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Hybrid Estimation of Semivariogram Parameters1

Hao Zhang2 and Dale L. Zimmerman3

Two widely used methods of semivariogram estimation are weighted least squares estimation and
maximum likelihood estimation. The former have certain computational advantages, whereas the
latter are more statistically efficient. We introduce and study a “hybrid” semivariogram estimation
procedure that combines weighted least squares estimation of the range parameter with maximum
likelihood estimation of the sill (and nugget) assuming known range, in such a way that the sill-to-
range ratio in an exponential semivariogram is estimated consistently under an infill asymptotic regime.
We show empirically that such a procedure is nearly as efficient computationally, and more efficient
statistically for some parameters, than weighted least squares estimation of all of the semivariogram’s
parameters. Furthermore, we demonstrate that standard plug-in (or empirical) spatial predictors
and prediction error variances, obtained by replacing the unknown semivariogram parameters with
estimates in expressions for the ordinary kriging predictor and kriging variance, respectively, perform
better when hybrid estimates are plugged in than when weighted least squares estimates are plugged
in. In view of these results and the simplicity of computing the hybrid estimates from weighted least
squares estimates, we suggest that software that currently estimates the semivariogram by weighted
least squares methods be amended to include hybrid estimation as an option.

KEY WORDS: consistency, geostatistics, kriging, maximum likelihood estimation, weighted least
squares estimation.

INTRODUCTION

Parametric estimation of the semivariogram or covariogram is a classical prob-
lem in geostatistics. One widely used approach to this problem involves fitting
the chosen parametric model to the sample (empirical) semivariogram (or covar-
iogram) by a least squares method. Specific least squares methods that have been
proposed include ordinary least squares (Journel and Huijbregts, 1978; Clark,
1979), weighted least squares (Cressie, 1985), and generalized least squares
(Genton, 1998). Another popular approach is likelihood-based; that is, estimates
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of semivariogram or covariogram parameters are obtained by maximizing the joint
likelihood function (or some variation thereof) of the observed data; for exam-
ples see Kitanidis (1983), Mardia and Marshall (1984), Zimmerman (1989), and
Curriero and Lele (1999). Still another approach is Bayesian, in which a prior
distribution for the semivariogram or covariogram parameters is updated by con-
ditioning on the observed data (Handcock and Stein, 1993; Ecker and Gelfand,
1997, 1999). The advantages of least squares methods relative to likelihood-based
and Bayesian methods are (a) their computational simplicity, and (b) their avail-
ability within widely used geostatistical software packages. Their disadvantages
are their less firm theoretical statistics foundation and their inefficiency, as empir-
ical studies (Zimmerman and Zimmerman, 1991; Dubin, 1994) suggest that least
squares estimators do not perform as well (in terms of mean squared errors, for
example) as likelihood-based estimators.

Often in practice, the estimation of semivariogram parameters is not an
end in itself, but is merely the first step towards the more important goal of
spatial interpolation (prediction). For the purpose of optimal interpolation, it turns
out that some semivariogram parameters are more important to estimate well
than others (Stein and Handcock, 1989; Zhang, 2004). For example, in the case
of a Gaussian random field with isotropic exponential semivariogram γ (h) =
σ 2[1 − exp(−h/α)], the ratio σ 2/α affects interpolation more than either the sill
parameter σ 2 or range parameter α do individually. In fact, under an infill (i.e.
fixed-domain) asymptotic framework, only this ratio affects the interpolation, in
the sense that an incorrect semivariogram that has a correct sill-to-range ratio will
produce asymptotically the same interpolations as those obtained using the correct
semivariogram. Therefore, at least for the exponential model, it is important to
estimate this ratio precisely, and it is not unreasonable to expect that this ratio may
be of similar importance for some other semivariogram models.

The purpose of this article is to introduce and study a “hybrid” semivari-
ogram estimation procedure that combines weighted least squares estimation of
the range parameter with maximum likelihood estimation of the sill (and nugget),
in such a way that the sill-to-range ratio in an exponential semivariogram is esti-
mated consistently under infill asymptotics. We will show empirically, for several
different semivariogram models, that such a procedure is nearly as efficient com-
putationally, and more efficient statistically for some parameters, than weighted
least squares estimation of all of the semivariogram’s parameters (though it is
still discernibly less efficient statistically than maximum likelihood estimation
of all the parameters). Furthermore, we will demonstrate that standard plug-in
(or empirical) spatial predictors, which are obtained by replacing the unknown
semivariogram parameters with estimates in expressions for the ordinary krig-
ing predictor and kriging variance, are better when hybrid estimates, rather than
weighted least squares estimates, are plugged in. Our aim is to convince prac-
titioners who currently use weighted least squares estimates (possibly because
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they lack access to easy-to-use software for maximum likelihood estimation of
semivariogram parameters) that hybrid estimation yields worthwhile benefits in
estimation and prediction performance, yet is computationally very fast and easy.

The remainder of the article is organized as follows. First, we develop the idea
of hybrid estimation. Next, we present results of an empirical study comparing the
performance of the hybrid and weighted least squares estimators. Finally, some
concluding remarks complete the article.

HYBRID SEMIVARIOGRAM ESTIMATION

Consider a stationary and isotropic Gaussian random field, {Z(s) : s ∈ D},
where D is a bounded region in R2. Let µ denote the mean, and γ (h; θ) the
semivariogram, of the random field. Here, h is Euclidean distance between sites and
θ is a vector of unknown parameters. We assume initially that the semivariogram
is of the form

γ (h; θ) = σ 2[1 − ρ(h; α)] (1)

where θ = (σ 2, α)′, σ 2 is a sill parameter, ρ(·) is a continuous correlation func-
tion, and α is a range parameter. We suppose that one realization of the process
is observed at n sites {si ∈ D : i = 1, . . . , n} yielding observations (Z(s1), . . . ,
Z(sn))′ = Z, and that the inferential objectives are to use these observations to es-
timate σ 2 and α and predict (interpolate) Z at sites where it was not observed. The
interpolation method we consider here is standard empirical best linear unbiased
prediction, in which estimates are “plugged in” for semivariogram parameters in
the expression for the ordinary kriging predictor. It remains to consider how to
estimate the semivariogram parameters.

We motivate the notion of hybrid estimation of these parameters by consid-
ering the behavior of parameter estimates and interpolations in the context of an
infill sampling scheme, in which the spatial domain is fixed and the maximum dis-
tance between any two sampled sites decreases to zero as n gets arbitrarily large.
Within this asymptotic framework, Stein (1988, 1990) showed that two different
semivariograms could, under certain conditions, yield asymptotically equivalent
ordinary kriging interpolations. One important and somewhat surprising implica-
tion of Stein’s results for model (1) is that it is not necessary to estimate σ 2 and
α well individually in order to obtain good interpolations; in fact, in the case of
an exponential semivariogram γ (h; σ 2, α) = σ 2[1 − exp(−h/α)] for example, all
that is required for asymptotically optimal interpolation is consistent estimation
of the sill-to-range ratio τ ≡ σ 2/α. Moreover, Zhang (2004) showed, for the same
model, that consistent estimators of σ 2 and α do not exist, but the ratio τ = σ 2/α

can be consistently estimated. (We remind the reader that the context for these
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consistency results is infill asymptotics.) In particular, if the likelihood function
for this model is denoted by L(σ 2, α; Z) and if we define, for any given value α0

of α,

σ̂ 2
ML|α0

= argmax L(σ 2, α0; Z)

then σ̂ 2
ML|α0

/α0 is a consistent estimator of τ (Zhang, 2004, Theorem 3). It is easily
shown that σ̂ 2

ML|α0
can be expressed in closed form, i.e.,

σ̂ 2
ML|α0

= (1/n)Z′R−1
α0

Z (2)

where Rα0 is the (correlation) matrix with (i, j )th element given by ρ(si − sj ; α0).
In fact, Zhang’s (2004) infill consistency results hold more generally for

random fields with nonzero mean and any correlation function belonging to the
Matérn family,

ρ(h; α) = (h/α)ν

�(ν)2ν−1
Kν(h/α), h ≥ 0

where ν is a known smoothness parameter and Kν is the modified Bessel function
of order ν. For this family, a consistent estimator of σ 2/α2ν is given by Zhang
(2004), who showed that this ratio is more important to interpolation than each
individual parameter. However, the extent to which the results generalize to models
with a correlation function other than Matérn is not yet known. Nevertheless, we
propose the general estimation of σ 2, for a given α0, by a hybrid approach.
Specifically, we propose to estimate σ 2 by an estimator analogous to (2), i.e.

σ̂ 2
ML|α0

= (1/n)(Z − µ̂1)′R−1
α0

(Z − µ̂1)

where µ̂ = (1′R−1
α0

1)−11′R−1
α0

Z and Rα0 is defined as it was above.
It remains to consider how to choose α0. Although this choice of α0 does not

affect the consistency of the aforementioned estimator of τ when the correlation
model is Matérn, and likewise may not affect the estimator’s asymptotic efficiency
[as shown by Ying (1991) for the one-dimensional exponential case], it may
affect the efficiency of the estimator for a finite sample. Therefore, we do not
recommend choosing α0 arbitrarily. Instead, we propose to use the weighted least
squares estimate of α, denoted by α̂WLS . The hybrid estimator of θ is then defined
as θ̂H = (σ̂ 2

H , α̂WLS)′ where σ̂ 2
H = σ̂ 2

ML|α̂WLS
, and the hybrid estimator of τ is

defined as τ̂H = σ̂ 2
H /α̂WLS . Note that due to the closed-form representation of σ̂ 2

H ,
hybrid estimation requires negligible additional effort or computing time beyond
that required to obtain the weighted least squares estimates.
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Hybrid estimation can be extended to models with a nugget effect as follows.
Suppose the semivariogram model is given by

γ (h; θ) = δI{h>0} + σ 2(1 − ρ(h; α)),

where I{h>0} denotes the indicator function which is equal to 1 if h > 0, and 0
otherwise; ρ(h; α) is a nuggetless correlation function defined as in (1); and δ and
σ 2 are the nugget effect and partial sill parameters, respectively. The hybrid esti-
mators for δ, σ 2 and the mean µ are defined as the maximum likelihood estimators
when α is fixed at its weighted least squares estimate. The maximum likelihood
estimates can be obtained iteratively by Fisher scoring (Mardia and Marshall,
1984). Although hybrid estimation in this context requires more computation than
it does for a nuggetless model, the computational burden is still much less than that
required by maximum likelihood estimation of all the parameters in this context.

PERFORMANCE EVALUATION

In order to compare the performance of hybrid semivariogram estimators
to weighted least squares, we carried out a simulation study involving Gaussian
processes with four distinct semivariogram models. The four models were as
follows:

• Exponential model without nugget

γE(h; θ) = σ 2[1 − exp(−h/αE)], h ≥ 0

• Spherical model without nugget

γS(h; θ) =
{

σ 2[1.5
(

h
αS

) − 0.5
(

h
αS

)3
], for 0 ≤ h ≤ αS

σ 2, for h > αS

• Rational quadratic model without nugget

γR(h; θ) = 19σ 2h2/αR

1 + 19h2/αR

, h ≥ 0

• Exponential model with nugget

γEN (h; θ) = δI{h>0} + σ 2[1 − exp(−h/αE)], h ≥ 0
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We note that the square root of αR in the rational quadratic model is the ef-
fective range. In the first three models, four values of range parameter (αE =
0.1, 0.2, 0.3, 0.4; αS = 0.2, 0.4, 0.6, 0.8; and αR = 0.04, 0.16, 0.36, 0.64) were
chosen so as to yield processes with relatively weak to relatively strong spatial
correlation, and in γEN three values of nugget (δ = 0.5, 1.0, 2.0) were considered
so as to result in processes with a representative span of nugget-to-sill ratios.
Without loss of generality, σ 2 was taken to equal 2.0 in all three models. Finally,
αE in γEN (·) was set equal to 0.2.

For the first three models, we considered three sample sizes (n = 100, 225,

400), while for the more computationally demanding fourth model we consid-
ered only n = 100. For each combination of model, sample size, and parameter
value, we obtained 1000 simulated realizations from a zero-mean Gaussian pro-
cess on the unit square at sites forming a square grid. In the case n = 100 the grid
locations were (0.05, 0.15, . . . , 0.95) × (0.05, 0.15, . . . , 0.95); in the case n =
225 the grid locations were (1/16, 2/16, . . . , 15/16) × (1/16, 2/16, · · · , 15/16) ;
and in the case n = 400 the grid locations were (0.025, 0.05, . . . ,

0.975) × (0.025, 0.05, . . . , 0.975). Note that the spacing among grid locations as
the sample size increases conforms to an infill, rather than an increasing domain,
asymptotic framework.

For each simulated dataset, the mean and semivariogram parameters were
estimated by the weighted least squares and maximum likelihood methods, and
hybrid estimators of the sill σ 2, ratio τ = σ 2/α, and nugget δ (for the third model
only) were obtained. Estimation performance was measured by the empirical bias
and mean squared error (MSE) of the estimators over the 1000 simulations. Results
are displayed in Tables 1–4. Because our interest lies mainly in comparing the
performance of hybrid estimation to that of weighted least squares, we give results
only for those parameters whose hybrid and weighted least squares estimators
are distinct. Furthermore, we give results on maximum likelihood estimation for
the first model only, as it is already known (from theoretical considerations) that
maximum likelihood estimation is superior to the other two methods and we
merely want to give some indication of how much better it is.

For the exponential model without nugget (Table 1), the hybrid estimator
of the sill performed slightly better than its weighted least squares counterpart
with respect to bias, but not with respect to MSE. However, the hybrid estimator
of the ratio τ was markedly superior to its weighted least squares counterpart
with respect to both bias and MSE. As expected, the maximum likelihood esti-
mators of sill and ratio performed much better than the weighted least squares
and hybrid estimators across all sample sizes and values of the range param-
eter. For the spherical model without nugget (Table 2), the hybrid estimators
of the sill and ratio had about the same bias as their weighted least squares
counterparts, but smaller mean squared errors. For the rational quadratic model
without nugget (Table 3), the hybrid estimator of the sill was inferior to the
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Table 1. Empirical Bias and MSE of Semivariogram Parameter Estimates for
Exponential Model without Nugget

Bias for sill MSE for sill

n αE WLS Hyb ML WLS Hyb ML

100 0.1 0.04 (0.01) 0.03 (0.01) −0.01 (0.01) 0.21 0.23 0.15
0.2 0.27 (0.04) 0.25 (0.04) 0.01 (0.02) 1.84 1.84 0.44
0.3 0.65 (0.07) 0.58 (0.07) 0.01 (0.03) 5.49 4.98 0.72
0.4 0.97 (0.09) 0.81 (0.08) 0.06 (0.04) 9.01 7.74 1.37

225 0.1 0.04 (0.02) 0.03 (0.02) −0.00 (0.01) 0.24 0.34 0.14
0.2 0.29 (0.04) 0.27 (0.05) 0.02 (0.02) 2.08 2.14 0.45
0.3 0.65 (0.07) 0.59 (0.07) 0.01 (0.03) 5.45 5.50 0.79
0.4 0.97 (0.09) 0.82 (0.09) 0.01 (0.03) 9.24 8.18 1.11

400 0.1 0.03 (0.01) 0.02 (0.02) −0.00 (0.01) 0.18 0.26 0.11
0.2 0.22 (0.04) 0.20 (0.04) 0.01 (0.02) 1.56 1.84 0.34
0.3 0.56 (0.07) 0.51 (0.07) 0.00 (0.03) 4.73 5.08 0.67
0.4 0.47 (0.08) 0.38 (0.08) 0.03 (0.03) 6.15 6.19 1.12

Bias for ratio MSE for ratio

100 0.1 1.26 (0.18) 0.98 (0.17) 0.66 (0.16) 34.8 29.2 26.7
0.2 0.59 (0.08) 0.36 (0.07) 0.18 (0.06) 7.12 4.69 3.31
0.3 0.50 (0.06) 0.24 (0.04) 0.11 (0.04) 3.28 1.80 1.27
0.4 0.47 (0.04) 0.18 (0.03) 0.05 (0.03) 1.92 0.94 0.65

225 0.1 0.95 (0.12) 0.56 (0.09) 0.15 (0.07) 15.8 8.12 5.49
0.2 0.56 (0.06) 0.21 (0.04) 0.07 (0.03) 4.37 1.48 1.09
0.3 0.51 (0.05) 0.15 (0.02) 0.05 (0.02) 2.36 0.63 0.47
0.4 0.49 (0.04) 0.11 (0.02) 0.04 (0.02) 1.58 0.33 0.25

400 0.1 0.78 (0.11) 0.28 (0.06) −0.01 (0.05) 12.6 3.71 2.46
0.2 0.59 (0.07) 0.12 (0.03) 0.00 (0.02) 4.61 0.75 0.54
0.3 0.55 (0.05) 0.08 (0.02) 0.01 (0.02) 2.45 0.31 0.23
0.4 0.50 (0.03) 0.09 (0.01) 0.00 (0.01) 1.47 0.18 0.13

Note. Observed standard errors of biases are given in parentheses.

weighted least squares estimator with respect to both bias and MSE, but vice
versa for the estimators of the ratio. Results for the exponential model with nugget
(Table 4) resembled those for the the exponential model without nugget, in that:
(1) the hybrid estimators of partial sill and nugget had slightly smaller bias than
the corresponding weighted least squares estimators, but neither estimator was
uniformly better with respect to MSE; (2) the hybrid estimator of ratio performed
better than its weighted least squares counterpart with respect to both bias and MSE
(though this relative superiority was not as substantial as it was for the first two
models).

All of these results are consistent with expectation, as there is a theoretical
basis for the superiority of the hybrid estimator of the ratio (at least in the case of
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Table 2. Empirical Bias and MSE of Semivariogram Parameter Estimates for Spherical Model
without Nugget

Bias for sill MSE for sill

n αS WLS Hyb WLS Hyb

100 0.2 −0.08 (0.01) −0.05 (0.01) 0.08 0.13
0.4 −0.05 (0.02) −0.04 (0.02) 0.56 0.43
0.6 0.55 (0.07) 0.40 (0.06) 5.53 3.69
0.8 1.28 (0.11) 0.95 (0.09) 13.25 8.84

225 0.2 −0.10 (0.01) −0.05 (0.01) 0.08 0.10
0.4 0.00 (0.03) 0.02 (0.02) 0.65 0.41
0.6 0.73 (0.08) 0.53 (0.07) 7.52 4.66
0.8 1.30 (0.11) 0.95 (0.09) 14.20 9.07

400 0.2 −0.06 (0.01) 0.01 (0.01) 0.07 0.09
0.4 0.00 (0.02) 0.04 (0.02) 0.59 0.42
0.6 0.46 (0.07) 0.33 (0.06) 4.79 3.20
0.8 1.12 (0.10) 0.84 (0.08) 12.16 7.85

Bias for ratio MSE for ratio

100 0.2 −0.54 (0.04) −0.48 (0.04) 2.04 1.55
0.4 −0.11 (0.03) −0.07 (0.02) 1.06 0.53
0.6 0.04 (0.03) −0.02 (0.02) 0.78 0.24
0.8 0.05 (0.02) −0.02 (0.01) 0.56 0.13

225 0.2 −0.33 (0.04) −0.12 (0.03) 1.35 0.80
0.4 −0.02 (0.03) 0.06 (0.02) 1.02 0.24
0.6 0.06 (0.03) 0.02 (0.01) 0.83 0.10
0.8 0.06 (0.02) 0.01 (0.01) 0.58 0.05

400 0.2 −0.25 (0.03) 0.02 (0.02) 1.00 0.47
0.4 −0.05 (0.03) 0.07 (0.01) 0.84 0.14
0.6 0.06 (0.03) 0.02 (0.01) 0.71 0.06
0.8 0.03 (0.02) 0.00 (0.01) 0.45 0.03

Note. Observed standard errors of biases are given in parentheses.

the exponential model without nugget), but no such basis for a superiority of the
hybrid estimator of the sill.

In addition to estimation performance, the prediction performance corre-
sponding to each estimation method was evaluated by using the parameter esti-
mates to obtain standard plug-in ordinary kriging variances at sites on a fine grid G,
viz. (0.05, 0.0625, 0.075, . . . , 0.50) × (0.05, 0.0625, 0.075, . . . , 0.50) excluding
sampling sites. Note that the prediction sites are all located in the lower-left quad-
rant of the unit square, which is sufficient for our purposes due to isotropy of
the models and quadrilateral symmetry of the grid. Prediction performance was
measured by ARB, the average (over all sites in G) of the estimated relative bias
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Table 3. Empirical Bias and MSE of Semivariogram Parameter Estimates for Rational Quadratic
Model without Nugget

Bias for sill MSE for sill

n αR WLS Hyb WLS Hyb

100 0.04 0.02 (0.01) 0.01 (0.01) 0.11 0.12
0.16 0.03 (0.02) 0.10 (0.03) 0.25 0.72
0.36 0.03 (0.02) 0.27 (0.04) 0.42 1.88
0.64 −0.15 (0.02) −0.16 (0.03) 0.40 0.90

225 0.04 0.01 (0.01) 0.03 (0.01) 0.08 0.12
0.16 −0.05 (0.01) 0.03 (0.02) 0.16 0.46
0.36 −0.25 (0.01) −0.49 (0.02) 0.25 0.62
0.64 −0.37 (0.02) −0.77 (0.02) 0.37 1.02

400 0.04 0.00 (0.01) 0.04 (0.01) 0.06 0.16
0.16 −0.04 (0.01) 0.06 (0.03) 0.15 0.85
0.36 −0.26 (0.01) −0.67 (0.02) 0.23 0.83
0.64 −0.32 (0.02) −0.90 (0.02) 0.35 1.30

Bias for ratio MSE for ratio

100 0.04 49.4 (6.17) 48.7 (6.15) 40435 40192
0.16 2.84 (0.38) 2.70 (0.35) 150.6 130.7
0.36 0.70 (0.07) 0.53 (0.05) 5.21 2.90
0.64 0.46 (0.03) 0.16 (0.02) 1.42 0.48

225 0.04 6.95 (0.71) 6.67 (0.66) 546.4 476.6
0.16 0.49 (0.08) 0.36 (0.04) 7.35 1.45
0.36 0.89 (0.05) −0.37 (0.02) 3.26 0.70
0.64 0.48 (0.03) −0.27 (0.03) 1.06 0.78

400 0.04 3.20 (0.42) 2.98 (0.32) 189.8 112.5
0.16 1.11 (0.10) 0.57 (0.06) 11.26 4.05
0.36 0.95 (0.05) −0.49 (0.04) 3.29 1.88
0.64 0.58 (0.03) −0.29 (0.03) 1.21 1.06

Note. Observed standard errors of biases are given in parentheses.

of the plug-in ordinary kriging variance. More precisely, ARB was computed as

1

|G|n
∑
s∈G

n∑
i=1

[M(s; θ̂(i)) − M(s; θ)]/M(s; θ)

where |G| is the number of sites in G, θ̂ (i) is the estimate of θ for the ith
realization, and M(s; θ) is the ordinary kriging variance at site s corresponding to
parameter value θ . ARB combines a measure of performance of the plug-in kriging
variance as an estimate of the actual variance of the plug-in kriging predictor, with
a measure of performance of the plug-in kriging predictor as an estimate of the
ordinary kriging predictor. This is evident upon noting that for a given site s, the
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Table 4. Empirical Bias and MSE of Semivariogram Parameter Estimates for Exponential Model
with Nugget

Bias for partial sill MSE for partial sill

n δ WLS Hyb WLS Hyb

100 0.5 3.43 (0.27) 3.85 (0.44) 83.2 212
1.0 4.27 (0.29) 3.85 (0.37) 104 149
2.0 6.13 (0.33) 4.20 (0.29) 148 100

Bias for nugget MSE for nugget

100 0.5 −0.01 (0.01) 0.03 (0.01) 0.19 0.16
1.0 −0.15 (0.02) −0.05 (0.02) 0.41 0.36
2.0 −0.35 (0.03) −0.18 (0.03) 1.14 0.99

Bias for ratio MSE for ratio

100 0.5 1.50 (0.25) 0.72 (0.24) 64.3 57.7
1.0 4.16 (0.37) 2.79 (0.35) 157 134
2.0 9.03 (0.68) 6.63 (0.64) 545 449

Note. Observed standard errors of biases are given in parentheses.

average (1/n)
∑n

i=1[M(s; θ̂(i)) − M(s; θ)] is an estimate of

E[M(s; θ̂) − M(s; θ)],

which can be re-expressed (see Stein, 1999, p. 201) as

E[M(s; θ̂) − e(s; θ̂ )2] + E[e(s; θ̂ ) − e(s; θ )]2

where e(s; θ ) is the prediction error of the ordinary kriging predictor.
Table 5 gives values of ARB for the various models. In the main, the results

were similar to the results for estimating the sill-to-range ratio from Tables 1–4.
In particular, prediction performance was usually better for the hybrid estimator
than for the weighted least squares estimator.

Finally, we compare the amounts of time required to compute the weighted
least squares, hybrid, and maximum likelihood estimates for the exponential
model with nugget (Table 6). The computations were carried out on a PC running
Windows XP and having a Pentium 4 processor of CPU 3.00 GHz and 1.00 GB
of RAM. Only results corresponding to a range parameter of 0.4 are displayed in
Table 6, as the range seemed to have no effect on computing time. The results
indicate that the hybrid method required only marginally (3–7%) more time than
weighted least squares, but maximum likelihood estimation was much slower,
taking twice as long when n = 100 and 30 times as long when n = 400 compared
to weighted least squares. Also, as the sample size increased from 100 to 400, the
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Table 5. Predictor Performance Corresponding to Various Semivariogram Parameter Estimation
Methods

ARB (×10−4)

n αE WLS Hyb ML

(a) Exponential model without nugget
100 0.1 105 53 11

0.2 162 74 17
0.3 249 94 22
0.4 350 97 0

225 0.1 149 76 2
0.2 209 68 10
0.3 307 79 18
0.4 401 75 16

400 0.1 134 38 −18
0.2 229 40 −10
0.3 341 42 −7
0.4 431 72 −7

ARB (×10−4)

αS WLS Hyb
(b) Spherical model without nugget

100 0.2 −256 −223
0.4 −153 −89
0.6 −54 −8
0.8 −61 −5

225 0.2 −177 −62
0.4 −70 51
0.6 17 6
0.8 24 0

400 0.2 −131 11
0.4 −85 63
0.6 25 21
0.8 −19 0

ARB (×10−3)

αS WLS Hyb
(c) Rational quadratic model without nugget

100 0.04 −26 −21
0.16 44 41
0.36 94 81
0.64 283 204

225 0.04 25 25
0.16 52 38
0.36 447 264
0.64 878 460

400 0.04 19 18
0.16 153 96
0.36 724 368
0.64 1504 680
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Table 5. Continued

ARB (×10−4)

n αE WLS Hyb

ARB (×10−4)

δ WLS Hyb
(d) Exponential model with nugget
100 0.5 −165 −18

1.0 −362 86
2.0 −398 −18

Note. ARB denotes average relative bias.

average run time for weighted least squares and hybrid estimation increased by
less than 50%, while the run time of maximum likelihood estimation increased by
almost 2000%.

CONCLUSIONS

In this article we have proposed a method for semivariogram estimation,
called hybrid estimation, that combines aspects of weighted least squares and
maximum likelihood estimation. What motivated us to consider this method were
the infill asymptotic results of Zhang (2004) on consistent estimation in geosta-
tistical models, and empirical evidence that these asymptotic results accurately
predict the behavior of estimators obtained from finite samples of moderate size.
In particular, these results imply that for the exponential semivariogram, the hybrid
estimator of the ratio of sill to range parameter is consistent. Our simulation study
of performance indicates that this consistency property, which is shared by the
maximum likelihood estimator but not by the weighted least squares estimator,
confers better finite-sample properties upon the hybrid estimator of the sill-to-
range ratio, and sometimes upon hybrid estimators of other parameters as well,
relative to the corresponding weighted least squares estimators (though neither

Table 6. Average Computing Times (in Seconds) for Various Semivariogram
Estimation Methods, for the Exponential Model Without Nugget

n WLS Hyb ML

100 0.1205 (0.0006) 0.1237 (0.0006) 0.2449 (0.0018)
225 0.1533 (0.0010) 0.1575 (0.0010) 1.2034 (0.0059)
400 0.1737 (0.0009) 0.1834 (0.0010) 5.1295 (0.0245)

Note. Observed standard errors of computing times are given in parentheses.
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performs as well as the maximum likelihood estimators). Moreover, the same con-
sistency property appears to also confer much better finite-sample properties upon
plug-in predictors using hybrid estimates when compared to plug-in predictors
using weighted least squares estimates. Finally, our investigation suggests that
the relative superiority of hybrid estimation to weighted least squares estimation
for the sill-to-range ratio and for plug-in prediction extends to models with semi-
variograms other than the exponential, including some for which no analogous
consistency results are yet known.

Although maximum likelihood estimation has better theoretical properties
than weighted least squares estimation and has therefore been the recommended
method for semivariogram estimation provided the data set is not so large as
to make it computationally infeasible, it is presently not supported by much of
the menu-based geostatistical software available to geo-scientists. Consequently,
many such scientists estimate semivariograms using weighted least squares, which
is supported by widely available software. Because hybrid estimation appears to
outperform weighted least squares estimation for some models and parameters
and seems to always yield substantially better plug-in predictors than weighted
least squares estimation, yet requires negligible additional computing effort, we
recommend that it supplement, if not replace, weighted least squares as the es-
timation method of choice among those geostatistical practitioners who do not
use maximum likelihood. Accordingly, we suggest that software that currently
estimates the semivariogram by weighted least squares methods be amended to
include hybrid estimation as an option.
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