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a Geomodels Institute, Group of Geodynamics and Basin Analysis, Dept. EPGM, Universitat de Barcelona, c/Martı́ i Franqu�es s/n, Facultat de Geologia, 08028 Barcelona, Spain
b Maritime Engineering Laboratory, Technical University of Catalunya, c/Jordi Girona 1-3, 08034 Barcelona, Spain
a r t i c l e i n f o

Article history:

Received 17 February 2009

Received in revised form

28 September 2009

Accepted 30 September 2009

Keywords:

Interpolation

Cross-validation

Smoothing effect

Kriging

Inverse distance weighting
04/$ - see front matter & 2010 Elsevier Ltd. A

016/j.cageo.2009.09.015

plementary material is available to access th

esponding author. Tel./Fax: +31(0) 70447 23

ail address: oriol.falivene@shell.com (O. Faliv

esent address: Shell International Exploration

AB Rijswijk, The Netherlands.
a b s t r a c t

For a property measured at several locations, interpolation algorithms provide a unique and smooth

function yielding a locally realistic estimation at any point within the sampled region. Previous studies

searching for optimal interpolation strategies by measuring cross-validation error have not found

consistent rankings; this fact was traditionally explained by differences in the distribution, spatial

variability and sampling patterns of the datasets. This article demonstrates that ranking differences are

also related to interpolation smoothing, an important factor controlling cross-validation errors that was

not considered previously. Indeed, smoothing in average-based interpolation algorithms depends on

the number of neighbouring data points used to obtain each interpolated value, among other algorithm

parameters. A 3D dataset of calorific value measurements from a coal zone is used to demonstrate that

different algorithm rankings can be obtained solely by varying the number of neighbouring points

considered (i.e. whilst maintaining the distribution, spatial variability and sampling pattern of the

dataset). These results suggest that cross-validation error cannot be used as a unique criterion to

compare the performance of interpolation algorithms, as has been done in the past, and indicate that

smoothing should be also coupled to search for optimum and geologically realistic interpolation

algorithms.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Interpolation algorithms aim to predict the value of a property
at a location by using values of the same property sampled at
scattered neighbouring points (Journel and Huijbregts, 1978;
Jones et al., 1986; Davis, 2002). These algorithms yield a unique
(though different for each method) property map honouring input
data. Interpolation in geosciences is widely used for both
predictive and visualization purposes. A variety of algorithms
have been developed to carry out interpolations (Morrison, 1974),
for example inverse distance weighting (IDW, Kane et al., 1982),
Kriging, (Matheron, 1963), splines (Ahlberg et al., 1967; Mitasova
and Mitas, 1993) or polynomial regression.

The selection of optimal interpolation strategies for continuous
variables is an important and ongoing subject of debate (Lu and
Wong, 2008; Bater and Coops, 2009). Cross-validation (CV) has
often been used to compare the performance of interpolation
algorithms (Table 1). CV is based on calculating the value of the
variable at locations where the true value is known, but has been
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temporally removed from the input data, and then measuring the
CV error by comparing the estimated value against the true one
(Davis, 1987; Isaaks and Srivastava, 1989). Past comparisons
based on CV error have yielded a variety of results, not always
consistent (Table 1). For instance, in comparison of two widely
used algorithms such as Kriging and IDW, some authors have
found that Kriging yields better interpolations (Weber and
Englund, 1994; Zimmerman et al., 1999; Goovaerts, 2000;
Teegavarapu and Chandramouli, 2005; Lu and Wong, 2008),
some have not found any significant differences in the results
(Dirks et al., 1998; Moyeed and Papritz, 2002; Gallichand and
Marcotte, 1993), and others have found that IDW yields better
interpolations (Weber and Englund, 1992; Lu and Wong, 2008).

The disparity in the results obtained from existing interpola-
tion algorithm rankings using CV error (Table 1) motivated this
research. We demonstrate that the comparisons solely based on
CV error are utterly flawed. Apart from the fact that rankings may
depend on some specific characteristics of the particular dataset
used for the comparison, we provide evidence that the size of the
search neighbourhood plays a determinant role in algorithm
rankings considering only CV error. The search neighbourhood is
amongst the factors controlling the smoothing effect of each
interpolation strategy. These findings challenge the practice of
ranking and qualifying interpolation algorithms considering CV
error (Table 1), and show that there is no absolute best

www.elsevier.com/locate/cageo
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Table 1
Summary of results from published interpolation algorithm comparisons by means of cross-validation (CV) check.

Interpolated property Interpolation methodsa Comparison criteria Results Source

Surface elevation Universal Kriging (24) and splines Mean squared CV errorb Kriging provides lowest errors.

Splines is less accurate but faster

Dubrule (1984)

Coal thickness Ordinary Kriging (10–20) and Kriging with trend

(10–20)

CV error In interpolation conditions, both methods

achieved the same results

Journel and Rossi (1989)

Digital elevation model

transformed to simulate

pollutant concentrations

Ordinary Kriging (4) and nearest neighbour Mean absolute and squared

CV errorc

Kriging provides the lowest error and bias Isaaks and Srivastava

(1989,

p. 353)

Horizontal permeability Arithmetic mean, splines inverse squared

distance weighting, and Kriging

Mean percentage CV error – Brummert et al. (1991)

Vertical–horizontal

permeability ratio

Averaging provides the lowest errors

Reservoir thickness Splines provides the lowest errors

Reservoir porosity Kriging provides the lowest errors

Local terrain elevation variance Ordinary Kriging (20), inverse distance

weighting, and inverse distance squared

weighting d.

Mean squared CV error Inverse distance weighting provides the lowest

errors

Weber and Englund

(1992)

Subsurface clay content Closest neighbour, inverse distance weighting (4

to 24), inverse squared distance weighting (4 to

24), Kriging (4 to 24)e

Mean absolute CV error All gave similar results. Closest neighbour

method yields the largest differences.

Gallichand and Marcotte

(1993)

Terrain elevation and local

terrain elevation variance

Ordinary Kriging (4, 12 and 20), inverse distance

weighting (4, 12 and 20)f and splines.

Mean squared CV error Kriging provides the lowest errors.

Inverse distance weighting is sensitive to the

number of neighbours averaged.

Weber and Englund

(1994)

Rainfall records Nearest neighbour, mean mapping, inverse-

distance weightingg and Kriging

Root-mean squared CV

error

All gave similar results.

Inverse distance weighting results are the more

realistic.

Dirks et al. (1998)

Synthetic variables Ordinary Kriging, universal Kriging and inverse

squared distance weighting (6 and 12)

Mean squared CV errorh Universal and ordinary Kriging provides the

lowest errors

Zimmerman et al. (1999)

Averaged monthly rainfall

records

Thiessen polygons, inverse distance weighting

(16) and ordinary Kriging (16)d

Mean squared CV error Kriging provides the lowest errors Goovaerts (2000)

Co and Cu topsoil concentrations Ordinary Kriging, lognormal Kriging, disjunctive

Kriging, median indicator Kriging and model-

based Kriging

Relative mean square CV

errord

Precision of all the methods was practically the

same

Moyeed and Papritz

(2002)

Surface elevation Nearest neighbour, splines and triangulation CV errori Splines and nearest neighbour provide the

lowest errors

Okubo et al. (2004)

Rainfall records Inverse distance weighting, ordinary Krigingd Root-mean squared CV

errord

Kriging provide the lowest errors Teegavarapu and

Chandramouli (2005)

Rainfall records and surface

elevation

Inverse distance weighting, Krigingd CV errorj Inverse distance weighting yield the lowest

errors when poor spatial correlation (depends

on power factor). Kriging provide the lowest

errors when good spatial correlation

Lu and Wong (2008)

Surface elevation Inverse distance weighting, natural neighbour,

splinesd

Mean absolute CV errord,j Similar results, natural neighbour favoured for

simplicity

Bater and Coops (2009)

a When available/known, the number of neighbouring points averaged to obtain each estimate is provided in brackets.
b Does not consider the cross-validated points for variogram calculation (i.e. jackknife, Deutsch and Journel, 1998).
c Uses also a linear loss function based on remediation economics.
d Among others.
e Among others.
f Power factor varying from 1 to 3.
g Power factor varying from 1 to 10.
h Variation of cross-validation. Computes the mean squared interpolation error obtained from comparing the interpolated results constrained by only a few samples from the complete synthetic variable, and the ‘true’

synthetic variable.
i Does not consider the cross-validated points for variogram calculation (i.e. jackknife, Deutsch and Journel, 1998).
j Distinguishes between estimation and validation subsets.
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interpolation algorithm: one has to establish a trade-off between
minimum CV error and predictions with low smoothing.
A representative example, derived from a real 3D dataset with
calorific values measured at wells from a coal mine, is used for
illustration purposes (Fig. 1).
2. Methods

For our rankings, we considered two commonly used inter-
polation algorithms: IDW and Ordinary Kriging. Both methods
994

992

990

256 258 260 262

6AW coal zone

Present-day
basin boundary

Calorific values (KCal/Kg, dry base)

10%

5%

0%
2000 3000 4000 5000 60

Average: 4114
Std. Dev: 650

%
 in

te
rs

ec
te

d 
ce

lls

Upscaled calorific values

Facies distribution

0 m

20 m

0 m

20 m

Fig. 1. Geological setting and dataset characteristics. (A) Present basin boundary and

upper right inset. (B) Well distribution in 6AW interval. Location of reference section i

plotted information corresponds to core data upscaled to the size of grid cells. (D) Refer

in lacustrine and alluvial mudstones are null. Approximate paleodepositional surfaces ar

areal trend applied to categorical variables (for details, see Falivene et al., 2007a). Vert
provide an estimate Zn of the studied variable Z(x0) at an
unsampled location x0, by means of a linear combination of N

observed values of Z, denoted as z1, z2,y, zN,

Z�ðx0Þ ¼
X

wizi ð1Þ

For both algorithms compared, several numbers of averaged
neighbours, N, ranging from 1 (nearest neighbour) to 288 were
considered. Apart from well data locations (Fig. 1B), interpolations
were also carried out over the whole three-dimensional grid
(Fig. 1D) to attach a visual representation to the interpolation
strategies compared by CV.
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ence section showing upscaled calorific values in intersected wells; calorific values

e shown. (E) Facies distribution in 6AW obtained by using indicator Kriging with an

ical exaggeration of frames D and E is 10� .
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IDW is a straightforward and simple interpolation method, in
which the weights wi of Eq. (1) for each averaged neighbouring
data point are assigned according to an inverse of distance
criterion (Kane et al., 1982).

wi ¼ b�1daðxi; x0Þ; where b¼
X

daðxi; x0Þ

Several distance weighting power factors were tested (a=1, 2
and 5). For the IDW interpolations the implementation in GSTAT
was used (Pebesma and Wesseling, 1998).

Kriging is a geostatistical interpolation method in which the
weights for each averaged neighbouring data point are defined to
minimise the estimation variance (Matheron, 1963; Journel and
Huijbregts, 1978; Cressie, 1990). The minimisation of this
variance enables a spatial covariance criterion to be introduced,
which results in weights for each data point that not only depend
on the distance and direction to the grid cell being estimated (as
in IDW), but also on the characteristics of the interpolated
property (described by the variogram, V(h), Fig. 2) and the relative
positions of the averaged hard data (redundancy factor). For the
Kriging interpolations the implementation in GSLIB was used
(Deutsch and Journel, 1998).
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Fig. 2. Variograms for transformed calorific values. Black dots, crosses and dashed

curves correspond to experimental variograms derived from upscaled well data.

Grey continuous curves to theoretical models fitted with two exponential

structures (Hr and Vr stand for horizontal and vertical ranges, respectively):

V(h)=0.82 �Exp (Hr=450 m, Vr=2.8 m)+0.18 �Exp (Hr=60 m, Vr=100 m).
As usual when dealing with well data, CV was carried out by
temporarily removing an entire well from the dataset (Deutsch,
2002), but using the model parameters derived from the exhaustive
dataset to execute interpolations. CV error was taken as the average
of the absolute differences between each predicted interpolation
estimate and its corresponding real value. Standard deviation of the
CV estimates was used to measure interpolation smoothing; their
relationship is inverse (the higher the standard deviation, the lower
the smoothing). Reference behaviours for the CV comparisons were
defined by nearest neighbour interpolation, and random-based
interpolation (i.e. assigning random values from the input distribu-
tion (Fig. 1C) considering different degrees of smoothing and
without considering the neighbouring data points preferentially).
3. Illustration

3.1. Dataset, interpolation grid and interpolation parameters

The dataset used for illustration derives from the As Pontes
Basin (NW Spain), a small mined non-marine basin (12 km2)
resulting from the activity of an Oligocene-Early Miocene strike-
slip fault system (Bacelar et al., 1988; Santanach et al., 2005;
Fig. 1A). The sedimentary basin fill consists of a 350–400 m thick
succession of siliciclastic facies assemblages alternating and
interfingering with coal deposits (Cabrera et al., 1995, 1996;
Falivene et al., 2007a, 2007b), and was extensively drilled owing
to coal mining interest. Lithofacies of the continuously cored
exploration wells were correlated, taking into account the settling
and spreading of the major coal seams, which are bounded by
isochronous or near-isochronous surfaces. Several composite
sequences and intervals were identified (Ferrús, 1998; Sáez and
Cabrera, 2002; Sáez et al., 2003). Dry-base calorific values
sampled on coal beds in 174 wells drilled through a 30 m thick,
on average, coal-dominated interval (named 6AW, Falivene et al.,
2007a) were used as the input data for the example in this study
(Figs. 1B and C). These wells were drilled along a roughly square
grid at a spacing of about 105 m. Original data consisted of more
than 2700 calorific value analyses spread over 4000 m of
recovered core. Calorific value distribution in these coals, which
form laterally continuous beds of up to several hundreds of
meters, is mainly influenced by the amount of detritic material,
and shows gradual lateral variations (Figs. 1D and E).

To restore the post-depositional structural deformation
(Santanach et al., 2005) and allow an easier visualization of calorific
value distribution, interpolations were carried out with shifted
vertical coordinates transforming the top of the 6AW zone to a
horizontal datum. A grid layering combining proportional and
parallel-to-the-top layering schemes was designed to mimic
paleodepositional surfaces, along which facies and calorific values
display the largest continuity (Fig. 1D). Horizontal grid spacing was
set to 20 m. Vertical cell thickness was approximately 0.15 m, in
line with the resolution of core descriptions. Calorific values
measured in the cores were upscaled to the size of grid cells by
arithmetic averaging (Fig. 1C), which averaged variability at smaller
scales than the cell size. Upscaled calorific values measured in the
coal beds were then transformed to a normal distribution using a
normal-scores transformation (Deutsch and Journel, 1998). The
transformed data were the input for further analyses.

Parameters required for interpolation algorithms (i.e. vario-
gram parameters for Ordinary Kriging and vertical-to-horizontal
anisotropy ratios for IDW) were adjusted from the complete
dataset (Fig. 2). Anisotropy ratio (Jones et al., 1986; Falivene et al.,
2007a) for IDW was approximated by the vertical-to-horizontal
variogram range ratio. This factor is used to multiply the vertical
coordinates prior to the interpolation in order to deal with
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geometric anisotropy (Kupfersberger and Deutsch, 1999). This
enables assigning different weights to hard data points located at
the same real distance from the point being estimated, but with
different stratigraphic position, and allows reproducing flattened
geometries, which are typical of sedimentary deposits.

3.2. Results

Results were computed directly both for the normal property
and after undoing the normal-scores transformation to the
original data scale. As both results are qualitatively similar,
for simplicity and geological relevance only the back-transformed
results are shown (Figs. 3–5). Results in Fig. 3 can be sum
marized as
(1)
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Smoothing always increases as the number of neighbours
increases (Herzfeld et al., 1993, Fig. 3).
(5)
 For IDW, on increasing the power factor, smoothing decreases,
whereas CV error tends to increase (Fig. 3B and C). Increasing
the power factor increases the importance of the nearest
samples, thus effectively reducing the number of influential
samples in the neighbourhood.
(6)
 Depending on the degree of interpolation smoothing (i.e. on
the number of neighbours considered for interpolation),
completely different algorithm rankings can be obtained if
only CV error is taken into account (Fig. 3B and C).
4. Discussion and conclusions

An optimal interpolation algorithm should provide minimum
cross-validation (CV) error, as is common practice in the
literature (Table 1). CV errors in the example presented here
range between 10% and 15% of the mean measured calorific
value (Fig. 3). These variations are large enough to rank the
different algorithms, and can be significant when predictions
are made over large coal volumes. In addition, an optimal
interpolation algorithm should also obtain results with rela-
tively low interpolation smoothing (Isaaks and Srivastava, 1989;
Olea and Pawlowsky, 1996; Journel et al., 2000), which seeks to
preserve as much as possible the gradual lateral variation of
calorific values shown in the mine (Fig. 1D, compare Figs. 4A–C,
and B–D, Fig. 5).

Variations in interpolation algorithm rankings, taking only
measurements of CV error (Table 1) have been traditionally
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Fig. 4. (A, B, C and D) Reference section and map showing calorific value distributions in coal facies obtained by different interpolation strategies. Calorific value in alluvial

and lacustrine mudstone facies shown in Fig. 1E is null. (E) Location of reference section, map and input well data. Note that the horizontal scale of the map and the section

are not the same. If the number of averaged neighbours increases, spatial continuity of resultant calorific value distribution in coal facies is obscured, as the result of larger

interpolation smoothing. Vertical exasggeration 10� .
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justified by the fact that the studied variables are characterized by
different histogram distributions, spatial continuity or sampling
patterns (Brummert et al., 1991; Zimmerman et al., 1999; Lu and
Wong, 2008). For example, a general consensus exists that, in
irregularly spaced data, Kriging should provide more accurate and
robust results than IDW, because Kriging takes into account the
relative positions of sampling points, and not only their dis
tance from the interpolated point (Kane et al., 1982; Lebel et al.,
1987; Weber and Englund, 1994; Borga and Vizzaccaro, 1997;
Goovaerts, 2000; Falivene et al., 2007a).
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The results shown herein demonstrate that, if only CV error is
considered, different algorithm rankings can be obtained by
changing the number of neighbours averaged (Figs. 3B and C).
Thus, differences in algorithm rankings cannot be fully explained
by intrinsic differences related to the variable studied and the
sampling patterns, as suggested before. Indeed, interpolation
smoothing partially controls the results of CV error (Fig. 3).
Interpolation smoothing is primarily controlled by the number of
neighbours averaged, but also by the algorithm itself and other
algorithm parameters (e.g. the semivariogram in Kriging and the
anisotropy ratio and the power factor in inverse distance
weighting).

As a consequence, using only CV error as ranking criteria
provides ambiguous results, because smoothing (relating to
each particular algorithm and algorithm parameters) heavily
influences the CV rankings and the appearance and continuity
of the interpolation results (Figs. 4 and 5). The interpolation
results obtained with the largest number of neighbours are
the ones that yield the lowest CV error, but Figs. 4 and 5 show
that the predictions between data points in these cases tend to
be too smooth, because of the increasing influence from too
much data further away. Therefore, minimum CV error cannot
be the unique criterion of interpolation optimality, as used
in previous studies (Table 1). Even for the same inter
polation method, the optimum number of neighbours averaged
is not the one that yields minimum CV errors because the
smoothing introduced in the interpolation must also be taken
into account.

Multiple-criterion rankings, for instance coupling CV error
and smoothing, need to be used to look for optimum interpola-
tion strategies. This multi-criterion would discard too smooth
calorific value distributions (i.e. disconnecting large and small
calorific values identified in adjacent wells, such as those in
Fig. 4D), even though they may yield the lowest CV error
(Fig. 3C); and it would highlight distributions with gradual and
laterally continuous calorific values, with moderate CV error and
smoothing (such as those in Figs. 4A or B, Fig. 5), even though
they may not yield the lowest CV error (Fig. 3B). Therefore, in
more general terms applicable to other geological situations or
case studies, the analyst should search for a trade-off between
geological continuity (low smoothing) and statistical optimality
(low average CV error), in order to look for the best interpolation
practices.
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1988. La Cuenca Terciaria de As Pontes (Galicia): su desarrollo asociado a
inflexiones contractivas de una falla direccional (The As Pontes Teriary Basin
(Galicia): development linked to restraining bends in a strike-slip fault). In:
Proceedings II Congreso Geológico de España, Sociedad Geologica de España,
Granada, pp. 113–121.

Bater, C.W., Coops, N.C., 2009. Evaluating error associated with lidar-derived DEM
interpolation. Computers & Geosciences 35, 289–300.

Borga, M., Vizzaccaro, A., 1997. On the interpolation of hydrologic variables:
formal equivalence of multiquadratic surface fitting and kriging. Journal of
Hydrology 195, 160–171.

Brummert, A.C., Pool, S.E., Portman, M.E., Hancock, J.S., Ammer, J.R., 1991.
Determining optimum estimation methods for interpolation and extrapolation
of reservoir properties: a case study. In: Lake, L.W., Carroll, H.B., Wesson, T.C.
(Eds.), Reservoir Characterization. Academic Press, New York, pp. 445–485.
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