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Abstract Moso bamboo extensively distributes in

southeast and south Asia, and plays an important role

in global carbon budget. However, its spatial distri-

bution and heterogeneity are poorly understood. This

research uses geostatistics theory to examine the

spatial heterogeneity of aboveground biomass (AGB)

of moso bamboo, and uses a point kriging interpo-

lation method to estimate and map its spatial

distribution. Results showed that (1) spatial hetero-

geneity and spatial pattern of moso bamboo’s AGB

can be revealed by an exponential semivariance

model. The analysis of the model structure indicating

that the AGB spatial heterogeneity is mainly com-

posed of spatial autocorrelation components, and

spatial autocorrelation range is from 360 to

41,220 m; (2) kriging standard deviation map show-

ing the level of the model errors indicates that the

AGB spatial distribution by point kriging interpola-

tion method is reliable; (3) the average AGB of moso

bamboo in Anji County is 44.228 Mg hm-2, and

carbon density is 20.297 Mg C hm-2. The total AGB

of moso bamboo accounts for 16.97% of the total

forest-stand biomass in Zhejiang province. The total

carbon storage of moso bamboo in China is

68.3993 Tg C, accounting for 1.6286% of the total

forest carbon storage. This implies the important

contribution of moso bamboo in regional or national

carbon budget.
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Introduction

Forests in the terrestrial ecosystem, accounting for

86% of total vegetation carbon pool, play an important

role in carbon budget. Forest biomass has regarded as a

key factor in carbon cycles of forest ecosystem, which

affects carbon emission through forest harvest, burn-

ing, growth, and expansion. Research related to forest

carbon and its function has obtained increasingly

attention in the past decades (Woodwell et al. 1978;

Liu et al. 2000; Fang and Chen 2001; Li et al. 2004;

Zhou et al. 2006a). As a special forest type in

subtropical regions of china, bamboo has huge

biomass and carbon storage and its ecological function

plays an important role in global carbon sink (Li et al.

2003; Li et al. 2004; Zhou and Jiang 2004). Among the
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bamboo species, moso bamboo forest accounts for the

maximum proportion. For example, the total moso

bamboo area in China is 3.37 9 106 hm2, accounting

for 70% of total bamboo forest in the world. In

Zhejiang province of China, moso bamboo accounts

for 9.8% of total forest area (Zhou et al. 2006b). It is

imperative to understand the roles and impacts of

forest biomass on carbon cycles from local to national

and global levels (Lu 2006; Sun et al. 2006; Blackard

et al. 2008) and to better understand the dynamic

change of sources and sinks of atmospheric carbon.

Biomass, in general, includes the above ground

biomass and below ground living mass. Because of

the difficulty in collecting field data of belowground

biomass, most previous researches relevant to bio-

mass estimation focused on above ground biomass

(AGB) (Lu 2006). Three major biomass estimation

methods, including field measurement-based, GIS-

based, and remote sensing-based techniques, were

reviewed and some potential techniques to improve

AGB estimation performance were discussed (Lu

2006). The advantages of remote sensing techniques

over traditional methods make remote sensing-based

methods become a major tool for AGB estimation at

local and regional scales (Tiwari and Singh 1984;

Tiwari 1994; Roy and Ravan 1996; Harrell et al.

1997; De Jong et al. 2003; Nelson et al. 2000; Lu

2005; Blackard et al. 2008). On the other hand,

process-based ecosystem models or biogeochemical

models are also used to estimate biomass, which

remote sensing data provided important input param-

eters such as land use/cover distribution, leaf area

index, and fraction absorbed photosynthetic active

radiation (Qin et al. 2002).

An alternative for AGB estimation is to use

geostatistics. It provides an effective way to facilitate

quantification of the spatial variation and spatial

interpolation (Wang 1999) and widely applies to

analyze spatial heterogeneity of forest and soil

distributions and to assess landscape pattern (Wang

et al. 1998; Li et al. 2000; Wu 2000; Han and Wang

2002; David et al. 2004). Spatial heterogeneity is

defined as the complexity and/or variability in spatial

distribution of species and their properties (Wang

1999; Chen et al. 2000; Chen et al. 2002). Spatial

heterogeneity is ubiquitous in nature across all scales

(Wu et al. 2000), from basically ecological processes

to environmental processes with continuous variation

in the spatiotemporal scale. From this point of view,

biomass should have spatial autocorrelation and

spatial heterogeneity, too. However, quantitative

retrieval of biomass based on the relationship of pixel

values with field data in its spatial features has not

obtained sufficient attention. The estimation methods

of bamboo biomass are still based on traditional

statistic analysis (Nie 1994; Isagi et al. 1997; Chen

et al. 1998; Hong et al. 1998; Lin 2002; Zhou and

Jiang 2004; Chen et al. 2008), and these methods

cannot timely and accurately update its spatial distri-

bution, and cannot effectively examine spatial auto-

correlation and heterogeneity. It is an urgent task to

map bamboo biomass distribution and to understand

its spatial pattern and heterogeneity. Therefore, the

object of this research is to examine moso bamboo’s

AGB and examine its spatial pattern and heterogene-

ity by using the geostatistical theory.

Method

Study area

Anji County, locating in the northwest of Zhejiang

Province, China (119�140–119�530E and 30�230–
30�530N) is selected as the study area (Fig. 1). There

is approximately 6.7 9 104 hm2 moso bamboo for-

est, accounting for 38% of total forestry are in this

county. Because of its wide distribution and its

importance in local economy, Anji County is called

bamboo town of China. This county has an undulat-

ing topography, with elevation ranging from 500 to

1,000 m. It has a subtropical oceanic climate with

yearly precipitation of 1,400 mm and mean temper-

ature of 15.6�C.

Field data collection and biomass calculation

Field surveys were conducted during August 19 and

September 2, 2008 for collection of moso bamboo

biophysical properties. During the field work, moso

bamboo’s diameter at breast height (DBH) and age

(i.e., du, 1 year bamboo or new birth bamboo is

referred as 1 du, 2–3 years as 2 du, and 4–5 years as 3

du, and so on) were measured. A total of 55 sample

plots were collected, and its spatial distribution was

illustrated in Fig. 1. The size of each plot is 30 m by

30 m. Based on the field measurement, AGB (Kg) of
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individual moso bamboo is calculated using Eq. 1

(Zhou 2006):

M D;Að Þ ¼ 747:787D2:771 0:148A

0:028þ A

� �5:555

þ 3:772

ð1Þ

where M, D, and A represent AGB (dry weight in

Kg), DBH (cm), and age (du). For each plot, the AGB

is a sum of all individual moso bamboo AGB within

the plot. Table 1 summarizes the statistical charac-

teristics of the 55 plots.

Geostatistical analysis

Geostatistics is based on the theory of a regionalized

variable, distributing in space and showing spatial

autocorrelation so that samples close together in

space are more alike than those are apart far. Its

central tool is the semivariance function (semivario-

gram), a measure of spatial variability of a region-

alized variable, and provides the input parameters for

the spatial interpolation of kriging (David et al. 2004;

Zawadzki et al. 2005). The following formula is

the most frequently used in the semivariance

calculations:

c ĥ
� �
¼ 1

2NðhÞ
XN hð Þ

i¼1

Z xi þ hð Þ � ZðxiÞ½ �2 ð2Þ

where c ĥ
� �

is an unbiased estimate value of c(h) (i.e.,

semivariance for interval distance class h); h is a lag

vector; N(h) is the number of pairs of sample points

separated by the lag distance h; xi is a data location;

ZðxiÞ and Zðxi þ hÞ represent the data value at loca-

tion xi and xi þ h, respectively.

Fig. 1 Study area—Anji county, Zhejiang province, China, and spatial distribution of measured sample plots

Table 1 Statistical characteristics of selected plots

Minimum Maximum Mean

Number of moso bamboo 153 500 292

DBH (cm) 2.5 16.2 9.3

du 1 5a –

AGB (Kg) 1767.236 6889.767 3712.692

a The number of 4–5 du moso bamboo is very limited, with 1

for 5 du and 39 for 4 du
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A semivariogram is obtained by plotting c(h)

against h (Ge et al. 1995; Villard and Maurer 1996).

It may present many shapes and can be fitted by

theoretic models such as spherical, exponential,

linear, linear to sill, and Gaussian model. These

models are also examined in this research. The

model’s parameters, including sill, range and nugget,

are usually used to analyze the spatial structure of

variable (Zawadzki et al. 2005). Sill is the sum of total

variation explained by the spatial structure and nugget

effect. Range is the distance at which the semivari-

ogram reaches the sill, or at which two data points are

uncorrelated. Nugget effect is the vertical discontinu-

ity at the origin. The nugget effect is a combination of

sampling error and short-scale variation that occurs at

a scale smaller than the closest sample spacing.

The spatial distribution of the moso bamboo’s

AGB can be estimated through spatial interpolation

based on the fitted model. Kriging is regarded as the

best linear unbiased estimator, including point kri-

ging, block kriging, and others. Its process, in

general, includes four steps (Wang 1999; David

et al. 2004):

(1) Semivariogram and its theoretical fitted model

of research area;

(2) Covariances Cij and Ci0 in a moving window,

where Cij is the covariance among the known

sampling points xi and Ci0 is the covariance

between xi and the unknown sampling point x0,

i, j = 1, 2, …, n, the number n is selected

according to the size of moving window and

user definition;

(3) Weight coefficients ki of each sampling point

within the moving window by kriging equation

groups, and
Pn

i¼1 ki ¼ 1;

(4) For the unknown sampling point x0, its value

can be estimated by Ẑðx0Þ ¼
Pn

i¼1 kiZðxiÞ.

After the AGB distribution is mapped with kriging

method, average AGB is calculated for the study

area. Assuming this study area has good representa-

tive in moso bamboo in Zhejiang province and the

other provinces in China, the average AGB value is

used to calculate total AGB in Zhejiang and in China,

in order to examine the moso bamboo’s contribution

in regional and national AGB and carbon stock.

Normality test

Application of semivariogram requires meet the

intrinsic hypothesis for a regionalized variable (Za-

wadzki et al. 2005), and normal distribution of the

raw data (David et al. 2004; Sun et al. 2006). The

Kolmogorov–Smirnov method has been used to

analyze the normality of biomass. Semivariance and

point kriging interpolation with 16 neighbors are

conducted with GS?, and spatial distribution maps of

moso bamboo’s AGB and kriging standard deviation

(KSD) are produced with GIS software.

Results

The normality test indicated that the raw data has

normal distribution, thus, the geostatistic method can

be used to analyze spatial heterogeneity and point

kriging interpolation method can be used to map

spatial distribution of moso bamboo’s AGB. Figure 2

illustrates the AGB histogram and its cumulative

frequency distribution. The histogram of AGB shows

a light positive skewness (skewness is 0.6) (Fig. 2a),

Fig. 2 Histogram of aboveground biomass and its cumulative frequency distribution
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but normality test based on Kolmogorov–Smirnov

method shows normal distribution in 95% confidence

interval (K_S value [ 0.05) (Fig. 2b).

A comparative analysis of selected models shows

that the exponential model has the best performance,

followed by the linear model. Other three models are

significantly poor comparing with exponential model

(see Table 2). The exponential mode can be

expressed as Eq. 3 (Wang 1999)

cðhÞ ¼
0 h ¼ 0

C0 þ C 1� e�
h
a

� �
0 \ h \ 3a

8<
: ð3Þ

where h = 3a, then e�
h
a ¼ 0:95 � 1; thus, the total

variance becomes cðhÞ � C0 þ C the range of expo-

nential model becomes 3a. Since the exponential

model has the best performance, it is used in this

research to fit the semivariogram. Figure 3 illustrates

the fitted result.

Spatial heterogeneity is composed of nugget

variance C0 (random components) and structure

variance C (autocorrelation components). The C/

(C ? C0) value of 0.587 (Table 2) shows that spatial

heterogeneity of moso bamboo’s AGB is mainly

composed of autocorrelation component with mod-

erate level. The range of 41,220 m implies that the

length of the spatial autocorrelation of moso bam-

boo’s AGB is increased from the minimum sampling

space of 360 to 41,220 m. Outside of this distance

range, the spatial autocorrelation is disappeared.

The ratio of nugget variance to total variance is

0.413, implying that 41.3% of spatial heterogeneity

comes from random factors. In comparison with the

proportion of structure variance, nugget variance is

not small and thus can not be neglected, implying that

random factors such as management and fertilization

may affect moso bamboo’s AGB and its spatial

distribution.

The range of spatial autocorrelation of moso

bamboo’s AGB is greater than the closest sampling

interval implying that the sampling density is appro-

priation for this study and it is expected that a good

spatial structure will be shown on the kriging

interpolation map (David et al. 2004).

Cross validation was used to evaluate the effective-

ness of the exponential semivariance model (Fig. 4).

The result shows that the actual AGB had a linear

relationship with estimated AGB values despite larger

errors in some sampling sites. Therefore, parameters of

the exponential model can be used as input to estimate

the spatial distribution of moso bamboo AGB by

kriging interpolation. Figure 5 illustrates spatial dis-

tribution pattern of moso bamboo’s AGB with the cell

Table 2 Isotropic semivariogram models and corresponding parameters

Model Nugget Sill Range (m) Proportion of spatial R2 RSS

C0 C0 ? C a or 3aa C/(C0 ? C)

Spherical 0.002 0.990 6000.00 0.998 0.289 0.983

Exponential 0.479 1.161 41220.00 0.587 0.468* 0.723

Linear 0.646 1.221 38805.92 0.471 0.432 0.773

Linear to sill 0.022 0.990 4680.00 0.978 0.299 0.976

Gaussian 0.291 0.995 19260.00 0.708 0.307 0.948

C0 and C represent nugget variance and structure variance, respectively. R2 is coefficient of determination. RSS is reduced sums of

squares, RSS ¼
PNðhÞ

i¼1 si � ŝið Þ2; where si is actual semivariance, ŝi is theoretical semivariance
a The range of exponential model is 3a

*Significant correlativity in 0.01 level

Fig. 3 Isotropic variogram model
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size of 30 m 9 30 m, the same as the plot size. As

shown in Fig. 5, moso bamboo’s AGB value is highest

in the southwest, followed in southeast and east parts

of Anji county such as Shanchuan, Dipu, Tianhuang-

ping, and lowest in the west of Anji County.

The average AGB of moso bamboo in Anji County

is 44.228 Mg hm-2 based on the statistical analysis of

the estimation as shown in Fig. 5. Assuming that the

average AGB developed from Anji county be good

representative in Zhejiang province, we can approx-

imately infer that the total AGB of moso bamoo in

Zhejiang province is 2.565 9 107 Mg according to the

total moso bamboo’s area of 5.8 9 104 hm2. This

accounts for 16.97% of forest AGB (1.511 9 108 Mg)

in Zhejiang province (Zhang and Wang 2008), indi-

cating its important role and large contribution in

carbon budget in the regional ecosystem.

Previous research has indicated that the conversion

rate from biomass to carbon for moso bamboo is

0.504 (Zhou and Jiang 2004), thus, based on this

conversion rate, the carbon density of moso bamboo

in Anji county is 20.297 Mg C hm-2. If this carbon

Fig. 4 Result of cross validation using the exponential

variogram model

Fig. 5 Spatial distribution of aboveground biomass of moso bamboo by point kriging interpolation
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density in Anji county is used to extrapolate to the

whole country, the total carbon storage of moso

bamboo in China is 68.399 Tg C, accounting for

1.627% of the total carbon of Chinese forest (total

forest carbon in China is 4.2 Pg C) (Liu et al. 2000).

Moso bamboo’s area accounts for 1.926% of the total

forest area in China, the average carbon contribution

rate is proximately 0.85 (i.e., the ratio of 1.629 to

1.926). Therefore, moso bamboo is also a huge

carbon contribution at national level, although moso

bamboo is mainly distributed in south and southeast

China such as Zhejiang, Jiangxi, and Fujian

provinces.

Discussion

Spatial autocorrelation has a determinative influence

on the spatial heterogeneity and spatial distribution

pattern of moso bamboo’s AGB. However, random

factors cannot be neglected because the nugget effect

accounts for 41.3% of total variance. Taking man-

agement levels as example, in the measured 55 plots,

11 plots are in intensive management level, 21 plots in

moderate management, and 23 in extensive manage-

ment level. The average AGB is 4422.290 Kg for

intensive management, 3708.057 Kg for moderate

management, and 3377.548 Kg for extensive man-

agement. One-way analysis of variance showed that P

value is 0.026, less than 0.05. The small P value

indicates that differences between the management

levels are highly significant in 95% confidence level.

However, as shown in Fig. 5, the AGB variation for

some plots is not consistent with the management

level. This implies that in addition to the management

levels, some factors such as soil, topography and

climate, may influence the AGB growth, thus affect

AGB estimation performance.

Fig. 6 Point kriging standard deviation of aboveground biomass of moso bamboo
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Kriging standard deviation is the square root of

kriging variance, reflecting the authenticity of spatial

distribution for regionalized variable. The KSD map

for moso bamboo’s AGB is shown in Fig. 6. The

KSD values ranging from 0.077 to 0.649 imply that

the total error of spatial estimation is small. The

maximum KSD value is 0.649 and minimum is 0.077

for the 55 sampling sites. Smaller KSD values may be

reflected higher accuracy in the kriging interpolation

method. The KSD values around the sampling sites

are generally smaller than those far away from the

sampling sites, and are high for missing samples.

Relative high KSD values in the missing sample sites

result in overestimation or underestimation of moso

bamboo’s AGB. The relationship between actual

AGB of moso bamboo and predicted AGB by point

kriging interpolation (Fig. 7), shows a good linear

correlation, indicating that the results predicted by

kriging interpolations are reliable. The kriging inter-

polation method provides an alternative for the

estimation of moso bamboo’s AGB. In the future,

more research should focus on the combination of

geostatistics and remote sensing to improve AGB

estimation performance.

Conclusions

This research employed geostatistical theory to

examine the spatial patterns and heterogeneity of

moso bamboo’s AGB estimate. A comparable anal-

ysis of different models, such as spherical, exponen-

tial, linear, linear to sill, and Gaussian model,

indicates that the exponential semivariance model

has the best performance for AGB estimation and for

examining its spatial heterogeneity. Kriging interpo-

lation based on geostatistical theory provides a

promising method for estimating AGB. This research

indicates that moso bamboo has an important contri-

bution in regional and national carbon budget in

China.
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