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Abstract

In many applications, observed spatial variables have skewed distributions. It is

often of interest to model the shape of the skewed marginal distribution as well as

the spatial correlations. We propose a class of stationary processes that have skewed

marginal distributions. The covariance function of the process can be given explicitly.

We study maximum likelihood inference through a Monte Carlo EM algorithm, and

develop a method for the minimum mean-square error prediction. We also present two

applications of the process.

Keywords: EM algorithm, Matérn covariogram, Skew-normal distribution, Skew-

Gaussian process, Slice sampling

1 Introduction

In many applications, the observed spatial variables are known to have skewed distributions.

Although spatial correlation structure always remains to be an interesting modeling aspect,

it is of interest to also model the skewed marginal distributions. Frequently in environmental,

hydrological and ecological studies, the shape of the distribution is of primary interest. On

the other hand, when the process is non-Gaussian, linear prediction such as kriging generally

may be outperformed by the minimum mean-square error (MMSE) prediction. The latter

prediction requires the full distribution of the process to be modeled.

1



There are very few models for stationary processes that have skewed marginal distribu-

tions and have a covariance function of a manageable parametric form. However, a relatively

large number of models have been developed in the literature for univariate and multivari-

ate skewed distributions. Genton (2004) describes inferences about many of the models,

one of which is the skew-normal distributions. The first systematic treatment of univariate

skew-normal distributions was given by Azzalini (1985) and the multivariate skew-normal

distribution was introduced by Azzalini and Dalla Valle (1996) and studied by Azzalini and

Capitanio (1999). Recently, Ferreira and Steel (2006) proposed a new approach to the con-

struction of univariate skewed distributions. However, it is not always obvious how to extend

a class of univariate skewed distribution to multivariate distributions with skewed marginals.

When spatial data are collected at, say, n sampling sites and there is evidence that

they have skewed distributions, one may naturally seek an existing multivariate distribution

to fit the data. However, this approach has two obvious problems. First, some existing

multivariate skewed distributions are better used when multiple multivariate samples are

available. However, a single sample is typically available in spatial statistics and this sample

must contain the information about skewness of the marginal distributions. As will be

explained in next section, a single spatial sample modeled by the multivariate skew-normal

distribution does not necessarily have the information about the skewness. Second, for

predicting Y (s) at a location s given the observed Y = (Y (s1), · · · , Y (sn))′, the conditional

distribution of Y (s) given Y is needed for MMSE prediction, which means that the (n + 1)

dimensional distribution of (Y ′, Y (s)) is needed. A common approach is to assume that the

observation Y is a partial realization of an underlying spatial process and model the process

directly. De Oliveira et al. (1997) developed Bayesian transformed Gaussian model based on

the Box-Cox transformations. Recently, Palacios and Steel (2006) proposed Gaussian-log-

Gaussian (GLG) model by using scale mixing of Gaussian processes. The GLG model has

heavier tails than Gaussian models but sill has a symmetric distribution.

The objective of this paper is to define a class of spatial stationary processes that have

skewed marginal distributions, and study likelihood-based inferences. The process has a
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skew-normal marginal distribution and all finite distributions are completely determined

by the mean and parameters in covariance. The observed spatial data are assumed to be a

partial realization of the process. We call such a process a skew-Gaussian process. It includes

the stationary Gaussian processes as a special case. The skew-Gaussian process defined in

this work differs from that defined in Kim and Mallick (2004) that bears a similar name, as

will be discussed in the next section.

The paper is organized as follows. In Section 2, we define the stationary skew-Gaussian

process and provide its covariance function. In Sections 3 and 4 we consider maximum

likelihood estimation of parameters and optimal prediction. A Markov chain Monte Carlo

method is employed for both estimation and prediction. An example of application of skew-

Gaussian process is presented in Section 5 and possible extensions of skew-Gaussian process

are discussed in the last section.

2 Stationary Skew-Gaussian Processes

We first provide a brief review of skew-normal distribution. Let X1 and X2 be two i.i.d

standard normal random variables. For any δ ∈ [−1, 1], the distribution of

Z = δ|X1|+ (1− δ2)0.5X2 (1)

is called a skew-normal distribution. The distribution of Z is right-skewed if δ > 0, left-

skewed if δ < 0 and is standard normal if δ = 0. Its probability density function is 2φ(z)Φ(αz)

where α = δ/(1 − δ2)0.5, and φ(z) and Φ(z) are the pdf and cdf of the standard normal

distribution. Z2 has a chi-square distribution with 1 degree of freedom, which is a property

shared by the standard normal distribution.

A multivariate extension of (1) is given by Azzalini and Dalla Valle (1996). Consider a

k-dimensional normal variable X = (X1, · · · , Xk)
′ with standardized marginals, independent

of X0 ∼ N(0, 1). For δj ∈ [−1, 1], j = 1, · · · , k, define

Zj = δj|X0|+ (1− δ2
j )

0.5Xj. (2)
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Then the joint distribution of Z = (Z1, · · · , Zk)
′ is called a multivariate skew-normal distri-

bution and each marginal distribution is skew-normal.

We now consider extending of the skew-normal distribution to a stationary process Z(s)

for s ∈ Rd for some d > 0 so that each Z(s) has a skew-normal distribution and the process

Z(s) is second-order stationary. Let X0(s) be a stationary Gaussian process with standard-

ized merginals, and X(s) be another stationary Gaussian process also with standardized

marginals. The two processes are independent and may have different covariance functions.

Define

Z(s) = δ|X0(s)|+ (1− δ2)0.5X(s) (3)

Then this process Z(s) is strictly stationary with skew-normal marginals. The covariance

function of Z(s) can be explicitly expressed in terms of those of X0(s) and X(s), as will be

given later in this section.

We make a few remarks before discussing more properties of the process Z(s). Al-

though each Z(s) has a skew-normal distribution, the finite dimensional distribution of

Z(s1), · · · , Z(sn) is not the multivariate skew-normal distribution of Azzalini and Dalla Valle

(1996) because we let X0(s) vary with s. Obviously, if any finite dimensional distribution of

the skew-normal process is multivariate skew-normal, X0(s) does not depend on s and (2)

becomes

Z(s) = δ|X0|+ (1− δ2)0.5X(s),

where X0 is a standard normal random variable, independent of the process X(s).

However, there are drawbacks of such a skew-normal process. First, for any given re-

alization of the process Z(s), Z(s) behaves just like a Gaussian process with mean δ|X0|.
This imposes a problem on model diagnosing as well as for parameter estimation because

in general only one realization is observed in practice. The process so defined is not ergodic

in that any single realization contains only incomplete information about the distribution

of the process. Second, the degree of skewness is mingled with the spatial correlation so

that the stronger the skewness, the stronger the correlation. Specifically, for any s1 and s2,

if X(s1) and X(s2) are positively correlated, the correlation coefficient between Z(s1) and

4



Z(s2) is greater than

δ2Var(|X0|)
Var(Z(s))

=
δ2(1− 2/π)

1− 2δ2/π
,

which is close to 1 if Z(s) is extremely skewed (i.e., δ ≈ 1), no matter how far away the two

points s1 and s2 are apart.

The process Z(s) by (3) overcomes these drawbacks, which differs from the skew-Gaussian

process proposed by Kim and Mallick (2004). In their work, the observed vector Y was mod-

eled by a multivariate skew-normal distribution and was assumed to be a partial realization of

a stationary process whose finite dimensional distributions are all multivariate skew-normal.

Location and scale transformations can be applied to (3) to yield any mean and variance

of the observed variables. We therefore propose the following stationary process, which we

refer to as skew-Gaussian process.

Y (s) = m(s) + σ1|X1(s)|+ σ2X2(s) + σ0ε(s), (4)

where σ0 ≥ 0, σ2 ≥ 0 and σ1 is real, m(s) is constant depending only on the location s, Xi(s)

(i = 1, 2) is stationary Gaussian processes with standard marginals and covariogram ρi(h),

ε(s) is Gaussian white noise with mean 0 and variance 1. The three processes Xi(s), i = 1, 2

and ε(s) are independent of each other. m(s) can be modeled as a linear combination of

some explanatory variables, m(s) = β0 +
∑p

j=1 gj(s)βj, for some observable explanatory

variables gj(s).

It is obvious that (Y (s) − m(s))/(σ2
0 + σ2

1 + σ2
2)

1/2 has a p.d.f 2φ(y)Φ(αy) for α =

σ1/(σ
2
0 + σ2)

1/2. The mean is

EY (s) = m(s) + σ1(2/π)1/2.

The covariogram of the process Y (s) can be easily given using the following fact, which will

be proved in the Appendix.

If two random variables X and Y are jointly normal with standardized marginals and

correlation coefficient ρ ≥ 0, then

Cov(|X|, |Y |) =
2

π

(√
1− ρ2 + ρ arcsin(ρ)− 1

)
. (5)
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The covariogram of Y (s) is therefore expressed in terms of those of the processes X0(s)

and X1(s)

C(h) =
2σ2

1

π

(√
1− ρ1(h)2 + ρ1(h) arcsin(ρ1(h))− 1

)

+ σ2
2ρ2(h) + σ2

01{h=0}. (6)

3 Maximum Likelihood Estimation

In this section we consider the maximum likelihood estimation of the parameters in model

(4). We assume that Y (s) is observed at n sites si, i = 1, · · · , n along with p explanatory

variables gj(si), j = 1, · · · , p. Furthermore, we assume that m(s) = β0 +
∑p

j=1 gj(s)βj and

the Gaussian process Xi(s) (i = 1, 2) has an isotropic Matérn correlation function ρ(h, νi, φi)

where

ρ(h, ν, φ) =
1

2ν−1Γ(ν)

(
3ν1/2h

φ

)ν

Kν

(
3ν1/2h

φ

)
, ν > 0, φ > 0,

and Kν is the modified Bessel function of order ν as discussed by Abramowitz and Stegun

(1967). This parameterization is similar to that in Handcock and Wallis (1994), but the

parameter φ here has a more intuitive interpretation that ρ(h) is approximately 0.12 at

h = φ regardless of ν.

Since the process is non-Gaussian, the likelihood function does not have a simple form

though it can be explicitly expressed as a weighted sum of 2n multivariate normal density

functions. Direct maximization of the likelihood seems intractable. On the other hand, since

we can treat the process X(s) as latent variables, the EM algorithm seems to be a natural

choice. We will describe an implementation of EM algorithm next.

3.1 EM Algorithm

We now consider and implement an EM algorithm. In practice, we usually know the sign of

σ1 based on whether the distribution of Y (s) is right-skewed (σ1 > 0) or left-skewed (σ1 < 0).
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We consider the case that σ1 > 0 so that Y (s) has a right-skewed distribution. If Y (s) has

a left skewed distribution, we would consider modelling −Y (s).

To ease the maximization in the M-step of the EM algorithm, we rewrite the model as

follows. Define

X(s) = σ1X1(s), W (s) = σ2X2(s) + σ0ε(s),

and write Y = (Y (s1), · · · , Y (sn))′, |X| = (|X(s1)|, · · · , |X(sn)|)′, W = (W (s1), · · · ,W (sn))′,

β = (β0, β1, · · · , βp)
′, and denote by G the n×p matrix whose ith row is (1, g1(si), · · · , gp(si))

′.

Then the model can be written as

Y = Gβ + |X|+ W ,

where X ∼ N(0, V1), W ∼ N(0, V2). For simplicity, we write ψk = (νk, φk), k = 1, 2,

τi = σ2
i , i = 0, 1, 2. Then the covariance matrices Vi can be written as

V1 = τ1R1, V2 = τ2R2 + τ0I,

where Rk = Rk(ψk) = (ρ(‖si − sj‖ , ψk))
n
i,j=1, k = 1, 2.

We treat X as unobservable latent variables. The complete-data log likelihood function

for (X, Y ) is

log Lc(θ) = log f(X, σ1, ψ1) + log f(Y |X, β, σ0, σ2, ψ2).

The EM algorithm runs iteratively. It starts with some initial estimate θ(0). At the mth

iteration, given estimate θ(m), the new estimate θ(m+1) maximizes the conditional expectation

Q(θ|θ(m)) = Eθ(m)(log Lc(θ, Y ,X)|Y )

where the expectation is evaluated under θ(m). This function can be written as

Q(θ|θ(m)) = Eθ(m)(log f(X, τ1, ψ1)|Y ) + Eθ(m)(log f(Y |X,β, τ0, τ2, ψ2)|Y ) (7)

The first term equals

−n

2
log(2π)− n

2
log τ1 − 1

2
log |R1(ψ1)| − 1

2τ1

Eθ(m)(X′R−1
1 (ψ1)X|Y ).
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Maximizing this function, we get

ψ
(m+1)
1 = ArgMin(n log Eθ(m)(X′R−1

1 (ψ1)X|Y ) + log |R1(ψ1)|) (8)

τ
(m+1)
1 =

1

n
Eθ(m)(X′R−1

1 (ψ
(m+1)
1 )X|Y ) (9)

The other estimates (β(m+1), τ
(m+1)
0 , τ

(m+1)
2 , ψ

(m+1)
2 )′ maximize the second term in (7)

Eθ(m){log f(Y |X,β, τ0, τ2, ψ2)|Y )}

= −n

2
log(2π)− 1

2
log |V2| − 1

2
Eθ(m){(Y −Gβ − |X|)′V −1

2 (Y −Gβ − |X|)|Y }. (10)

Clearly, these latter estimates are related as

β(m+1) = (G′V −1
2,m+1G)−1G′V −1

2,m+1(Y − Eθ(m){|X| |Y }) (11)

where V −1
2,m+1 is the inverse of matrix V2 corresponding to the estimates (τ

(m+1)
0 , τ

(m+1)
2 , ψ

(m+1)
2 )′.

An iterative procedure such as the Newton-Raphson algorithm is necessary to maximize

(10). The EM algorithm so implemented has the advantage that there are separate maxi-

mization (8) to (10) to update estimates.

The conditional expectations above cannot be evaluated in closed form but can be ap-

proximated by a Markov chain Monte Carlo method, which will be introduced in the next

subsection. Such a Monte Carlo EM algorithm has been developed in literature for the

analysis of correlated data (see, e.g., Wei and Tanner, 1990, McCulloch, 1997, Zhang, 2002).

3.2 Slice Sampling for Skew-Gaussian Processes

We now assume that the model parameters are known and consider generating a Markov

chain X(t) so that for any function h

lim
T→∞

(1/T )
T∑

t=1

h(X(t)) = E(h(X)|Y ).

This chain then can be used to approximate the conditional expectations in (8) to (10).

Metropolis-Hastings algorithm is an obvious choice here because the acceptance probability

takes a simple form if the proposal distribution is chosen to be that of X. However, our
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numerical studies show that the acceptance probability could be as low as 1/4500 for a

Metropolis-Hastings algorithm so implemented. Low acceptance probabilities result in slow

mixing of the Markov chain.

In this work, we will introduce auxiliary variables and employ the slice sampling method.

Slice sampling is a technique of generating from an arbitrary distribution by introducing an

auxiliary variable and sampling from two or more uniformly distributions (Neal, 2003). For

our problem, it iterates as follows. To simplify notations, we assume that β = 0 (only for the

remaining of this section). Let U have the uniform distribution on the interval [0, f(Y |X)]

conditional on X and Y . Then the distribution of X conditional on U and Y is proportional

to

f(X)1{U<f(Y |X)}.

Therefore, Gibbs sampler can be employed in theory to generate X given Y as follows. Start

at some X(0). Given X(t), generate U (t+1) ∼ U [0, f(Y |X(t))], X(t+1) ∼ f(X)1{U(t+1)<f(Y |X)}

and iterate. However, to generate X from the constrained distribution is not trivial. The

naive approach, which generates from f(X) until it satisfies the constraint f(Y |X) >

U (t+1), is neither efficient nor practical. Here, to generate from the constrained distribu-

tion f(X)1{U<f(Y |X)}, we use the idea of slice sampling method by introducing the second

auxiliary variable. Given X(t), generate Ũ ∼ U [0, f(X(t))], and generate X(t+1) uniformly on

the set

{x : f(x)1{U(t+1)<f(Y |x)} > Ũ} = {x : f(x) > Ũ} ∩ {x : f(Y |x) > U (t+1)}. (12)

Note that f(x) > Ũ if and only if log f(x) > log(Ũ/f(X(t))) + log(f(X(t))), and if and

only if

x′V −1
1 x < −2 log(Ũ/f(X(t))) + X(t)′V −1

1 X(t) = r,

which is an n-dimensional oval. For any x = (x1, · · · , xn)′ inside the oval, define

Ii(x, r) = {x ∈ R : x′V −1
1 x < r if x = (x1, · · · , xi−1, x, xi+1, · · · , xn)′}.

Then Ii(x, r) contains all possible values of the ith coordinates in order for x to remain in
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the n-dimensional oval while the other (i − 1) coordinates are fixed. Clearly Ii(x, r) is a

non-empty interval because X
(t)
i ∈ Ii(x, r).

Similarly f(Y |x) > U (t+1) if and only if

(Y − |x|)′V −1
2 (Y − |x|) < −2 log(U t+1/f(Y |X(t))) + (Y − |X(t)|)′V −1

2 (Y − |X(t)|).

Denote the right hand side by a, and define for i = 1, · · · , n,

∆i(x, a) = {x ∈ R : (Y − |x|)′V −1
2 (Y − |x|) < a if x = (x1, · · · , xi−1, x, xi+1, · · · , xn)′}.

Then ∆i(x, a) is symmetric about 0 and may be one interval or the union of two disjoint

intervals.

Therefore for any point in the set (12) and any i = 1, . . . , n, when all coordinates xj, j 6= i

are fixed, xi varies in one or two intervals that can be explicitly determined. Hence slice

sampling can be easily applied again to generate uniformly on the n-dimensional set (12).

To summarize, the slice sampling iterates as follows to generate from f(X|Y ). Given

X(t),

• Generate η(t+1), ξ(t+1) i.i.d Exp(1), and let

r = 2η(t+1) + X(t)′V −1
1 X(t), a = 2ξ + (Y − |X(t)|)′V −1

2 (Y − |X(t)|),
• For(i in 1:n){
Generate X uniformly distributed on I i(X

(t), r)∩∆i(X
(t), a) and substitute X

for the ith element:

X(t+1) = (X
(t+1)
1 , · · · ,X(t+1)

i−1 , X,X
(t)
i+1, · · · ,X(t)

n )′

}
• Repeat

We note that for any i, the set I i(X
(t), r) ∩ ∆i(X

(t), a) is not empty because the ith

element of X(t) is in this set.
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4 Prediction

In many applications, prediction of values at unsampled locations is necessary. In this

section, we assume true parameters are known and predict Y (s) at an unsampled location

s. We then carry out the prediction under the estimates of the parameters. This results in

the so-called plug-in prediction. Note that the best linear unbiased prediction or kriging is

straightforward because the the explicit expression of the covariogram of the skew-Gaussian

process is given in (6). However, because the process is non-Gaussian, the optimal prediction

that minimizes the mean squared error is non-linear. This optimal prediction is

E(Y (s)|Y ) = m(s) + E(|X(s)| |Y ) + E(W (s)|Y ).

It cannot be evaluated in closed form but can be approximated using Monte Carlo samples.

One trivial approach is to generate an MCMC sample from the conditional distribution of

Y (s) given Y . For each prediction location, an MCMC sample would need to be gener-

ated. This approach is computationally cumbersome because a large number of prediction

locations is usually used in practice. Next we present a technique that alleviates some of

the computational burden. This technique requires generation of Monte Carlo samples only

from the n-dimensional multivariate distribution of X conditional on Y , regardless of how

many prediction locations to be used. These MC samples are used to calculate E(Y (s)|Y )

for any prediction location s. The same technique has been employed in Zhang (2002, 2003)

for spatial generalized linear mixed models.

Our method is based on the following fundamental property

E(|X(s)| |Y ) = E[E(|X(s)| |X,W )|Y ].

Because X(s) and W and independent, we have

E(|X(s)| |X,W ) = E(|X(s)| |X).

Since conditional on X, X(s) is normal with conditional mean and variance

µ = λ′1V
−1
1 X, σ2 = τ1 − λ′1V

−1
1 λ1.
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where λ1 = Cov(X, X(s)) and V1 = τ1R1(ψ1), simple calculation yields that

E(|X(s)| |X) = σ(2/π)1/2 exp

(
− µ2

2σ2

)
+ µ

(
2Φ

(µ

σ

)
− 1

)
(13)

where Φ(·) is the cdf of the standard normal distribution. Then

E(|X(s)| |Y ) = E[E(|X(s)| |X)Y ] ≈ (1/T )
M∑
t=1

E(|X(s)| |X(t))

where X(t), t = 1, · · · , T are a Monte Carlo sample from the distribution of X conditional

on Y . These MC samples are generated in the MCEM algorithm and can be reused for

prediction.

Similarly,

E(W (s) |Y ) = E[E(W (s)|W ) |Y ]

and

E(W (s)|W ) = λ′2V
−1
2 W .

where λ2 = Cov(W ,W (s)). Hence

E(W (s) |Y ) = λ′2V
−1
2 W̃ ,

where W̃ = E(W |Y ) = Y − Gβ − E(|X||Y ) ≈ Y − Gβ − (1/T )
∑T

t=1 |X(t)|. Therefore,

prediction of W (s) is performed exactly as in simple kriging if we substitute the estimated

W (si) for observed W (si).

5 An Example

In this section, we present two applications of the skew-Gaussian process. Depth integrated

chlorophyll concentrations measured during the 1974 Lake Ontario Surveillance program

are used to illustrate the methods of this paper. This Canadian program was established to

monitor spatial and temporal changes in water quality of the Great Lakes. The 1974 sampling

program consisted of 15 cruises that were conducted between April 16 and November 29.

During each cruise, water samples were collected from a number of sites systematically
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covering the lake and the physical, biological and chemical characteristics of the samples

were measured. Chlorophyll was selected because it is a measure of phytoplankton biomass

and thus lake productivity. Excessive input of nutrients to the aquatic environment causes

excessive productivity and leads to the deterioration of water quality. This was recognized

as a major problem for Lakes Erie and Ontario. We used the sounding depth as a covariate

since it tends to be negatively correlated with productivity. Shallow regions (near shore) are

expected to be high in nutrients and off shore areas low in productivity and nutrients. Here

we do not intend to provide a complete analysis for the entire datasets and instead choose

to analyze, somewhat arbitrarily, two datasets of chlorophyll collected at different times of

the year but at similar locations. Dataset 1 was collected on April 29, 30 and May 1 of 1974

at 40 locations, and dataset 2 was collected on September 30, October 2, 4 and 5 of 1974 at

42 locations. The two sets of observed locations were similar as shown in Figure 1.

[Figure 1 about here.]

[Figure 2 about here.]

One covariate that is also measured along with chlorophyll at each of the locations is

the sounding depth. In general, chlorophyll decreases as the sounding depth increases. The

linear correlation coefficient between the two variables is -0.7924 and -0.4714. For exploratory

purpose, we run simple regression on both datasets and plot in Figure 2 the histogram of

residuals and the semivariogram of residuals for each dataset. We see from the histograms

that residuals have moderately right-skewed distributions, especially for dataset 1. The

semivariograms indicate the existence of strong spatial correlation in dataset 2 and weaker

spatial correlation in dataset 1. A nugget effect or measurement error exists in both datasets.

The exploratory data analysis suggests that the skew-Gaussian model is a reasonable

choice for the two datasets. We therefore apply model (4) to both datasets. We use the

sounding depth as the sole explanatory variable. For each dataset, we scale the distance so

that the maximum distance is 1. We assume that ν1 = ν2.
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To employ the Monte Carlo EM algorithm for parameter estimation, we apply the slice

sampling method to generate 250,000 Monte Carlo samples after burn-in and keep every

50th one. The length of burn-in of the Markov chain generated by the slicing sampling

is less than 100. The Monte Carlo sample obtained therefore has a size of 5,000. Our

diagnostic analyses show that this sample size is sufficient to ensure convergence of the

estimates of conditional expectations. The obtained estimates for dataset 1 are (β̂0, β̂1) =

(11.30,−0.0801), ν̂ = 0.25 and (τ̂1, φ̂1, τ̂2, φ̂2, τ̂0) = (2.7233, 0.3997, 4.1475, 1.9461, 5.2661).

For dataset 2, the estimates are (β̂0, β̂1) = (6.6029,−0.0203), ν̂ = 0.5, and (τ̂1, φ̂1, τ̂2, φ̂2, τ̂0) =

(0.6765, 0.4048, 1.1579, 1.1631, 1.9944). For both datasets, profile likelihood for ν is rather

flat, meaning that the data do not have sufficient information to acquire a more precise

estimate of ν. It is known that even for stationary Gaussian processes, precise estimation of

τ may be difficult. In general, adding sampling sites that are close to each other will reduce

the variance of the estimators.

[Figure 3 about here.]

We plot in Figure 3 the histograms of the residuals, e(si) = |X(si)| + W (si), the fitted

probability density functions, as well as the empirical semivariograms of the residuals and

the fitted semivariograms. The densities fit the histograms reasonably well and the estimated

semivariograms also seem to be reasonably close to the empirical ones.

We also note that dataset 1 has a more skewed distribution than dataset 2 as seen from

Figure 2. For the skew-Gaussian model, the skewness increases with the ratio τ1/(τ2 + τ0).

The estimate of this ratio is 0.289 for dataset 1 and 0.214 for dataset 2.

The error term e(s) = |X(s)|+W (s) accounts for the spatial variation not accounted for

by the sounding depth. To display the spatial variation in the error, we predict e(s) at 1578

points evenly distributed in the sampling region. These points were obtained by dividing the

sampling region into 2km×2km squares. The contour plots for the two datasets are given in

Figure 4. There is a considerable spatial variation in |X(s)|+ W (s) for both datasets with

the southwest having the lower values and northeast having the larger values.
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[Figure 4 about here.]

For comparison purpose, we also apply the spatial regression with stationary normal

error:

Y (sj) = β0 + g(sj)β1 + ε(sj), j = 1, · · · , n

where g(sj) is the sounding depth at location sj and (ε(s1), · · · , ε(sn))′ is a partial real-

ization of stationary Gaussian process with mean 0 and a Matérn covariogram that has

a nugget effect. Hence the covariance matrix σ2
0In + σ2

1R, where R has the (i, j)th ele-

ment ρ(‖si − sj‖ , ν, φ). Maximum likelihood estimation of such model can be obtained

through an iterative procedure such as the Newton-Raphson method given by Mardia and

Marshall (1984). For dataset 1, we obtained the estimates (β0, β1) = (12.2670, −0.0805),

ν = 0.25 and (σ2
0, σ

2
1, φ) = (4.4505, 3.5724, 0.011). Because the estimate of the range pa-

rameter φ is so small, the Gaussian model reveals that the spatial correlation decays very

rapidly. For dataset 2, we obtained the estimates (β0, β1) = (7.0226,−0.0189), ν = 0.5 and

(σ2
0, σ

2
1, φ) = (1.9294, 0.3006, 0.3954). The spatial correlation does not decay rapidly, which

agrees with the empirical semivariogra. However, the estimated partial sill (0.3006) is quite

small compared with the nugget effect 1.9294. The empirical semivariogram reveals a much

larger partial sill. Therefore, the Gaussian model does not fit either model satisfactorily.

To compare the predictive performance of the two models, we predict Y (si) for each

sampling site si using all sj, j 6= i and compute the mean squared difference
∑n

i=1(Y (si)−
Ŷ (si))

2/n. For dataset 1, the Gaussian model yields a mean squared error 8.023 and the

skew-Gaussian model 6.764. For dataset 2, the mean squared error is 2.179 for the Gaussian

model and 1.873 for the skew-Gaussian model. Overall, we believe that the skew-Gaussian

model outperforms the Gaussian model for both datasets.

We also applied the log transformation to both datasets and run linear regression on the

transformed variable. However, exploratory analysis on the residuals convinced us that log

transformation is not appropriate. Hence we do not compare the skew-Gaussian model with

the lognormal model.
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6 Discussion

The skew-Gaussian process we proposed in this work can be extended to model more skewed

distributions. For example, we can replace |X1(s)| in model (4) by |X1(s)|q where q > 0 is

an additional parameter and can be estimated, or by an increasing function of |X1(s)|. This

leads to a wider class of stationary processes with skewed marginals. The EM algorithm and

the slice sampling can be applied after slight modification. Prediction can be carried out

using the same technique.
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Appendix

We provide proof of equation (5). It is known that

E|X| = E|Y | =
√

2/π.

Hence we only need to show that

E|XY | = 2

π

(√
1− ρ2 + ρ arcsin(ρ)

)
.

Define σ = (1− ρ2)0.5, I(x, ρ) = E(|Y |1{Y >0}|X = x). Then

E(|Y |1{Y >0}|X = −x) = E(|Y |1{Y >0}| −X = x) = I(x,−ρ).

and simple calculation yields

I(x, ρ) =

∫ ∞

0

y√
2πσ

exp

(
−(y − ρx)2

2σ2

)
dy

= ρxΦ
(ρx

σ

)
+ σφ

(ρx

σ

)

where φ(·) and Φ(·) are the pdf and cdf of the standard normal distribution.
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Using the symmetry of the joint distribution, we write

E|XY | = 2E|XY |1{X>0,Y >0} + 2E|XY |1{X<0,Y >0}

= 2

∫ ∞

0

xφ(x)[I(x, ρ) + I(x,−ρ)]dx.

By integration by part, we see the last equation equals

−2

∫ ∞

0

[I(x, ρ) + I(x,−ρ)]dφ(x)

=
2σ

π
+

∫ ∞

0

φ(x)[I ′(x, ρ) + I ′(x,−ρ)]dx

where I ′(x, ρ) denotes the partial derivative with respect to x. It is straightforward to show

that

I ′(x, ρ) + I ′(x,−ρ) = ρ(2Φ(ρx/σ)− 1).

Then

E|XY | =
2σ

π
+ 2ρ

∫ ∞

0

φ(x)[2Φ(ρx/σ)− 1)]dx

=
2σ

π
− ρ + 4ρ

∫ ∞

0

φ(x)Φ(ρx/σ)dx.

Denote the last integral by J(ρ). Then J(0) = 1/4 and, because d(ρ/σ)/dρ = σ−3,

J ′(ρ) =
1

2π(1− ρ2)0.5
.

Hence

J(ρ) =
1

4
+

arcsin(ρ)

2π
.

The proof is completed.
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Figure 1: Observed locations: circle (◦) for dataset 1 and plus (+) for dataset 2.
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Figure 2: Histograms (left column) and semivariograms (right column) of residuals from the
simple regression for dataset 1 (upper row) and dataset 2 (lower row)
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Figure 3: Histograms (left column) and semivariograms (right column) of residuals from the
skew-Gaussian model for dataset 1 (upper row) and dataset 2 (lower row)
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Figure 4: Contour plots of predicted error term for dataset 1 (top) and dataset 2 (bottom)
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