
Simulation is an important tool for research. Through simulation studies, we
can evaluation a statistical method and enhance our understanding of statistical
inferences. In this note, I will show you some basics of simulation study and
assign to homework problems at the end.

1 Simulation of spatial data

Assume we simulate normal data. What we do is essentially to simulate from
the multivariate normal distribution. The function mvrnorm in the MASS library
can sample from a multivariate normal distribution. When the sample size is
less than 6,000, you can performance such simulations in most of PCs.

cov.matern=function(x, nu = 2, alpha = 1, vars=1)

{
if(nu == 0.5)

return(vars*exp( - x * alpha))

ismatrix <- is.matrix(x)

if(ismatrix){nr=nrow(x); nl=ncol(x)}
x <- c(alpha * x)

output <- rep(1, length(x))

n <- sum(x > 0)

if(n > 0) {
x1 <- x[x > 0]

output[x > 0] <-

(1/((2^(nu - 1)) * gamma(nu))) * (x1^nu) * besselK(x1, nu)

}
if(ismatrix){

output <- matrix(output, nr, nl)

}
vars*output

}
locs=cbind(rep(0:20, 21)/20, rep(0:20, each=21)/20)

V=cov.matern(as.matrix(dist(locs)),nu=1/2, alpha=7*sqrt(3))

set.seed(20)

z=mvrnorm(mu=rep(0, 21^2), Sigma=V)

z=matrix(z, ncol=21)

persp(x=(0:20)/21, y=(0:20)/21, z, theta=45, phi=35, r=5, expand=0.6, axes=T,

ticktype="detailed", xlab="x", ylab="y", zlab="z")

filled.contour(x=0:20, y=0:20, z, color.palette=gray.colors)

V=cov.matern(as.matrix(dist(locs)),nu=2, alpha=7*sqrt(3))

set.seed(20)

z=mvrnorm(mu=rep(0, 21^2), Sigma=V)

z=matrix(z, ncol=21)
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Figure 1: Simulated surface with Matern ν = 1/2

persp(x=(0:20)/21, y=(0:20)/21, z, theta=45, phi=35, r=5, expand=0.6, axes=T,

ticktype="detailed", xlab="x", ylab="y", zlab="z")

filled.contour(x=0:20, y=0:20, z, color.palette=gray.colors)

V=cov.matern(as.matrix(dist(locs)),nu=10, alpha=7*sqrt(3))

set.seed(20)

z=mvrnorm(mu=rep(0, 21^2), Sigma=V)

z=matrix(z, ncol=21)

persp(x=(0:20)/21, y=(0:20)/21, z, theta=45, phi=35, r=5, expand=0.6, axes=T,

ticktype="detailed", xlab="x", ylab="y", zlab="z")

filled.contour(x=0:20, y=0:20, z, color.palette=gray.colors)

2 Repeated Simulation and Estimation

Often we need to repeatedly simulate independent copies of random variables.
In this situation, we need to store the results in each simulation.

Example 1. We know from the Central Limit Theorem (CLT) that the
sample mean X̄n = (1/n)

∑n
i=1Xi is appropriately normal when n is large.

However, the CLT does not tell us how large n should be in order for X̄n to be
close to normal. We will use simulation to find out the sampling distribution of
X̄n when X1, . . . , Xn are i.i.d. U[0,1].

n=20 #n is the sample size

N=200 # N is the simulation size

result=mat.or.vec(N, 1)
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Figure 2: Simulated surface with Matern ν = 2
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Figure 3: Simulated surface with Matern ν = 10
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i=0

repeat{
i=i+1

if(i>N) break

result[i]=mean(runif(n))

}
qqnorm(result)
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Example 2. We now use simulation to find out the sampling distribution
of X̄n when X1, . . . , Xn are i.i.d. U[0,1].

n=20 #n is the sample size

N=200 # N is the simulation size

result=mat.or.vec(N, 1)

i=0

repeat{
i=i+1

if(i>N) break

result[i]=mean(rexp(n, 1))

}
qqnorm(result)

We see that n = 20 is not sufficiently large. We now incease it to 40

n=40 #n is the sample size

N=200 # N is the simulation size

result=mat.or.vec(N, 1)

i=0

repeat{
i=i+1

if(i>N) break

result[i]=mean(rexp(n,1))
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Figure 4: QQ plot of sample means given i.i.d sample from Exp(1) distribution
with sample size n = 20.

}
qqnorm(result)

3 Project

This project is due March 27.

1. You will run some simulations to replicate the results in Zhang (2004) by
following the following steps.

(a) Define the 221 sampling locations where your simulated data are
observed: (i/10, j/10), i, j = 0, 1, · · · , 10 and {(0.05 + 0.1i, 0.05 +
0.1j), i, j = 0, · · · , 9}. You should put these 221 locations into a
221× 2 matrix and name it, say, locs.

(b) Use the exponential covariogram K0(x) = σ2
0 exp(−x/θ0), x ≥ 0,

where σ2
0 = 1 and θ0 = 0.2 to calculate the covariance matrix V of

the 221 random variables at the sampling locations.

(c) Use the function mvrnorm in the R library MASS to generate 221
normal random variables at the 221 locations corresponding to the
covariance matrix V (assume the mean is known to be 0).

(d) Use the simulated data and the covariogram K0 to calculate the
simple kriging prediction at 31 locations (0.387, 0.1 + 0.01n), n =
0, · · · , 30. Record the predicted values and the prediction variances.

(e) Now repeat (2d) twice by using the covariogramsK1(x) = 2 exp(−x/0.4)
and K2 = 1.8 exp(−x/0.4). Record the predicted values and the pre-
diction variances for each covariogram.
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Figure 5: QQ plot of sample means given i.i.d sample from Exp(1) distribution
with sample size n = 40.

(f) Plot the 3 sets of predicted value against the prediction locations in
one plot.

(g) Plot the 3 sets of prediction variance against the prediction locations
in one plot.

(h) What can you conclude from the plots? Can you give any theoretical
justification?

2. In this simulation study, you will investigate the effects of tapering on the
prediction.

(a) Define the 221 sampling locations where your simulated data are
observed: (i/10, j/10), i, j = 0, 1, · · · , 10 and {(0.05 + 0.1i, 0.05 +
0.1j), i, j = 0, · · · , 9}. You should put these 221 locations into a
221× 2 matrix and name it, say, locs.

(b) Use the exponential covariogram K0(x) = σ2
0 exp(−x/θ0), x ≥ 0,

where σ2
0 = 1 and θ0 = 0.2 to calculate the covariance matrix V of

the 221 random variables at the sampling locations.

(c) Use the function mvrnorm in the R library MASS to generate 221
normal random variables at the 221 locations corresponding to the
covariance matrix V (assume the mean is known to be 0).

(d) Use the simulated data and the covariogram K0 to calculate the
simple kriging prediction at 31 locations (0.387, 0.1 + 0.01n), n =
0, · · · , 30. Record the predicted values and the prediction variances.

(e) Now repeat (2d) twice by using the covariograms

K1(h) = 2 exp(−h/0.4)(1−h/0.2)6+(1+6(h/0.2)+(35/3)(h/0.2)2), h ≥ 0
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and

K2(h) = 2 exp(−h/0.4)(1−h/0.3)6+(1+6(h/0.3)+(35/3)(h/0.3)2), h ≥ 0.

where a+ denotes max(0, a) for any number a. Record the predicted
values and the prediction variances for each covariogram.

(f) Plot the 3 sets of predicted value against the prediction locations in
one plot.

(g) Plot the 3 sets of prediction variance against the prediction locations
in one plot.

(h) What can you conclude from the plots?
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