN2 c � 1

ðk f k0:5 ln(N2)
î � (2â ln(N2))0:5

to obtain that, for a suf®ciently large N such that cî, 1,
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P(jS�N (è)j. 2ð(2âk f k N2 ln(N2))0:5)

< 2 exp ÿâ ln(N2) 1ÿ 1

2ðk f k0:5 ln(N2)
(2â ln(N2))0:5

� �� �
< 2 expfÿá ln N2g � 2Nÿ2á

Now, choose a q such that 3 , q , (áÿ 0:5) and divide [ÿð, ð] 3 [ÿð, ð] into
KN � [N q]2 equal-sized squares, each with a width 2ð=[N q], where [N q] is the integer
part of N q. Denote the squares by Ä1, Ä2, . . ., ÄK N

and their centers by è1, è2, . . ., èK N
.

Note that Ej~E(i, j)j < EjE(i, j)j < 1 and

E sup
è2Ä k ,k

jS�N (è)ÿ S�N (èk)j
� �

< 2
X

i

X
j

sup
è2Ä k ,k

jaN (i, j, è)ÿ aN (i, j, èk)j

Since

jcos(më� nì)� sin(më� nì)ÿ cos(mëk � nìk)ÿ sin(mëk � nìk)j
< 2jm(ëÿ ëk)� n(ìÿ ìk)j

< 2
���
2
p

2ð[N q]ÿ1
�����������������
m2 � n2

p
8k and (ë, ì) 2 Äk

where èk � (ëk , ìk), then

sup
è2Ä k ,k

jaN (i, j, è)ÿ aN (i, j, èk)j

<
���
2
p

8ð[N q]ÿ1
XN

m�1

XN

n�1

�����������������
m2 � n2

p
jc(mÿ i, nÿ j)j

From these inequalities and
PN

i�1

PN
j�1

�����������������
m2 � n2
p � O (N3), and the fact that the array

c(i, j) is absolutely summable, we obtain

E sup
è2Ä k ,k

jS�N (è)ÿ S�N (èk)j
� �

� O (N3ÿq)

Since q . 3, Markov Inequality and the Borel±Cantelli Lemma imply

sup
è2Ä k ,k

jS�N (è)ÿ S�N (èk)j � o (N ) (13)

From (12),

P max
k
jS�N (èk)j. 2ð

���������������������������������
2âk f kN2 ln(N2)

p� �
<
XKN

k�1

P(jS�N (èk)j. 2ð
���������������������������������
2âk f kN2 ln(N 2)

p
)

< KN � 2Nÿ2á � O (N 2qÿ2á) for any â.á

Since 2áÿ 2q . 1, the Borel±Cantelli Lemma implies

lim sup
N!1

maxk jS�N (èk)j��������������������
N2 ln(N2)

p < 2ð=
�������������
2âk f k

p
(14)

Since (14) is true for any â.á, it is true for á. The inequality (11) now follows from
(13) and (14).
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Next, we show that E ~SN (è) is negligible. Since EE(i, j) � 0,

E ~SN (è) � E
X

i

X
j

aN (i, j, è)E(i, j)fjaN (i, j, è)E(i, j)j

> N=ln(N2)g
Observing X1

i�ÿ1

X1
j�ÿ1

sup
è
jaN (i, j, è)j < 2N2

X
i

X
j

jc(i, j)j

and applying (10), gives

sup
è
jE ~SN (è)j

<
X

i

X
j

E(sup
è
jaN (i, j, è)E(i, j)jfsup

è
jaN (i, j, è)E(i, j)j. N=ln(N2)g) (15)

<
X

i

X
j

N

ln N2

� �1ÿr

E(sup
è
jaN (i, j, è)j jE(i, j)j)r

<
N

ln N2

� �1ÿr

sup
i, j

EjE(i, j)jrkakrÿ1
X

i

X
j

sup
è
jaè(i, j, è)j

� O (N3ÿr(ln N )rÿ1)

To complete the proof, it suf®ces to show that, with probability 1,

sup
è
jSN (è)ÿ ~SN (è)j � o (N ) (16)

Since

sup
è
jSN (è)ÿ ~SN (è)j

< sup
è
j
X

i

X
j

aN (i, j, è)E(i, j)fjaN (i, j, è)E(i, j)j. N=ln(N2)g

then

E(sup
è
jSN (è)ÿ ~SN (è)j)

<
X

i

X
j

E(sup
è
jaN (i, j, è)E(i, j)jfsup

è
jaN (i, j, è)E(i, j)j. N=ln(N2)g)

We see from the inequalities below (15) that

E(sup
è
jSN (è)ÿ ~SN (è)j) � O (N3ÿr(ln N )rÿ1)

Since r . 3, the Borel±Cantelli Lemma implies (16). The proof is completed.
j
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