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It is shown that in model-based geostatistics, not all parameters in the Matérn class can be estimated consistently if data are observed in an
increasing density in a � xed domain, regardless of the estimation methods used. Nevertheless, one quantity can be estimated consistently by
the maximum likelihood method, and this quantity is more important to spatial interpolation. The results are established by using the proper-
ties of equivalence and orthogonality of probability measures. Some suf� cient conditions are provided for both Gaussian and non-Gaussian
equivalent measures, and necessary conditions are provided for Gaussian equivalent measures. Two simulation studies are presented that
show that the � xed-domain asymptotic properties can explain some � nite-sample behavior of both interpolation and estimation when the
sample size is moderately large.
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1. INTRODUCTION

Geostatistics is a � eld of statistics concerned with spatial
variation in a continuous spatial region. It has its origins in
problems connected with estimation of ore reserves in mining
(Krige 1951) and has found applications in many other areas,
including hydrology, agriculture, natural resource evaluation,
and environmental sciences. (See Cressie 1993 and Chilés and
Del� ner 1999 for an introduction to geostatistics.) In many
geostatistical problems, interpolation is the ultimate objective.
A class of linear interpolationmethods commonly called “krig-
ing” has been developed. Stein (1999) has provided a rigorous
account of the mathematical theory underlying linear kriging.
However, in many applications, interpolations are made when
spatial counts are observed. Gotway and Stroup (1997), Diggle,
Tawn, and Moyeed (1998), and Zhang (2002) provided real
examples of interpolation given spatial counts. These spatial
counts are generally related to binomial sample sizes or lengths
of time during which the counts are collected. Although this
information should be incorporated into prediction, linear pre-
diction generally cannot do this. Diggle et al. (1998) considered
model-basedgeostatistics that use explicit parametric stochastic
models and likelihood-based inferences. This approach effec-
tively incorporates sample sizes into the binomial models, for
example, and allows for calculation of minimum mean squared
error (MMSE) prediction.

In model-basedgeostatistics, spatial generalized linearmixed
models (GLMM’s) are used to model both Gaussian and
non-Gaussian variables, such as spatial counts. Although dis-
tributional assumptions are not needed for linear interpo-
lation, it becomes possible to study asymptotic properties
of estimation under distributional assumptions, and these as-
ymptotic properties are useful for explaining � nite-sample
behaviors of estimators and interpolators. For example, for
a one-dimensionalGaussian process with an exponentialcovar-
iogram ¾ 2 exp.¡®h/, Ying (1991) pointed out that neither of
the two parameters ¾ 2 or ® can be estimated consistently given
that the process is observed in the unit interval, but showed that
the maximum likelihoodestimator (MLE) of the product ¾ 2® is
strongly consistent under the in� ll asymptotics. Using equiva-
lence of Gaussian measures as a tool, Stein (1990, thm. 3.1)
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showed that an incorrect covariogram that is compatible with
the correct covariogram yields asymptotically optimal interpo-
lation relative to the predictions based on the correct covari-
ogram. Because two exponential covariograms are compatible
if they have the same product ¾ 2®, this product matters more
to interpolation than do the individual parameters.

There are two distinct asymptotics in spatial statistics: in-
creasing domain asymptotics, where more data are collected
by increasing the domain, and � xed-domain or in� ll asymptot-
ics, where more data are collected by sampling more densely
in a � xed domain. Asymptotic properties of estimators are
quite different under the two asymptotics. For example, both
the variance ¾ 2 and the scale parameter ® in the exponential
covariogram can be estimated consistently under the increas-
ing domain asymptotics (Mardia and Marshall 1984), whereas
such consistent estimators do not exist under in� ll asymptotics.
Which asymptotics to use, or even whether any asymptotics is
valuable to a given problem may be disputable, because only
a � nite number of spatial locations are encountered. Here we
adopt Stein’s position that we use asymptotics not because we
actually plan to take more and more observations by increas-
ing the domain or sampling more densely in a � xed-domain,
but rather because we hope that the asymptotic results obtained
will be useful for the speci� c problem at hand (Stein 1999,
sec. 3.3, p. 62). Simulation studies can reveal how appropriate
the asymptotic results are in a speci� c � nite-sample setting. All
asymptotic statements in this article are restricted to the � xed-
domain asymptotics.

We consider a wide class of covariance functions, the Matérn
class, that has received more attention in recent years because of
its capacity to model the variogram’s behavior near the origin.
It consists of exponential variograms as a special case. Un-
like other popular covariograms, such as exponential,powered-
exponential, or spherical covariograms, the Matérn class has
a parameter that controls the smoothness of the process. For
this reason, Stein (1999) strongly recommended using the
Matérn class to model spatial correlations.The Matérn class has
also been used by Handcock and Stein (1993), Handcock and
Wallis (1994), Williams, Santner, and Notz (2000), and Diggle,
Ribeiro, and Christensen (2002).
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I show in this article that in model-based geostatistics with
Gaussian or non-Gaussian observations, one cannot correctly
distinguish between two Matérn covariograms with probabil-
ity 1 no matter how many sample data are observed in a � xed
region. Consequently, not all covariogram parameters are con-
sistently estimable. This might suggest that the covariogram
may very well be incorrectly estimated, and explains why esti-
mates of covariograms usually have large variations. However,
as I show later, an incorrect covariogram may (but does not
always) yield asymptotically equal predictions in model-based
geostatistics. I also study the quantity that is more important to
interplolation than any individual parameters, and establish the
strong consistency of the MLE of this quantity. My results may
also partially explain the dif� culties in likelihood estimation of
covariogram parameters reported in the literature (e.g., Warnes
and Ripley 1987; Mardia and Watkins 1989; Diggle et al. 1998;
Zhang 2002), and the ineffectiveness of cross-validatinga vari-
ogram in model-based geostatistics (Zhang 2003).

The rest of the article is organized as follows. Section 2 re-
views the Matérn class and the stochastic models in model-
based geostatistics. Section 3 contains main theoretical results,
showing that two Matérn variograms may de� ne two equivalent
probability measures. It also provides a new result about or-
thogonal Gaussian measures, from which I establish the strong
consistency of the MLE of a quantity that is important to inter-
polation. Section 4 provides two simulation studies that show
how well the � xed-domain asymptotic results apply to � nite-
sample cases. The � nal section provides a discussion and open
problems for future research.

2. MODEL–BASED GEOSTATISTICS AND
THE MATÉRN CLASS

In model-based geostatistics, spatial GLMM’s are used to
provide a uni� ed approach to modeling Gaussian and non-
Gaussian data. For example, the following spatial GLMM has
been used to model spatial counts (see, e.g., Diggle et al. 1998;
Heagerty and Lele 1998; Zhang 2002, 2003; Christensen and
Waagepetersen 2002; Diggle et al. 2002; Zhang and Wang
2002):

1. Let fb.s/; s 2 Rdg be a second-order stationary Gaussian
process with mean 0 such that b.s/ represents the local
variation at site s.

2. Conditional on fb.s/; s 2 Rdg, the random variables
fY .s/; s 2 Rd g are mutually independent, and for any s,
Y .s/ follows a generalized linear model with a distribu-
tion speci� ed by the value of the conditionalmean ¹.s/ D
E.Y .s/jb.s//: For some link function g, g.¹.s// D ¯ C
b.s/ C

Pp
iD1 xi.s/¯i , where xi.s/ is the value of the ith

explanatoryvariable at location s, i D 1; : : : ;p.

Note that this model excludes Gaussian models by requir-
ing that the distribution of Y .s/ given b.s/ depends only
on E.Y .s/jb.s//: It can be extended to include the following
Gaussian model with measurement error:

Y .s/ D ¹ C ².s/ C b.s/;

where ².s/ is an iid Gaussian process with mean 0, b.s/ is a
stationary Gaussian process with mean 0, and the two processes
are mutually independent.

For simpli� cation, I consider the spatial GLMM with no ex-
planatory variables. This is a particularly interesting case for
interpolations because no covariates need to be observed for
interpolation. The distribution of the Gaussian process b.s/ is
determined solely by its covariance function, or covariogram,
that is often assumed to have a parametric form and depends
on some vector of parameters µ . The model parameters are
then ¯ and µ . Given observations of Y .s/ at sampling loca-
tions s1; : : : ; sn , model parameters can be estimated using max-
imum likelihood (ML) techniques (Zhang 2002) or a Bayesian
approach (Diggle et al. 1998). Using the estimates as the true
values, the plug-in MMSE prediction of Y .s/ at an unsampled
location is EfY .s/jY .si/; i D 1; : : : ; ng, where the expectation
is evaluated under the estimates of parameters.

The covariogram of the Gaussian process b.s/ and the pa-
rameter ¯ completely determine the probability distribution of
the process Y .s/ in the spatial GLMM. One of the important
classes of isotropic covariograms is the Matérn class, de� ned
as

K.xI ¾ 2;®; º/ D
¾ 2.®x/º

0.º/2º¡1 Kº.®x/; x ¸ 0; (1)

where ¾ 2, ® > 0, and º > 0 are parameters and Kº is the
modi� ed Bessel function of order º. (See Abramowitz and
Stegun 1967, pp. 375–376, for the de� nition and properties of
the modi� ed Bessel function.) Because Kº.x/xº ! 2º¡10.º/

as x ! 0, K.0/ D ¾ 2 is the variance of the process. When
º D 1=2, the Matérn covariogram becomes the exponentialone,
K.x/ D ¾ 2 exp.¡®x/. Hereafter, I call º the smoothness para-
meter and call ® the scale parameter.

A process having the Matérn covariogram (1) is [º]¡1 times
mean square differentiable, where [º] is the largest integer less
than or equal to º . Other classes of covariograms do not have
such a parameter to yield a preferred mean square differentia-
bility.

When a stationary process is isotropic, the isotropic spec-
tral density is often used instead of the second-order spectral
density. Recall that the second-order spectral density f ¤.¸/ of
an isotropic process depends only on the module of ¸, and the
function f .j¸j/ D f ¤.¸/ is called the isotropic spectral den-
sity. For the Matérn covariogram (1) in Rd , the corresponding
isotropic spectral density is (see, e.g., Stein 1990, pp. 48–49)

f .u/ D
¾ 2®2º

¼d=2.®2 C u2/ºCd=2
; u ¸ 0: (2)

This functional form of the spectral density is used in the proof
of Theorem 2 in the next section.

3. EQUIVALENCE OF PROBABILITY MEASURES AND
MAIN RESULTS

I � rst review the concept of equivalence of probability mea-
sures and its applicationsto statistical references. Recall that for
two probabilitymeasures Pi , i D 1; 2, de� ned on the same mea-
surable space .Ä; F/, P1 is said to be absolutely continuous
with respect to P2, denoted by P1 ¿ P2 , if P1.A/ D 0 for any
A 2 F such that P2.A/ D 0. P1 and P2 are equivalent, denoted
by P1 ´ P2, if P1 ¿ P2 and P2 ¿ P1. If P1 ´ P2 on F and F is
the ¾ -algebra generated by a stochastic process Y .s/, s 2 T for
any set T , then Pi ; i D 1; 2, are said to be equivalent on the
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paths of Y .s/, s 2 T . Obviously, if two measures are equiva-
lent on F , then they must be also equivalent on any ¾ -algebra
F0 ½ F .

The equivalence of probability measures has two major
applications to statistical references. First, if P1 ´ P2, then
P1 cannot be correctly distinguished from P2 with P1-probabi-
lity 1 regardless of what is observed. Moreover, if fPµ ; µ 2 2g
is a family of equivalent measures and Oµn; n ¸ 1 is a sequence
of estimators, then, irrespective of what is observed, Oµn cannot
be weakly consistent estimators of µ for all µ 2 2. Otherwise,
for any � xed µ 2 2 there exists a strongly consistent subse-
quence fµnk

; k ¸ 1g—that is, Pµ . Oµnk
! µ; k ! 1/ D 1 (see,

e.g., Dudley 1989, thm. 9.2.1, p. 226). For any µ 0 2 2 such
that µ 0 6D µ , it follows from the equivalence of the two mea-
sures Pµ and Pµ 0 that Pµ 0. Oµnk

! µ; k ! 1/ D 1. On the other
hand, the weak consistency of the subsequence fµnk

; k ¸ 1g
under the probability measure Pµ 0 implies the existence of a
sub-subsequence that converges to µ 0 with Pµ 0 -probability 1.
This sub-subsequence converges to two different values under
the same measure Pµ 0 . This apparent contradiction shows that
Oµn cannot be weakly consistent.

The second application is on prediction. Its theoretical foun-
dation is the theorem of Blackwell and Dubins (1962). I now
rephrase the theorem to make it directly applicable to model-
based geostatistics:
Let Yi , i ¸ 1, be random variables on a measurable space .Ä;F / and Pi ,
i D 1; 2, be two probability measures on F such that P1 ¿ P2 constrained on
¾.Yi ; i ¸ 1/, the ¾ -algebra generated by Yi , i ¸ 1. Then with P1-probability 1,

sup
­­P1.AjY1; : : : ;Yn/ ¡ P2.AjY1; : : : ;Yn/

­­! 0 as n ! 1;

where the supremum is taken over all A 2 ¾.Yi ; i > n/. In particular,

sup
i>n;B

­­P1.Yi 2 BjY1; : : : ;Yn/ ¡ P2.Yi 2 BjY1; : : : ;Yn/
­­! 0 as n ! 1:

(3)

This says that given Y1; : : : ; Yn , predictions for Yi; i > n, under
both measures tend to agree as n ! 1: Note that constrained
on ¾.Yi ; i ¸ 1/, the probability measures are predictive, as de-
� ned by Blackwell and Dubins (1962), and therefore their main
theorem applies.

The concept of equivalence of measures is more complex
than the de� nition might suggest, particularly when an in� -
nite stochastic sequence is involved. Apparently, any two non-
singular Gaussian measures in a � nite-dimensional Euclidian
space are equivalent. However, they may be orthogonal in an
in� nite space. For example, if Y1;Y2; : : : are iid N.0; ¾ 2

i / un-
der Pi , i D 1; 2, with ¾ 2

1 6D ¾ 2
2 , then on the paths of the in� nite

sequence Yi; n ¸ 1, the two measures are orthogonal, because
if

A D

(

.1=n/

nX

iD1

Y 2
i ! ¾ 2

1 as n ! 1

)

;

then P1.A/ D 1 and P2.A/ D 0 by the law of large numbers.
For a correlated process, comprehending the equivalence of
probability measures becomes less intuitive. Consider, for ex-
ample, a stationary isotropic Gaussian random process Y .s/,
s 2 Rd , with mean 0 and an isotropic covariogram K.h/ D
¾ 2

i exp.¡h=µi/; h > 0, under measures Pi , i D 1; 2. Then
P1 ´ P2 on the paths of fY .s/; s 2 T g for any bounded sub-
set T of Rd if ¾ 2

1 =µ1 D ¾ 2
2 =µ2 (see, e.g., Stein 1999, p. 120, for

d D 1 and Stein 2004, thm. A.1, for d > 1). If T is � nite and
bounded,then ¾ 2

1 =µ1 6D ¾ 2
2 =µ2 implies that the two measures are

orthogonal, as implied by Theorem 2. Hence this ratio can be

well estimated given suf� cient data from a bounded region, as
seen from Theorem 3.

I now state the main theorem on the equivalence of proba-
bility measures de� ned through the spatial GLMM. For con-
venience, I assume that both fb.s/; s 2 T g and fY .s/; s 2 T g
are de� ned on some probability space .Ä; F/ and that P¯;µ is
a probability measure indexed by the parameters ¯ and µ ,
where µ D .¾ 2;®; º/ consists of the covariogram parameters,
such that under each P¯;µ , fb.s/; s 2 T g is a mean-0 Gaussian
process with a Matérn covariogram (1) with the parameter µ ,
and fY .s/; s 2 T g are independent conditional on fb.s/; s 2 T g,
and the conditionaldistributionof Y .s/ dependsonly on the pa-
rameter ¯ and not on µ . Note that the construction of the prob-
ability measures includes the spatial GLMM and the Gaussian
model with measurement error.

Theorem 1. Let T be a bounded subset of Rd for some in-
teger d > 0, and the processes fY .s/; s 2 T g, fb.s/; s 2 T g and
the measure P¯;µ be the same as previously de� ned. For any
¯ , µ 1, and µ 2 , P¯;µ1 ´ P¯;µ2 on the paths of Y .s/, s 2 T ,
if P¯;µ1 ´ P¯;µ2 on the paths of b.s/; s 2 T .

Proofs of this theorem and other theorems in this section are
given in the Appendix.

Because P¯;µ depends only on µ when restricted to ¾.b.s/,
s 2 T /, we see from the theorem that if two covariogramsde� ne
two equivalent Gaussian measures on b.s/, s 2 T , then the in-
duced measures on Y .s/, s 2 T , are equivalent for any � xed ¯ .
Suf� cient conditions exist for equivalent Gaussian measures
that are expressed in terms of the second-order spectral den-
sities (see Gihman and Skorohod 1974, thm. 3, p. 509, and
Ibragimov and Rozanov 1978, thm. 17, chap. III, for d D 1 and
Yadrenko 1983, p. 156, and Stein 1999, p. 120, for d > 1). Stein
(2004, thm. A1) provided the following suf� cient conditionsfor
equivalenceof two Gaussian measures, which are easy to verify
for the Matérn class:
Let Pi ; i D 1;2, be two probability measures such that under Pi , the process
X.s/; s 2 Rd , is stationary Gaussian with mean 0 and a second-order spectral
density fi .v/;v 2 Rd . If, for some ® > 0, f ¤

1 .v/jvj® is bounded away from
0 and 1 as jvj ! 1, and for some � nite c,

Z

jvj>c

»
f ¤

2 .v/ ¡ f ¤
1 .v/

f ¤
1 .v/

¼ 2

dv < 1; (4)

then P1 ´ P2 on the paths of X.s/, s 2 T , for any bounded subset T ½ Rd .

Condition (4) can be expressed in terms of the isotropic spec-
tral densities fi.u/, i D 1; 2:

Z 1

c

ud¡1
»

f2.u/ ¡ f1.u/

f1.u/

¼ 2

du < 1: (5)

Theorem 2. Let Pi , i D 1; 2, be two probability measures
such that under Pi , the process X.s/, s 2 Rd , is stationary
Gaussian with mean 0 and an isotropic Matérn covariogram
in Rd with a variance ¾ 2

i , a scale parameter ®i , i D 1; 2, and
the same smoothness parameter º , where d D 1; 2 or 3. For any
bounded in� nite set T ½ Rd , P1 ´ P2 on the paths of X.s/,
s 2 T if and only if ¾ 2

1 ®2º
1 D ¾ 2

2 ®2º
2 .

An immediate corollary is that the following exponential co-
variograms are equivalent: Ki.x/ D ’®¡1

i exp.¡®ix/, i D 1;2,
where ’ > 0 is a constant. Theorem 2 has several applications.
I � rst state the following obvious corollaries about parameter
estimation and prediction.
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Corollary 1. Let Y .s/, s 2 T , follow the spatial GLMM
with the random effects having a Matérn covariogram, where
T is a bounded subset of Rd . Also let Dn , n ¸ 1, be an
increasing sequence of subsets of T . Given observations of
Y.s/ for s 2 Dn, there do not exist estimators ¾ 2

n and ®n that
are weakly consistent—that is, for any ¯ and µ D .¾ 2;®; º/,
P¯;µ .j¾ 2

n ¡ ¾ 2j > ²/ ! 0 or P¯;µ.j®n ¡ ®j > ²/ ! 0, n ! 1,
for any ² > 0.

Handcock and Wallis (1994) recommended an alternative
reparameterization of the Matérn covariogram (1) by letting
½ D 2º1=2=®. Clearly, ½ cannot be estimated consistently. In
fact, any parameterization cannot make all parameters consis-
tently estimable, although it is possible that reparameterizing
could enable consistent estimation of one of the new parame-
ters. For example, write c D ¾ 2®2º , and reparameterize by us-
ing c and ®. This c can be estimated consistently by Theorem 3.
However, ® still cannot be estimated consistently.Otherwise, if
both c and ® can be estimated consistently, then ¾ 2 D c®¡2º

can be estimated consistently.

Corollary 2. Let Y .s/, s 2 T , follow the spatial GLMM
with the random effects having a Matérn covariogram. Write
µ i D .¾ 2

i ; ®i ; º/ for some º > 0; ¾ 2
i > 0, and ®i > 0; i D 1; 2,

such that ¾ 2
1 ®2º

1 D ¾ 2
2 ®2º

2 . Let si ; i D 1; 2; : : : , be locations in a
bounded domain T . Then for any ¯ ,

sup
­­P¯;µ1

¡
AjY .s1/; : : : ; Y .sn/

¢

¡ P¯;µ2 .AjY .s1/; : : : ; Y .sn//
­­! 0 as n ! 1; (6)

where the supremum is taken over all A 2 ¾.Y .si/; i > n/.

This corollary implies that given Y .s1/; : : : ; Y .sn/, the distri-
butions of Y .snCk/ for any k > 0 are asymptotically equal un-
der equivalent measures. When Y .snCk/ takes a � nite number
of values like the binomial variables, then, for any function Á ,

sup
k

­­E¯;µ1 fÁ.Y .snCk //jYg

¡ E¯;µ2 fÁ.Y .snCk//jYg
­­! 0 as n ! 1: (7)

It is often of interest to predict a function of b.s/ at a site s such
as p.s/ D exp.¯ C b.s//=.1 C exp.¯ C b.s/// for the logistic
model. It has been shown that if Ã.b.s// D EfÁ.Y .s//jb.s/g for
some function Á, then EfÁ.Y .s//jYg D EfÃ.b.s//jYg (Zhang
2003). Therefore, predictions of such a function Ã.b.s// will
be asymptoticallyequal under two equivalentmeasures. p.s/ is
clearly such a function, because p.s/ D EfY .s/=n.s/jb.s/g
if Y .s/ follows the spatial GLMM with the logit link function
and n.s/ is the binomial sample size. For a logistic model, in
many situations predicting p.s/ is more interesting than pre-
dicting other functions of b.s/. In the second simulation study
in the next section, I argue heuristically that prediction vari-
ances of p.s/ are also asymptotically equal under two equiva-
lent measures.

Several authors have commented on the usefulness of cross-
validatinga � tted variogram (Davis 1987; Cressie 1993, p. 104;
Stein 1999, sec. 6.9). In general, it is considered a method
of model checking to prevent blunders and to highlight po-
tentially troublesome prediction points; it is not a foolproof
method for detecting problems with the � tted spatial model.
From Corollary 2, cross-validation clearly cannot effectively

detect an incorrect covariogram if the incorrect covariogram
de� nes a measure equivalent to the one de� ned by the correct
covariogram.

Corollary 2 states that an incorrect covariogram may yield
similar interpolation results as the correct covariogram, pro-
vided that a suf� ciently large number of locations are observed
in a � xed domain. This is true only when the two covari-
ograms de� ne equivalent probability measures, however. For
the Matérn class, this equivalence translates into the property
that the two covariogramshave the same quantity¾ 2®2º . Hence
it is this product and not the individual parameters that matters
more to interpolation.Next, I show that for a Gaussian process
with a Matérn covariogram (1) with a known º, the quantity
¾ 2®2º can be estimated consistently. For an exponential covar-
iogram (i.e., ® D 1=2), Ying (1991) considered strong consis-
tency of this quantity in one-dimensional space.

Theorem 3. Let the underlying process fX.s/; s 2 Rdg,
d D 1; 2, or 3, be second order stationary Gaussian with mean 0
and possess an isotropic Matérn covariogram (1) with the
unknown parameter values ¾ 2

0 ;®0 and a known º . Let Dn ,
n D 1;2; : : : , be an increasing sequence of � nite subsets of Rd

such that
S1

nD1 Dn is bounded and in� nite, and Ln.¾ 2;®/ be
the likelihood function when the process is observed at loca-
tions in Dn . For any � xed ®1 > 0, let O¾ 2

n maximize Ln.¾ 2; ®1/.
Then O¾ 2

n ®2º
1 ! ¾ 2

0 ®2º
0 , with P0 probability 1, where P0 is the

Gaussian measure de� ned by the Matérn covariogram corre-
sponding to parameter values ¾ 2

0 ;®0 , and º.

4. NUMERICAL RESULTS

Asymptotic results are meant to help for inferences from � -
nite samples. The applicability of asymptotic results to a � nite-
sample case in spatial statistics is complicated by the fact that
there are two distinct asymptotics and the results are quite dif-
ferent under the two asymptotics, as mentioned earlier. Hence
it is interesting to see which asymptotics, if any, is helpful in
� nite-sample cases. The simulation studies given in this section
are done for this purpose, with an emphasis on examining the
� xed-domainasymptotics. In particular, I intend to discover the
practical implicationsof the consistent and inconsistent estima-
tion discussed in the previous section. I use ML estimation in
the simulation because asymptotic properties of ML estimation
are available under both asymptotics.

Example 1. I simulate a Gaussian process on some sampling
locations with mean 0 and an exponential covariogram

K0.x/ D ¾ 2
0 exp.¡x=µ0/; x ¸ 0;

where ¾ 2
0 > 0 and µ0 > 0 are known values. In the simula-

tions, ¾0 is � xed at 1 and µ0 takes values .1, .2, and .3. I show
later that to use different values for ¾ 2

0 is not necessary. For
each set of the parameters, I simulate 1,000 independent real-
izations of the Gaussian process with mean 0 and the exponen-
tial covariogram at each of the three sets of locations. Set 1
comprises .i=10; j=10/; i; j D 0;1; : : : ;10, and four more lo-
cations .x;y/; x; y D :05; :15; set 2 has 221 locations and is the
union of set 1 and f.:05 C :1i; :05 C :1j/; i; j D 0; : : : ; 9g; set 3
contains 289 locations, as shown in Figure 1, including all of
the locations of set 2 and 68 additional locations. I let the true
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Figure 1. Sampling Locations in the Simulations (±) and Predicted
Locations (¢ ¢ ¢ ¢).

µ value and sample size vary, so that it can be seen how the es-
timates of different parameters change accordingly. It is a gen-
eral belief that including some closely spaced locations leads
to more ef� cient estimation of covariogram parameters (Stein
1999, p. 197). This is the reason why I included some closely
spaced locations in sets 1 and 3.

For each dataset, I � t the following exponential covariogram
by the ML method,

K.hI ¾ 2; µ/ D ¾ 2 exp.¡h=µ/; h ¸ 0: (8)

The loglikelihoodis, apart from an additive constant,

L.¾ 2; µ / D ¡.1=2/ logfdet.V .¾ 2; µ //g ¡ .1=2/X0V ¡1.¾ 2; µ/X;

where X is the vector of simulated normal variables and
V ¡1.¾ 2; µ / is the inverse of V .¾ 2; µ/, the covariance matrix
of X corresponding to parameters ¾ 2 and µ .

I have mentioned that two orthogonalGaussian measures can
be distinguished correctly with probability 1 given an in� nite
sample, whereas two equivalent Gaussian measures cannot be.

This property should be re� ected in the behavior of the likeli-
hood function for a large � nite sample. For this purpose, Fig-
ure 2 plots the loglikelihoodfunction L.¾2; µ/ along ¾ 2=µ D c,
where c D 5 and 2 and µ ranges from .05 to 1. It also plots
L.¾2; µ / for ¾ 2 � xed at 1 and µ ranging from .05 to 1. The data
are the � rst � ve simulations corresponding to sample size 289
and µ D :2. When ¾ 2 is � xed, the log-likelihood L.1; µ / has a
unique maximum around the true value, and decreases or in-
creases sharply on either side of the maximum. Different be-
havior of L.¾ 2; µ / is observed along the the curve ¾ 2=µ D c,
where it is quite � at on the right side of the maximum. This dif-
ference can be attributed to the difference between equivalence
and orthogonality of probability measures, because different
µ values de� ne orthogonalGaussian measures when ¾ 2 is � xed,
whereas these different values de� ne equivalentGaussian mea-
sures along the curve ¾ 2=µ D c. This does help explain some
numerical results observed by others. For example, Warnes and
Ripley (1987) described long and very � at ridges of the like-
lihood function, but did not relate them to the equivalence of
probabilitymeasures. Other authors also have pointed out prob-
lems with � nding the global maximum of the likelihood of spa-
tial data (e.g., Ripley 1988; and Mardia and Watkins 1989).
However, none associated the dif� culties with the equivalence
of probability measures.

Next, I found the MLE’s for ¾ 2; µ , and ¾ 2=µ . I � rst used the
Fisher-scoring method as used by Mardia and Marshall (1984)
and Zimmerman and Zimmerman (1991), but found that the al-
gorithm converged very slowly and occasionally failed to con-
verge. I then used the pro� le likelihoodfunction, which for µ is
de� ned as

PL.µ/ D sup
¾

L.¾ 2; µ/

D ¡.n=2/ log
¡
X00.µ/¡1X=n

¢

¡ .1=2/ log.j0.µ/j/ ¡ n=2;

where 0.µ/ is the correlation matrix of X corresponding to µ

and 0¡1.µ/ is the inverse of 0.µ/. (The correlation matrix

(a) (b)

Figure 2. Log-Likelihood Function L(¾ 2, µ ) (a) on the Set ¾ 2 =µ D c for c D 5 ( —— dataset 1; ::::::::: dataset 2; :-:-:-:- dataset 3;– – – dataset 4;
-:::-::: dataset 5) and c D 2 (—– dataset 1; :::::: dataset 2; :-:-:-: dataset 3; – – - dataset 4;-: -: dataset 5) and (b) When ¾ 2 Is Fixed at 1 ( —— dataset 1;
::::::::: dataset 2; :-:-:-:- dataset 3; – – – dataset 4; -:::-::: dataset 5).
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depends only on µ .) Maximizing PL.µ/ through the Newton–
Raphson algorithm yields the MLE Oµn . The MLE for ¾ 2 is
O¾ 2
n D .1=n/X00¡1. Oµn/X. Nonconvergence never occurred for

this algorithm.
We note that if Y D cX for some constant c > 0 (so that the

two correlation matrices are the same but the variances differ),
the two log pro� le likelihood functions for µ differ only by an
additive constant. The estimators for µ are the same, and the
estimator of variance of Y is c2 times the estimate of variance
of X. For this reason, I � xed ¾0 at 1 in the simulations.

Histograms of the estimates for µ and ¾ 2 and the ratio ¾ 2=µ

are shown in Figures 3, 4, and 5. Each � gure comprises nine his-
tograms of the estimates corresponding to nine different com-
binationsof the sample size n and µ0 . Figures 3 and 4 show that
increasing the sample size from n D 125 does not result in a
signi� cant decrease in the variance of the estimates of µ or ¾ 2

and/or improvement of symmetry of the distributions of these
estimators, especially when the spatial correlation is stronger.
In contrast, Figure 5 shows that the distribution of the estima-
tor for the ratio ¾ 2=µ becomes more symmetric with a smaller
variance as the sample size increases, particularlywhen the spa-
tial correlation is stronger. This difference in a sense supports
the � xed-domain asymptotic results; the MLE’s for µ and ¾ 2

are not consistent and hence cannot be asymptotically normal,
whereas the MLE for the ratio is consistent. This consistency
likely indicates that the variance of the estimator will vanish
as the sample size increases, and that the estimator may be as-
ymptoticallynormal, althoughthe asymptoticdistribution is not
given in this article.

Tables 1–3 summarize, for each sample size and µ0 value, the
estimates of µ , ¾ 2, and the ratio ¾ 2=µ by listing the percentiles,
biases, and sample standard deviations. These tables provide a
better way to show how the variances are in� uenced by sample
size. Overall, the MLE’s for all parameters have negligible bi-
ases. Zimmerman and Zimmerman (1991) noted some negative
biases of the estimates for ¾ 2, but they used sample sizes of
16 and 36, much smaller than the ones in this work.

A larger value of µ corresponds to a stronger spatial cor-
relation of data. When µ D :1, the correlation coef� cient de-
creases to about .05 at the lag distance .3, and therefore this
case presents a very weak spatial correlation. Estimators in this
case have more symmetric distributions than the corresponding
ones in the cases of stronger spatial correlations. However, the
sample size still does not in� uence the variances of the estima-
tors for µ and ¾ 2 as much as it does those for the ratio.

The practical implication of these estimation results is that
sampling more data in a � xed domain may not improve esti-
mates of the parameters µ and ¾ 2 as much as the estimates
of the ratio ¾ 2=µ . Indeed, a sample size of 125 seems large
enough to yield reasonably good estimates for µ and ¾ 2 , and
a larger sample may result in only minor improvements to the
estimation of these two parameters. Sampling more from a � xed
domain seem to be always helpful for estimating the ratio, as
evidenced in the biases and standard deviations in Table 3.

I now obtain interpolations using three different exponen-
tial covariograms that correspond to .¾ 2; µ/ D(1, .2), (2, .4),
and (1.8, .4). The � rst set represents true parameter values,
and the second set de� nes an equivalent Gaussian measure to

Figure 3. Histograms of Estimates of µ for Different Sample Sizes, 125 (top row), 221 (center row), and 289 (bottom row), and Different True
µ Values, .1 (left column), .2 (center column), and .3 (right column).
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Figure 4. Histograms of Estimates of ¾ 2 for Different Sample Sizes, 125 (top row), 221 (center row), and 289 (bottom row), and Different True
µ Values: .1 (left column), .2 (center column), and .3 (right column).

Figure 5. Histograms of Estimates of ¾ 2=µ for Different Sample Sizes, 125 (top row), 221 (center row), and 289 (bottom row), and Different
True µ Values, .1 (left column), .2 (center column), and .3 (right column).
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Table 1. Summary of Estimates of µ : Percentiles, Means, and Sample
Standard Deviations (SD)

µ0 n 5% 25% 50% 75% 95% BIAS SD

.1 125 .06298 .08156 .09877 .11548 .14671 .00062 .02507
221 .06977 .08524 .09825 .11129 .14146 .00024 .02139
289 .07272 .08712 .09870 .11113 .13253 .00001 .01868

.2 125 .11474 .15234 .18856 .23343 .32772 ¡.00029 .06629
221 .12134 .15464 .18908 .23315 .31632 .00138 .06459
289 .12293 .15651 .18881 .22819 .31050 ¡.00132 .05848

.3 125 .1465 .2077 .2820 .3744 .5651 .0072 .1334
221 .1500 .2170 .2707 .3612 .5859 .0048 .1335
289 .1569 .2167 .2815 .3589 .5371 .0041 .1212

the � rst set on the paths of X.s/; s 2 [0; 1]2. The third set de-
� nes an orthogonalGaussian measure to the � rst two. The data
are the � rst simulation corresponding to n D 289 and µ D :2.
Figure 6 plots the empirical semivariogram, as well as the
three semivariograms used for interpolation. Figure 7 shows
the interpolated values and prediction variances for 31 loca-
tions .:387; :1 C :01n/, n D 0; : : : ; 30, under the three distinct
covariograms .¾ 2; µ/ D .1; :2/, .¾ 2; µ / D .2; :4/ and .¾ 2; µ/ D
.1:8; :4/. The � rst two covariograms yielded very similar pre-
dicted values and prediction variances, but the third covari-
ogram yielded different prediction variances, although it also
produced similar predicted values. It is striking that the third
covariogram graphically does not deviate from the � rst covari-
ogram as much as the second covariogram (see Fig. 6), and yet
it yields much more different interpolation results. Therefore,
when interpolation is the objective of study, the ratio ¾ 2=µ mat-
ters more than each individual parameter.

Figure 7 can be explainedusing the � xed-domainasymptotic
properties of interpolation discussed in the previous section,
though the sample size is � nite. To further check whether the
asymptotic results are applicable to a less denser lattice, I used
the sample data on a subset of the 289 locations, .i=11; j=11/,
i; j D 0; 1; : : : ; 10, to predict for the same 31 locations. Fig-
ure 8 plots the predicted values and prediction variances. With
this smaller sample, the same conclusions are reached. I also
used data from another subset of 221 locations, set 2, to predict
for the sample locations, and again reached similar conclusions.

I repeated the interpolation for 14 other datasets and reached
the same conclusions each time. Although 15 samples is not a
large number, I believe that � xed-domain asymptotics is appro-
priate in geostatistics when interpolation is concerned. More-
over, this is the only theory that can explain the interpolation
results seen repeatedly in the simulation study.

Table 2. Summary of Estimates of ¾ 2: Percentiles, Means, and
Sample Standard Deviations (SD)

µ0 n 5% 25% 50% 75% 95% BIAS SD

.1 125 .7577 .8742 .9736 1.1006 1.3041 ¡.0003 .1765
221 .7682 .8881 .9827 1.0999 1.2939 .0018 .1684
289 .7702 .8930 .9812 1.0857 1.2730 ¡.0015 .1594

.2 125 .6369 .7951 .9514 1.1365 1.5021 ¡.0040 .2812
221 .6371 .7994 .9525 1.1552 1.5092 .0017 .2865
289 .6474 .7891 .9583 1.1364 1.4773 ¡.0093 .2687

.3 125 .5307 .7217 .9364 1.2178 1.7158 .0138 .3990
221 .5400 .7263 .9326 1.1676 1.8371 .0134 .4138
289 .5379 .7379 .9334 1.1762 1.8380 .0120 .3930

Table 3. Summary of Estimates of ¾ 2 =µ : Percentiles, Means, and
Sample Standard Deviations (SD)

µ0 n 5% 25% 50% 75% 95% BIAS SD

.1 125 7.443 8.931 10.078 11.357 13.887 .274 1.953
221 8.259 9.277 10.107 10.900 12.304 .151 1.231
289 8.5363 9.430 10.011 10.659 11.739 .077 .9747

.2 125 3.9332 4.5871 5.0616 5.5932 6.5001 .1204 .7849
221 4.2139 4.6723 5.0092 5.4116 5.9900 .0481 .5421
289 4.3105 4.7247 5.0197 5.3242 5.8517 .0364 .4554

.3 125 2.6568 3.0724 3.3434 3.6836 4.2379 .0581 .4922
221 2.8443 3.1330 3.3562 3.6024 4.0092 .0430 .3456
289 2.9028 3.1601 3.3525 3.5434 3.8600 .0233 .2875

Example 2. Let fb.s/; s 2 R2g be a mean-0 Gaussian station-
ary process with an isotropic covariogram K0.h/ D
exp.¡h=:2/. Conditional on fb.s/; s 2 R2g, fY .s/; s 2 R2g is
a set of binomial variables so that Y .s/ has a binomial prob-
ability p.s/ D exp.¡2 C b.s//=.1 C exp.¡2 C b.s/// and size
n.s/. I simulate b.s/ and Y .s/ on the same 289 locations as
in set 3 in the previous example. The sample size n.s/ at each
of these 289 locations is � xed at 10. I use these data to pre-
dict p.s/ for the same 31 locations used in the previous exam-
ple. I calculate the predicted values and prediction variances
by � xing ¯ D ¡2 and assuming three different “� tted” expo-
nential covariograms, K.hI ¾ 2; µ / D ¾ 2 exp.¡h=µ/, h ¸ 0, for
.¾ 2; µ / D .1; :2/; .2; :4/, and .1:8; :4/, to show explicitly how
an incorrect covariogram affects interpolation.

The MMSE prediction and prediction variance can be com-
puted using a Markov chain Monte Carlo (MCMC) approach,
as done by in Diggle et al. (1998) and Zhang (2003). In par-
ticular, Zhang (2003) showed that combining partial analytic
results with the MCMC approach can signi� cantly reduce the
necessary run length for a satisfactory convergence.Here I fol-
low the approach of Zhang (2003). For any function Ã of b.s/,
by theorem 1 of Zhang (2003),

EfÃ.b.s//jYg D E
£
EfÃ.b.s//jbgjY

¤
;

where b D .b1; : : : ; b289/ and Y D .Y1; : : : ; Y289/ denote the
random effects and the observed binomial variables at the sam-
pling locations. Because the process fb.s/g is Gaussian, the

Figure 6. Plots of the Empirical Semivariogram ( ¥) and Three
Exponential Semivariograms: (¾ 2, µ ) D (1, .2) (—–), (2, .4) (M), and
(1.8, .4) (±).
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(a) (b)

Figure 7. Comparison of Interpolation Results [(a) predicted values;
(b) prediction variance] Under Three Exponential Covariograms Using
Data on 289 Locations [ —–, (¾ 2 , µ ) D (1, .2); M,(2, .4); ±,(1.8, .4)].

conditional expectation EfÃ.b.s//jbg for any function Ã is
of the form

R
f .t/ exp.¡t2/ dt , which can be fairly easily ap-

proximated to any given precision (Crouch and Spiegelman
1990) if it cannot be computed in closed form. The Metropolis–
Hastings algorithm can be easily implemented to generate a
Markov chain b.m/;m ¸ 1, with the stationary distribution
being the conditional distribution of b given Y. Therefore,
E[EfÃ.b.s//jbg jY] can be approximated by the average of
EfÃ.b.s//jb.m/g, m D 1; : : : ; M . Here I adopt the Metropolis–
Hastings algorithm of Zhang (2002) and choose M D 2,000.
I graphicallychecked the convergenceby plottingpredictedval-
ues versus the run length M , and M D 2,000 showed a satisfac-
tory convergence.

Figure 9 plots the predicted values and prediction variances
for each of the 31 locations under the three sets of parameters.
The plots show that predictions corresponding to the � rst two
covariograms are nearly identical. Although the predicted val-
ues under the third covariogram are close to those under the

(a) (b)

Figure 8. Comparison of Interpolation Results [(a) predicted values;
(b) prediction variance] for 31 Locations Under Three Exponential Co-
variograms Using Data at 121 Locations: (i=10, j=10): i, j D 0, : : : , 10
[ —–, (¾ 2 , µ ) D (1, .2); M, (2, .4); ±, (1.8, .4)].

(a) (b)

Figure 9. Comparisons of (a) Prediction Values and (b) Prediction
Variances at 31 Locations Using Three Different Exponential Covari-
ograms K(x) D ¾ 2exp(¡x=µ ) [ —–, (¾ 2, µ ) D (1, .2); M, (2, .4); ±, (1.8, .4)].

other two covariograms, prediction variances are quite differ-
ent. These results are interpretable under the � xed-domain as-
ymptotics.

It is known that at an unsampled location s, Efp.s/jYg D
EfY .s/=n.s/jYg, and hence (7) implies that predictions of p.s/
under two equivalent measures are similar. It can be argued
heuristically that the prediction variances for p.s/ under two
equivalentmeasures are similar as well. The assumptions in the
model imply that for any prediction site s, Efp2.s/jYg does not
depend on n.s/. Choosing n.s/ D 2 and predicting the probabil-
ity that Y .s/ D 1, the best prediction is

Pr
¡
Y.s/ D 1jY

¢
D E

¡
PrfY .s/ D 1jb.s/gjY

¢

D 2E
¡
p.s/

¡
1 ¡ p.s/

¢
jY

¢
:

This probability will be asymptotically the same under two
equivalent measures, and, because the same statement applies
to E.p.s/jY/, so will E.p2.s/jY/, and therefore var.p.s/jY/.

5. SUMMARY AND DISCUSSION

In this article I have used properties of equivalence of prob-
ability measures to show that not all parameters in a spatial
GLMM are consistently estimable, but one quantity can be es-
timated consistently by the ML method under the � xed-domain
asymptotics. This quantity is more important to interpolation
than individual parameters. I also showed the impact of equiv-
alent probability measures on interpolation under the � xed-
domain asymptotics.

I ran simulation studies to discover the practical implications
of the theoretical results. The simulation results show that the
MLE for the ratio ¾ 2=µ in an exponentialvariogram has a more
symmetric distribution with a smaller variance when more data
are sampled in a � xed and bounded region. However, less no-
ticeable is the improved estimation for the parameters µ and ¾ 2

achieved by sampling more data, particularly when the spatial
correlation is not too weak. The MLE’s have negligible biases
for all parameters when the sample size is large. This does not
contradict the inconsistency of the estimators for ¾ 2 and µ ,
however, because the variancesof these estimators may not van-
ish when the sample size increases to in� nity.
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Note that the results in this article were established under
speci� c statisticalmodels—spatial GLMM’s. For non-Gaussian
data like counts data, some marginal models have been pro-
posed that use only the � rst two moments for interpolation,and
use generalized estimating equations for parameter estimation
(see, e.g., Albert and McShane 1995; Gotway and Stroup 1997;
McShane, Albert, and Palmatier 1997). Because the marginal
models do not fully specify the probability distribution of the
process, studing the equivalence of probability measures under
these models is dif� cult. Althoughgeneralized estimating equa-
tion (GEE) estimators for marginal models have been shown to
be consistent and asymptotically normal for longitudinal data
under some regularity conditions, their properties under spa-
tial dependence remain to be established. A key difference be-
tween spatial data and longitudinaldata is that for longitudinal
data, those from different subjects are independent. This inde-
pendence is important in establishing the asymptotic properties
of GEE estimation and is no longer true for spatial data.

Gotway and Stroup (1997) developed a generalized linear
model approach to spatial prediction given spatial discrete or
categorical data, in which only the � rst two moments are used
to construct a linear prediction.This prediction differs from the
classical kriging prediction, such as indicator kriging, in that
the mean structure is estimated nonlinearly. Although the gen-
eral results of Stein (1990, thm. 3.1; 1999, thm. 8, chap. 4)
on asymptotic optimality of linear predictions under an incor-
rect covariogram are still applicable in principle, some speci� c
details—such as veri� cation of the equivalence of correspond-
ing Gaussian measures in this case—remain to be worked out
for the speci� c problem at hand.

Also note that this work is focused on the Matérn class.
Other covariance functions are often used in practice, such as
the spherical covariogram and the powered-exponentialmodel.
Unlike the Matérn class, spectral densities corresponding to
those covariograms do not have a closed form, and there are
no results on the equivalence of Gaussian measures induced
by these covariograms. If Theorem 2 can be established, for
example, for the spherical covariogram K.hI ¾ 2; µ / D ¾ 2.1 ¡
1:5.h=µ/ C :5.h=µ/3/Â0·h<µ such that two such covariograms
de� ne equivalent Gaussian measures of the same mean if and
only if both have the same ratio ¾ 2=µ , then the results in this
article, including Theorem 3, are all extendable to the spherical
covariogram.

Some open problems remain for future research. It is known
that Gaussian measures on a separable Hilbert space are either
equivalent or orthogonal. It is not known, however, whether
the similar statement applies to measures on the paths of Y .s/,
s 2 T for a bounded T , where Y .s/ follows a non-Gaussian
spatial GLMM. By Theorem 1, the equivalence of Gaussian
measures on b.s/ implies the equivalence of measures on Y .s/
in the spatial GLMM for any ¯ . It is not yet known what the
measures on Y .s/ would be (i.e., orthogonal,equivalent, or nei-
ther orthogonal nor equivalent) were the two measures on b.s/
orthogonal. If the orthogonality of measures on b.s/ implies
the orthogonalityof measures on Y .s/, then Theorem 3 may be
extendable to the non-Gaussian case. The prediction results in
Example 2 seem to suggest that probability measures on Y .s/
cannot be equivalent if the measures on b.s/ are orthogonal.

Theorem 3 was established under a known mean, although
in reality the mean may need to be estimated. It will be a more

dif� cult problem to establish Theorem 3 when the mean is un-
known and must be estimated. A key technique in my proof
is using the concavity of the log-likelihood function. When
the mean is estimated, the likelihood function is a multivari-
ate function, and the concavity may not be true or may be
hard to establish. The restricted ML estimation avoids esti-
mation of the mean, making it dif� cult to apply the martin-
gale convergence theorem that is essential in my proof. Ying
(1991, thm. 3) established strong consistency and asymptotic
normality of the MLE for ¾ 2=µ for a one-dimensionalGaussian
process with an unknownmean and an exponentialcovariogram
exp.¡h=µ/;h > 0. The proof explicitly uses the directional na-
ture of one-dimensional space and is dif� cult to extend to high
dimensions. Another interesting problem is to establish the as-
ymptotic normality of the consistent estimator, as was done by
Ying (1991) in high-dimensional space for the Matérn class.
This problem remains open even for the exponential covari-
ogram in high dimensions.

Corollary 2 implies that given observations of Y , the condi-
tional distributions of Y .s/ under two equivalent measures are
asymptoticallyequal. It will be interesting to learn wheather the
conditionaldistributionsof b.s/ given Y are also asymptotically
equal under two equivalentmeasures, because it is of interest to
predict a function of the random effects b.s/. It also will be in-
teresting to see wheather (7) holds with a general function of
Y .snCk/ or b.snCk/.

This article emphasizes the interpolation aspect of spatial
GLMM. Although in many situations the ultimate goal is in-
terpolation, the underlying problem in other situations may be
estimating the linear coef� cients to � nd signi� cant explanatory
variables. Indeed, an important application of spatial GLMM is
on disease mapping, where a major objective is to � nd those
signi� cant variables that affect disease rate. The covariogram
may impact estimation of the linear coef� cients. This is clearly
seen in a spatial linear model. However, Stein (1990) showed
that using � xed but incorrect values of linear coef� cients yields
asymptotically optimal linear predictors (see also comments of
Stein 1999, in the last paragraph of sec. 4.3). It will be interest-
ing to investigate whether analogous results hold for nonlinear
predictors in a non-Gaussian GLMM.

APPENDIX: PROOFS

This appendix provides some technical details and proofs of the
main results in Section 2.

Proof of Theorem 1

Let Fy and Fb denote the ¾ -algebras generated by Y .s/, s 2 T , and
b.s/; s 2 T , and let Ei denote the expectation with respect to P¯;µi

,
i D 1;2. Then for any A 2 Fy , P¯;µ2

.A/ D E2fE2. AjFb/g, where

A is the indicator function. Conditional on Fb , fY .s/; s 2 T g has
the same distribution under both measures. Hence E2. AjFb/ D
E1. AjFb/: Consequently,

P¯;µ2
.A/ D E2fE1. AjFb/g:

Constrained on Fb , the two measures are equivalent. Let ½ denote the
Radon–Nikodym derivative of P¯;µ2 constrained on Fb with respect
to P¯;µ1

constrainedon Fb . Then ½ is necessarily Fb measurable, and
for any Fb-measurable function g,

E2.g/ D E1.½g/:
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Taking g D E1. AjFb/,

E2fE1. AjFb/g D E1f½E1. AjFb/g

D E1fE1.½ AjFb/g D E1.½ A/:

I have shown that E2. A/ D E1.½ A/. Because ½ is integrable, it
follows that E1. A/ D 0 implies E2. A/ D 0. Therefore, on Fy ,
P¯;µ2

¿ P¯;µ1
: Similarly, it can be shown that P¯;µ1

¿ P¯;µ2
on Fy .

The theorem is proved.

Proof of Theorem 2

First, assume that ¾ 2
1 ®2º

1 D ¾ 2
2 ®2º

2 . For i D 1;2, the isotropic spec-

tral density corresponding to K.xI ¾ 2
i ;®i ; º/ is, by (2), fi.u/ D

¾ 2
i ®2º

i ¼¡d=2.®i C u2/¡º¡d=2. Obviously, f1.u/u2ºCd is bounded
away from 0 and 1 as u ! 1. To prove the equivalence of the two
measures, I need only show that (5) is satis� ed.

If ¾ 2
1 ®2º

1 D ¾ 2
2 ®2º

2 , then by (2),
­­­­
f2.u/ ¡ f1.u/

f1.u/

­­­­D
­­­­
.®2

1 C u2/ºCd=2

.®2
2 C u2/ºCd=2

¡ 1

­­­­

·
­­.®2

1 C u2/ºCd=2 ¡ .®2
2 C u2/ºCd=2­­=u2ºCd

·
­­¡.®1=u/2 C 1

¢ºCd=2 ¡
¡
.®2=u/2 C 1

¢ºCd=2­­:

Note that

.x C 1/® D 1 C ®x C O.x2/; x ! 0:

Then, as u ! 1,
­­¡.®1=u/2 C 1

¢ºCd=2 ¡
¡
.®2=u/2 C 1

¢ºCd=2­­

· .º C d=2/j®2
1 ¡ ®2

2 ju¡2 C O.u¡4/:

The integral in (5) is � nite for d D 1;2;3. Therefore, the two measures
are equivalent.

If ¾ 2
1 ®2º

1 6D ¾ 2
2 ®2º

2 , let ¾ 2
0 D ¾ 2

2 .®2=®1/2º . Then ¾ 2
0 ®2º

1 D ¾ 2
2 ®2º

2 ,

and the two Matérn covariograms K.xI¾ 2
0 ;®1; º/ and K.xI¾ 2

2 ;®2; º/

de� ne two equivalent measures. I just need to show that K.xI
¾ 2

0 ;®1; º/ and K.xI¾ 2
1 ;®1; º/ de� ne two orthogonal Gaussian mea-

sures. It is helpful to note that the two covariograms de� ne the same
correlogram and differ only in variance. I can show in general that
any such covariograms de� ne two orthogonal Gaussian measures. Let
Pi be the Gaussian measure for X.s/, s 2 T , with mean 0 and covari-
ance function K.¢I¾ 2

i ;®1; º/, i D 0;1.
Let Ãj , j ¸ 1, be an orthonormal basis of the Hilbert space gener-

ated by X.s/, s 2 T , with the inner product

h»; ´i D
Z

»´ dP0:

Each Ãj can be chosen to be a linear combination of X.sj;k/; k D
1; : : : ; nj , for some nj > 0 and sj;k 2 T , k D 1; : : : ; nj . The existence
of such a basis follows from the continuity of the covariance function.
By lemma 1 of Ibragimovand Rozanov (1978, p. 72), the two measures
Pi , i D 0;1, are equivalent on X.s/, s 2 T , if and only if they are
equivalent on Ãj , j ¸ 1.

Because K.xI¾ 2
1 ;®1; º/ D .¾ 2

1 =¾ 2
0 /K.xI¾ 2

0 ; ®1; º/ for any s and t,

E1
¡
X.s/X.t/

¢
D .¾ 2

1 =¾ 2
0 /E0

¡
X.s/X.t/

¢
:

This equation also holds for any linear combinations of X.s/; s 2 T . It
follows that

E1.Ãj Ãk/ D .¾ 2
1 =¾ 2

0 /E0.ÃkÃk/ D .¾ 2
1 =¾ 2

0 /±jk :

Then
1X

i;kD1

¡
E1.ÃjÃk/ ¡ E0.Ãj Ãk/

¢2 D 1:

It follows that the two measures are not equivalent on Ãj ; j ¸ 1 (Stein
1990, thm. 7, p. 129), and hence must be orthogonal, because the two
Gaussian measures are either equivalent or orthogonal. The proof is
completed.

Proof of Corollary 1

If there exist weakly consistent estimators ¾ 2
k such that for any ¯

and µ D .¾ 2; ®; º/, then ¾ 2
k converges to ¾ 2 in probabilityunder P¯;µ .

Then, by a well-known fact (see, e.g., Dudley 1989, thm. 9.2.1, p. 226),
there is an almost-surely convergent subsequence ¾ 2

kj
such that

P¯;µ

³
lim

j !1
¾ 2

kj
D ¾ 2

´
D 1: (A.1)

Let µ 0 D .22º¾ 2;®=2; º/. Then the two measures P¯;µ and P¯;µ 0 are
equivalent by Theorem 2, and, consequently, (A.1) implies that

P¯;µ 0

³
lim

j!1
¾ 2

kj
D ¾ 2

´
D 1:

On the other hand, the weak consistencyof ¾ 2
k under P¯;µ 0 implies that

for any almost-surelyconvergent subsequence, the limit equals 22º¾ 2.
This contradictionshows that consistentestimators for ¾ 2 do not exist.
Similarly, consistent estimators for ® do not exist.

Corollary 2 directly follows from Theorem 2 and the theorem of
Blackwell and Dubins (1962).

Proof of Theorem 3

Write µ D ¾ ¡2 and denote by Pµ the Gaussian measure on
the paths of X.s/, s 2 D, corresponding to Matérn covariogram
K.¢Iµ¡1;®1; º/ and mean 0. Let fn;µ be the probability density func-
tion of X.s/, s 2 Dn under the probability measure Pµ and write
µ¤ D ¾ ¡2

0 .®1=®0/2º . It is well known that for any µ , the Radon–

Nikodym derivative ½n.µ/ D fn;µ =fn;µ¤ D dP
Dn
µ =dP

Dn
µ¤ converges

with Pµ¤ -probability 1, and the limit equals the density of the ab-
solutely continuous component of measure Pµ with respect to mea-

sure Pµ¤ , where P
Dn
µ denotes the measure of Pµ restricted on ¾ .X.s/,

s 2 Dn/ (see, e.g., Gihman and Skorohod 1974, thm. 1, p. 442). In par-
ticular, if Pµ and Pµ¤ are orthogonal, then ½n.µ/ ! 0. By Theorem 2,
the two measures Pµ and Pµ¤ are orthogonal if µ 6D µ¤ . Hence, with
Pµ ¤ -probability 1,

lim
n!1

log½n.µ/ D
»

¡1 if µ 6D µ¤

1 if µ D µ¤ .

The theoremholds if ¾
¡2
n ! µ¤ with P0-probability1. Because Pµ¤ ´

P0 , where P0 is de� ned in the theorem, I need only show ¾
¡2
n ! µ¤

with Pµ¤ -probability 1. To this end, it suf� ces to show that for any
² > 0, with Pµ ¤ -probability 1 there exists an integer N such that for
n > N and jµ ¡ µ¤j > ² ,

log½n.µ/ D logfn;µ ¡ logfn;µ¤ · ¡1: (A.2)

First note that for any n, the log-likelihood function Ln.µ/ D logfn;µ

is concave. Indeed, the covariance function of the variables X.s/,
s 2 Dn , can be written as .1=µ/0n , where the matrix 0n does not de-
pend on µ . It is clear that

Ln.µ/ D .1=2/.n log µ ¡ µX0
0

¡1
n X/ C Rn;

where Rn does not depend on µ . Obviously, @2Ln=@µ2 D ¡2nµ¡2,
and the function Ln is strictly concave for each n.

For any ² > 0, let µ1 D µ¤ ¡ ² and µ2 D µ¤ C ² . Because ½n.µi / !
¡1, i D 1;2, there exists an integer N such that for all n > N ,
log.½n.µi// · ¡1, i D 1; 2. In view of this and log.½n.µ ¤// D 0 for
any n, the concavity implies that (A.2) holds for all n > N . Indeed, if
there exist an n > N and a µ > µ2 such that (A.2) is not true, then

log.½n.µ// > log.½n.µ2// and log.½n.µ¤// D 0 > log.½n.µ2//;
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which is impossible, because µ¤ < µ2 < µ and the concavity im-
plies that log.½n.µ2// cannot be smaller than both log.½n.µ// and
log.½n.µ¤//. This contradiction shows that (A.2) must be true
for µ > µ2 . Similarly, it must be true for µ < µ1. The proof of the
theorem follows.

[Received July 2002. Revised September 2003.]
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