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Fast and Exact Simulation of Large Gaussian 
Lattice Systems in R2: Exploring the Limits 

Tilmann Gneiting, Hana Sevc?kov?, Donald B. Percival, 

Martin Schlather, and Yindeng Jiang 

The circulant embedding technique allows for the fast and exact simulation of sta 

tionary and intrinsically stationary Gaussian random fields. The method uses periodic 

embeddings and relies on the fast Fourier transform. However, exact simulations require 
that the periodic embedding is nonnegative definite, which is frequently not the case 

for two-dimensional simulations. This work considers a suggestion by Michael Stein, 
who proposed nonnegative definite periodic embeddings based on suitably modified, 

compactly supported covariance functions. Theoretical support is given to this proposal, 
and software for its implementation is provided. The method yields exact simulations 

of planar Gaussian lattice systems with 106 and more lattice points for wide classes of 

processes, including those with powered exponential, Mat?rn, and Cauchy covariances. 

Key Words: Circulant embedding; Compactly supported correlation function; Cut-off 

embedding; Fast Fourier transform; Gaussian random function; Intrinsic embedding; 
Torus process. 

1. INTRODUCTION 

Simulated sample paths of Gaussian random fields are widely used in a variety of appli 

cations, ranging Trom computer graphics to environmental risk assessment and simulation 

studies. The discussion articles of Gotway (1994) and Gel, Raftery, and Gneiting (2004), 
for instance, drew on simulated realizations of stationary Gaussian random fields to obtain 

predictive distributions of hydrological and meteorological quantities of interest. Davies 

and Hall (1999), Chan and Wood (2000), and Zhu and Stein (2002), among others, applied 
simulation studies to assess estimators of fractal dimension for two-dimensional surface 
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484 T. Gneiting, H. Sevc?kov?, D. B. Percival, M. Schlather, and Y. Jiang 

Table 1. Some Parametric Classes of Isotropie Covariance Functions. The Mat?rn class is defined in 

terms of the modified Bessel function, Ku. We assume without loss of generality that <?>(0) 
= 

1. 

Class Functional form Parameters 

Powered exponential ip(t) 
= 

exp(-(6>f)a) 0 < a < 2; 0 > 0 
p1 

? V 
Mat?rn cp(t) 

= ?? 
(6t)uKu(6t) v > 0; 0 > 0 

Cauchy_<p(t) 
= 

(1 + (6>Qa)-^/Q 0<a<2;/3>0;6>>0 

data. Simulation studies call for sampling techniques that are fast and exact, in the sense 

that a method is computationally feasible and that the realizations have exactly the desired 

multivariate Gaussian distribution (Caccia et al. 1997). A comparison of the performance 

of estimators of fractal dimension in Section 6.1 of Chan and Wood (2000) and Section 4.4 
of Zhu and Stein (2002) illustrates the conflicting inferences that the use of approximate 
and exact simulation may incur. Our work addresses this type of situation and explores the 

current computational limits of exact simulation. 

A random field Z on Rd is said to be stationary if its mean is constant and cov{Z(x), 
Z(y)} 

= 
K(x 

? 
y) for some function K on Rd and x, y G Rd. It is stationary and isotropic 

if cov{Z(x), Z(y)} 
= 

ip(\x 
? 

y|) for some function cp on [0, oo). Parametric models for 

isotropic covariance functions (p include the powered exponential class (Diggle, Tawn, 

and Moyeed 1998), the Mat?rn class (Whittle 1954; Mat?rn 1986), and the Cauchy class 

(Gneiting and Schlather 2004). These parametric models are listed in Table 1. A slightly 
weaker assumption than stationarity is intrinsic stationarity. Specifically, a random field Z 

on Rd is said to be intrinsically stationary with variogram 

7(h) = ??(Z(x)-Z(x + h))2, heKd, 

if the increment process 1^ = {Z(x) 
? 

Z(x -\- h) : x G Rd} is stationary for all lag 
vectors h G Rd. A stationary random field Z with cov{Z(x), Z(y)} 

= 
K(x 

? 
y) is 

intrinsically stationary with variogram 7(h) 
= 

K(0) 
? 
K(h). Not all intrinsically stationary 

random processes are stationary, however, with a fractional Brownian surface being one such 

example. 

We consider the simulation of a stationary and isotropic Gaussian random field Z with 

cov{Z(x), Z(y)} 
= 

ip(\x 
? 

y|) on a square lattice of size n x n in M2. Analogues in higher 
dimensions and generalizations to rectangular lattices, variable grid spacings, anisotropic 

covariance structures, and other situations exist, and have been implemented in recent ver 

sions of the R package RandomFields. Here we restrict ourselves to a discussion of 

the above case. We order the lattice points row-by-row into a vector of size n2, which 

then has a covariance matrix C that is block Toeplitz with each block being Toeplitz itself. 
The simulation problem consists of generating a Gaussian random vector in Rn with co 

variance matrix C. One possibility is to do a Cholesky decomposition of the covariance 

matrix. This approach is exact, but fast algorithms for the Cholesky factorization of a block 

Toeplitz matrix still require 6n5 floating point operations or flops (Dietrich 1993). Dietrich 
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Fast and Exact Simulation of Large Gaussian Lattice Systems 485 

Table 2. Computational Requirements for the Cholesky Decomposition and Circulant Embedding 
Methods of Simulating a Stationary Gaussian Random Field on a Square Lattice of Size 

n x n. We adopt the "new flop" terminology of Golub and van Loan (1996, p. 18) and sup 

pose an application of the fast Fourier transform to a vector of length m involves 5 m log2 m 

flops (Golub and van Loan 1996, p. 190). 

Matrix factorization Each realization Storage 

(flops) (flops) (real values) 

Standard Cholesky decomposition -n6 n4 -n4 

Efficient Cholesky decomposition 6n5 n4 2 a?3 
Circulant embedding 40 n2 log2 2n 40 n2 log2 2n 8 n2 

and Newsam (1993, 1997) and Wood and Chan (1994) proposed the circulant embedding 

approach which embeds the simulation domain into a torus lattice, with significant compu 

tational advantages (Besag and Moran 1975; Rue and Held 2005, sec. 2.6). Specifically, the 

covariance matrix of the periodic random field on the torus lattice is block circulant, with 

each block being circulant itself, which allows for the use of the fast Fourier transform. The 

result is a simulation algorithm with computational complexity of order n2 log2 n. A more 

detailed comparison of the computational requirements for the Cholesky decomposition 

and circulant embedding techniques is given in Table 2. A similar table in Kozintsev (1999) 
considers the standard implementation of the Cholesky decomposition only. Rue (2001) 
described a fast algorithm for the simulation of Gaussian Markov random fields that uses 

numerical techniques for sparse matrices. For square lattices with a (2m + 1) x (2m +1) 
Markov neighborhood this algorithm has fixed costs of n4m2 flops, and each realization 

requires another 2n3m flops. Modern nested dissection methods for the simulation of Gaus 

sian Markov random fields require order n3 flops for the initial matrix factorization and 

order n2 log2 n flops for each sample path (Rue and Held 2005, sec. 2.4.3). 

The circulant embedding technique does not depend on a Markov structure and is both 

fast and exact, but requires the circulant embedding of the original covariance matrix to 

be nonnegative definite. For simulations in one dimension, various criteria are known that 

guarantee this under weak conditions (Dietrich and Newsam 1997; Gneiting 1998; Chiles 

and Delfiner 1999, p. 499; Craigmile 2003). However, for two-dimensional simulations 

the circulant embedding is frequently not nonnegative definite. Our work addresses this 

challenge and studies two proposals of Stein (2002a) that provide nonnegative definite 

embeddings and thereby guarantee exactness, while maintaining computational efficiency. 

The remainder of the article is organized as follows. Section 2 reviews the standard 

circulant embedding approach and introduces Stein's proposals which depend on the con 

struction of certain classes of compactly supported covariance functions. We give an exam 

ple that compares the standard approach to Stein's suggestions, which we refer to as cut-off 

embedding and intrinsic embedding. Section 3 collects theoretical and numerical results 

on the aforementioned classes of compactly supported covariance functions. In Section 4 

we describe the implementation of the cut-off and intrinsic embedding approaches within 

Version 1.3.7 of the R package RandomFields, and we explore the computational limits 

of exact simulation. 
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486 T. Gneiting, H. Sevc?kov?, D. B. Percival, M. Schlather, and Y. Jiang 

2. CIRCULANT EMBEDDING 

Suppose that we wish to simulate a stationary and isotropic Gaussian random field 

Z with covariance function cov{Z(x), Z(y)} 
= 

ip(\x 
? 

y|) on a square lattice in [0, s}2 
with spacing s/n along each coordinate, where n is a positive integer. For convenience in 

what follows we assume without loss of generality that s = l/\/2; hence, the lattice has 
a diagonal of length 1. The ideas and arguments can be generalized in many ways, but we 

restrict ourselves to a discussion of isotropic covariance functions and square lattices. The 

notation used below follows Stein (2002a). 
Let $2 denote the class of the continuous and isotropic covariance functions for random 

fields on R2. Specifically, a continuous function (p on [0, oc) belongs to <1>2 if there exists a 

Gaussian random field Z with cov{Z(x), Z(y)} 
= 

ip(\x 
? 

y|) for x, y G R2. For a function 

(p on [0, oo) and r > 0 define Prcp to be the function on R2 that has period 2r in each 

coordinate and is such that Pr(p(x) 
= 

(p(\x\) for x G \?r,r}2. For a positive integer m and 

h > 0, we define C(Pr(p; m, h) to be the m2 x m2 covariance matrix for the vector of 

length m2 extracted from a random field with covariance function Pr (p by taking anmxm 

square lattice in R2, with spacing h along each coordinate, and ordering the lattice points 

row by row. 

2.1 Standard, Cut-off, and Intrinsic Embedding 

We now describe the standard implementation of the circulant embedding technique 

(Dietrich and Newsam 1993, 1997; Wood and Chan 1994). The periodicity of Ps(p implies 
that C(Psip; 2n, s/n) has block circulant structure with each block being circulant itself. 

The eigenvalues of this matrix can be found by taking a discrete Fourier transform, and if n 

is highly composite (i.e., n can be expressed as a product of powers of small prime integers) 

this can be done very efficiently using the fast Fourier transform (Briggs and Henson 1995). 
If all eigenvalues are nonnegative, then an exact simulation of the periodic random field 

with covariance function Ps (p on a 2n x 2n lattice with spacing s/n along each coordinate 

can be obtained by generating a Gaussian random vector with 4n2 independent components 

and variances proportional to the eigenvalues, and applying the fast Fourier transform to 

this random vector. Essentially, this corresponds to simulating a Gaussian lattice process 

on the torus. Any set of points inside a square of side s can be extracted and provides 

the desired realization of a random field with covariance ^ona square lattice in [0, s]2. 
The method involves an initial factorization of the block circulant matrix C(Ps(p; 2n, s/n) 
which can also be done by the fast Fourier transform, at a one-time cost of 40 n2 log2 2n 

flops. Each realization of the lattice process requires another 40 n2 log2 2n flops, and the 

storage requirement is 4n2 complex values, as summarized in Table 2. Dietrich and Newsam 

(1993, 1997), Wood and Chan (1994), Chan and Wood (1997), and Kozintsev (1999) gave 
detailed descriptions of the algorithm. The method has a long history which dates back at 

least to Woods (1972), as described by Rue and Held (2005, pp. 82-83). 
If C(Psip;2n,s/n) has a negative eigenvalue, the standard embedding fails. Wood 

and Chan (1994, sec. 4) suggested an approximative embedding procedure that does not 
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require the matrix C(Pscp; 2n, s/n) to be nonnegative definite. However, this variant of 

the circulant embedding method does not provide exact simulations. To retain exactness, 

Wood and Chan (1994) and Dietrich and Newsam (1993, 1997) prop ed the following 

approach: Pick some c > 1 for which en is an integer and compute the eigc lvalues of the 

block circulant matrix C(Pcs(p; 2cn, s/n). Proposition 2 of Wood and Chan (1994) shows 

that under mild regularity conditions C(Pcs(p; 2cn, s/n) will be nonnegative definite if c 

is sufficiently large. The fast Fourier transform can be applied as above, and one obtains 

exact realizations on the original lattice, by extracting any set of points inside a square of 

side s. However, the computational requirements of the circulant embedding method grow 

quadratically in c, and in many cases c needs to be chosen excessively large. In this situation, 

exact simulation with the standard circulant embedding technique fails, and we resort to 

Stein's (2002a) proposals for cut-off embedding and intrinsic embedding. 
We first describe the cut-off embedding approach to which Stein (2002a) alluded at 

the end of his Section 4. Rather than simulating the covariance function (p directly, cut-off 

embedding turns to functions of the form 

P(t) = { 
<p(t), 0 < t < 1, 

^(t), l<t<r, (2.1) 

0, t > r, 

where r > 1 and ip is any function, but chosen such that p belongs to the class <?>2 of the 

continuous, stationary, and isotropic covariance functions on R2. Let d > r/s be such that 

dn is a highly composite integer. If p G $2, then the facts that d > r/s and p{t) 
= 0 for 

t > r imply that PdsP is a covariance function in M2 (Dietrich and Newsam 1993). Hence, 
the block circulant matrix C(Pdsp; 2dn, s/n) is nonnegative definite, and the standard 

circulant embedding technique applies to this modified matrix. To obtain exact realizations 

on the original square lattice, we extract any set of points inside a square of side s. If d can 

be chosen smaller than the c required to make C(PCS <p; 2cn, s/n) nonnegative definite, the 

cut-off embedding approach allows for exact simulations at reduced computational cost. 

The other approach proposed by Stein (2002a), to which we refer as intrinsic embedding, 
uses functions of the form 

ar(t) 

a0-\-a2t2 + ip{t), 0 < t < 1, 

i/>(t), l<t<r, (2.2) 

0, t>r, 

where r > 1, oo G M and a2 > 0 are constants and ip is any function, chosen such that 

ar belongs to the class <I>2- Let d > r/s be such that dn is a highly composite integer. 
If ar G $2, the aforementioned argument shows that Pdso~r is a covariance function in 

M2 and that C(P^scrr; 2dn, s/n) is nonnegative definite. We apply the standard circulant 

embedding method based on the matrix C(P^S ar ; 2dn, s/n) and obtain an exact simulation 

of a stationary and isotropic Gaussian random field Za with co\{Za (x), Za (y)} 
= ar ( |x 

? 

y|). Let Xi and X2 be independent Gaussian random variables with mean 0 and variance 

2a2 that are independent of Za. We write x = (xi, x2) G M2 and restrict the random field 

Z(x) 
= 

Za(x) -j- x\X\ -F x2X2 to the square lattice S with spacing s/n in [0, s]2. Then 
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Table 3. Smallest Eigenvalue, Amin(c), and Number of Negative Eigenvalues, n-(c), of the Block 

Circulant Matrix C(Pcs^, 2c-256, s/256) where s = l/v^and c?>(f) 
= 

exp(-?1/2). The matrix 
is of size n(c) x/7(c), and the relative frequency of negative eigenvalues, n-(c)/n(c)2, decays 

approximately like Mn{c). 

c Xmin(c) n-(c) n(c) 

1 -10.90 502 512 

2 -9.64 1002 1024 

4 -3.60 1986 2048 

8 -0.43 3786 4096 

Z(x), x G S, is an intrinsically stationary process and has exactly the desired variogram 

structure, namely 

l- E (Z(x) 
- 

Z(y)f 
= <p(0) 

- 
<p(\x 

- 
y|), x, y G S. 

In various types of applications, such as simulation studies for increment-based estimators of 

fractal dimension, the reproduction of the variogram structure suffices, and if d can be chosen 

smaller than the c required to make C(Pcsip] 2cn, s/n) nonnegative definite, the intrinsic 

embedding technique allows for computationally efficient exact simulation. Stein (2002a) 
studied this approach in the special case of the exponential covariance, p>(t) 

= 
exp(-Ot), 

but did not consider other covariance functions. 

2.2 Example 

We now give an explicit example of standard, cut-off, and intrinsic embedding. For 

simplicity, we restrict attention to embeddings using grid sizes that are powers of 2. Suppose 

that we wish to simulate a stationary and isotropic Gaussian random field Z with powered 

exponential covariance function, cov{Z(x), Z(y)} 
= 

exp( 
? 

|x 
? 

yl1/2), on a square lattice 
on [0, s}2 with spacing s/256 along each coordinate, where s = \/\?2. Exact simulation 

using the Cholesky decomposition takes at least 3 241 flops for the matrix factorization 

and 232 flops for each realization. 

Applying the standard circulant embedding technique requires that we find a number 

c G [1,8] such that 256c is a highly composite integer and the eigenvalues of the block 

circulant matrix C(Pcs(p; 2c 256, s/256) are nonnegative, where ip(t) 
= 

exp(?t1/2). The 

requirement that c < 8 stems from the storage requirement of 8 (256c)2 
= 219c2 real 

values (see Table 2) and storage limitations (see Section 4). Table 3 shows the smallest 

eigenvalue of C(Pcs(p;2c 256, s/256) for c = 
1,2,4, and 8. None of the matrices is 

nonnegative definite and the standard circulant embedding approach fails. 

Instead, we consider the cut-off embedding approach with the function 

p(t) 

exp 
(-t1/2), 

0<t<l, 

-(2-?1/2), 
l<t<4, (2.3) 

e 

0, t > 4. 
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Theorem 1 (p. 491) shows that p belongs to the class &2, and it follows that C(Pdsp; 2d 

256, s/256) is nonnegative definite if d > Ay/2. The standard circulant embedding tech 

nique applied to the modified matrix C(P8sp; 2 8 256, s/256) yields (2 8)2 
= 256 

distinct exact realizations on the original lattice extracted from 256 disjoint squares of side 

1 each. The realizations are dependent and typically only one of them is used, even though 

cluster samples could be considered as well. The computational cost is 15 227 flops for the 

matrix factorization and for each simulation. 

Alternatively, we might turn to the intrinsic embedding approach with the function 

/^ J exp(-t1/2) 
- ? + ? ?2, 0<?<1, .. .. 

[ 0, t > 1. 

Theorem 3 (p. 494) implies that g\ belongs to the class <?2, and it follows that C(Pdso~\ ; 2d 

256, s/256) is nonnegative definite if d > \/2. The standard circulant embedding technique 

applies to the matrix C(P2sai, 2-2-256, s/256), and we obtain realizations of an intrinsically 

stationary Gaussian random field with exactly the desired variogram structure, as described 

earlier. The computational cost is reduced to 52 222 flops for the matrix factorization and 

for each simulation. However, in contrast to the cut-off embedding approach, the simulated 

process is nonstationary. 

3. COMPACTLY SUPPORTED COVARIANCE FUNCTIONS 

The cut-off embedding and intrinsic embedding approaches depend on the availability 
of compactly supported functions that are of the form (2.1) or (2.2), respectively, and belong 
to the class <&2. This section provides analytical and numerical devices for the construction 

of such functions. Supplementary information on compactly supported covariance functions 

can be found in Gneiting (2002) and the references therein. 

3.1 Criteria of the P?lya Type 

A function <p> on [0, oo) belongs to the class <?>2 of the continuous, stationary, and isotropic 

covariance functions in R2 if and only if it is of the form 

<p(t)= [ J0(rt)dF(r) (3.1) 
J[0,oo) 

for t > 0, where Jq is a Bessel function and F is nondecreasing and bounded. If cp has 

compact support, then it is of the form (3.1) if and only if the Bessel integral 

f(r) = -?- 
[ tp(t)J0(tr)dt (3.2) 

27r 
J[0,oo) 

is nonnegative for all r > 0 (Stein 1999, sec. 2.10). Unfortunately, it is quite difficult in 

general to prove the nonnegativity of the Bessel integral in (3.2). Stein (2002a, 2002b) took 

this ambitious route in a number of instances, and the length and complexity of his proofs 

attest to the difficulty of the approach. 
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Table 4. Criteria of the P?lya Type for Isotropic Covariance Functions in R2. A continuous function tp 
on [O, oo) belongs to the class ^2 if <??(o) is positive, limf_,00(^(f) 

= 0, and if the convexity 
or the nonnegativity condition in the table holds. 

Convexity condition 

Nonnegativity condition Requires Reference 

tp(t2) convex a < - 
Gneiting (1999a) 

<?'(/)+2 V(Q >0 

-<?/(f1/2) convex a < 1 Gneiting (1999c) 

<p"(t)-t<p"'(f)>0 

r2 
(2^(i1/2) 

- 
2tV2cp"(tV2) + 

V;(f1/2)) 
convex a < 2 Gneiting (2001) 

48 (<p"(t) 
- 

<p'(f)) 
- 

24fV//(Q + 7tipM(f) 
- 

t4^v\t) > 0_ 

Instead, we apply criteria of the P?lya type. Suppose that <p is a continuous function 

on [0, oo) with (p(0) > 0 and lim^oo <p(t) 
? 0. The celebrated criterion of P?lya (Chiles 

and Delfiner 1999, p. 66; Stein 1999, p. 54) states that if ip is convex then there exists a 

stationary Gaussian process Z on R such that co\{Z(x)1 Z(y)} 
= 

cp(\x 
? 

y\). Table 4 lists 

analogues of P?lya's criterion that apply to stationary random fields in R2. These results 

were proved by Gneiting (1999a, 1999c, 2001) and, using the first criterion as an example, 

can be applied as follows: If tp(t2) is convex or, almost equivalently, if tp"(t) exists and 

<p'(t) + 2t<p"(t) > 0 for t > 0, then there exists a stationary Gaussian process Z on R2 
such that cov{Z(x), Z(y)} 

= 
<p(\x 

? 
y|); that is, <p G $2- The two conditions are equivalent 

if <p>"(t) exists for all t > 0. The second column in Table 4 is to be understood as follows. 

Suppose there exist positive numbers a and ? such that 

limt-a((p(0)-(p(t)) 
= A. (3.3) 

Then a necessary (but not sufficient) requirement for the convexity or nonnegativity con 

dition to hold is that the above be true with a restricted as stated in the table. Powered 

exponential, Mat?rn, and Cauchy covariances all satisfy the relationship (3.3), with a given 

by the parameterization of Table 1 or, in the case of the Mat?rn class, with a = 2 min(z/, 1). 

Smaller values of a correspond to covariance functions and sample paths that are less 

smooth, with the realizations being diff?rend able if and only if a 
= 2. 

Criteria of the P?lya type occasionally allow for vastly simplified proofs, and they can 

be used to demonstrate results that cannot be proved otherwise. In the following we use 

criteria of P?lya type to show that functions of the form (2.1) or (2.2) belong to the class $2 
In cases in which the criteria do not apply we follow Stein (2002a) and report the results of 

numerical experiments. 

3.2 Cut-off Embedding 

The cut-off embedding technique employs elements of the class <3>2 that are of the form 

? p(i), 0<*<1, 
Pit) = I ^(t), 1 < t < r, 

[ 0, t>r, 
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where (p is a standard covariance model, say from the powered exponential, Mat?rn, or 

Cauchy class. Theorems 1 and 2 concern the cases in which ijj(t) 
= b{rxl2 

? 
txl2) and 

?p(t) 
= 

b(r 
? 

t)2, respectively. We experimented with various other forms of i?, but the 

results were generally of limited use. For instance, analogues of Theorem 1 and Theorem 

2 apply when i?(t) 
= 

b(rc 
? 

tc), where 0 < c < \, and ip(t) 
= 

b(r 
? 

t)c, where c > 2, 

respectively, with b and r chosen such that p is smooth. However, the cut-off embedding 

approach calls for small values of the cut-off, r, and the latter is mimimal when c ? 
\ 

and 

c = 2, respectively. 

Theorem 1. Let p be a continuous function on [0,1] such that p(t2) is positive and 

convex and p'(l) is negative. Then the function p on [0, oo) defined by 

<p(t), 0 < t < 1, 

p(t) 
= 

{ b(rxl2 
- 

t1/2), 1 < t < r, (3.4) 

0, ? > r, 

1-J4^) . & =-2^(1), 0.5) 
where 

r = M - 

2^(1), 
belongs to the class &2. 

Note that r and b are chosen such that p is continuous and differentiate at t = 1. 

We skip the proof of Theorem 1, which consists of a straightforward reduction to the first 

criterion in Table 4. For covariances of powered exponential type, cp(t) 
? 

exp( ?(0t)a), 
and for covariances of Cauchy type, p(t) 

? 
(1 + (?t)?i)~ 

$ I , the conditions of the theorem 

are satisfied if and only if a < 
\. If p is powered exponential with a = 

\ and 0 = 1, we 

recover Equation (2.3). If p belongs to the Mat?rn class, that is, if 

where Ku is a modified Bessel function of index v > 0, we get 

<p'(t) 
= 

-^0"+1f'Kl,-1{Ot). 
It is not difficult to show that the conditions of Theorem 1 are violated if v > \. We believe 

but have not been able to prove that they are satisfied if v < 
|. Clearly, the conditions are 

sufficient only, and a function defined by (3.4) and (3.5) might belong to the class <1>2, even 

though the assumptions of the theorem are violated. 

Theorem 2. Let p be a continuous function on [0,1] such that p' (txl2) exists and is 

concave, tp(l) is positive, p'(l) is negative, and 

2^(1V(1)>(^'(1))2. 
Then the function p on [0, oo) defined by 

p(t), 0 < t < 1, 

p(t)= { b(r-t)2, l<?<r, (3.6) 

0, t > r, 
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e 

Figure 1. Cut-off embedding for the powered exponential class. We consider the block circulant matrix C(Fr P, 2 

2 048, r/2 048) where p is given by (3.6) and (3.7) and if is powered exponential with shape parameter a and scale 

parameter 6. The graph divides the (a, 6) plane into a lower area (colored), for which this matrix is nonnegative 

definite, and an upper area (white), for which it is not. The color scheme corresponds to the associated numerical 

value of the cut-off, r, which is also indicated by the isolines. 

where 

belongs to the class $2 

This result is proved by a reduction to the second criterion of P?lya type in Table 4. If cp 
is a powered exponential or a Cauchy covariance, the conditions of Theorem 2 are satisfied 

if and only if a < 1. If a < 
|, both (3.4) and (3.6) yield valid covariances, and we prefer 

the function with the smaller value of the cut-off, r. For powered exponential covariances, 

for example, (3.6) has a smaller cut-off than (3.4) if 4 a 0a > 1. If (p is a Mat?rn covariance, 
we conjecture that the assumptions of the theorem hold if and only if v < 

^. Again, the 

conditions are sufficient only, and a function defined by (3.6) and (3.7) might well belong 
to the class $2, even though the assumptions of Theorem 2 are violated. 

When a > 1 for covariances of powered exponential and Cauchy type or v > \ 
for Mat?rn covariances, the first two criteria in Table 4 do not apply, and our attempts to 

invoke the third criterion have been of limited success. Partial results are available, but they 
are highly technical and depend on systems of equations that require numerical solution. 

Instead, we report numerical results. Figures 1 and 2 illustrate the parameter ranges for 

which the block circulant matrix C(Prp. 2 2048, r/2 048) is nonnegative definite, where 

p is defined by (3.6) and (3.7) and ip is of the powered exponential and Mat?rn type, 

respectively. The associated numerical value of the cut-off is illustrated, too. The results for 
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Figure 2. Same as Figure 1 for Mat?rn covariances with shape parameter v and scale parameter 9. 

Cauchy covariances with ? 
? 1 or ? = 2 are similar to those for the powered exponential 

class. 

3.3 Intrinsic Embedding 

The intrinsic embedding approach calls for elements of the class $2 that are of the form 

(2.2), where again p is a standard covariance model. Following Stein (2002a), we consider 

Gr{t) 

a0 -r a2t2 + (p(t), 0< t < 1, 

b(r-t)3/t, l<t<r, 

10, t>r, 

(3.8) 

where the cutoff, r > 1, is fixed and a0 G M, a2 > 0 and b > 0 are chosen such that Gr is 

smooth at t = 1; that is, 

and 

?2 = 
3r(r + l) 

- 
3* & - 

?* M' 

= y"(l)-^(l) 
3r(r2-l) 

' 

(3.9) 

(3.10) 

Small values of the cut-off are preferable, and for the minimal value, r = 1, Equations (3.8) 
and (3.9) reduce to (3.11) and (3.12) below, respectively. We have the following result. 
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Figure 3. Intrinsic embedding for the powered exponential class. We consider the block circulant matrix 

C(Prcrr,2 2048, r12048) where ar is given by (3.8), (3.9), and (3.10), and <p is powered exponential with 

shape parameter a. and scale parameter 9, respectively. The isolines show the smallest value ofr that makes the 

matrix nonnegative definite. The white area in the (0, a) plane marks the parameter combinations for which no 

such r could be found. 

Theorem 3. Let if be a continuous function on [0,1] such that ?(p'(t1/2) exists and 

is convex, (p(l) is positive, ^'(1) is negative, </?"(l) is positive, and 

?<p'(l) + <p(0)-<p(l)>0. 

Then the function en on [0, ooj defined by 

a2t2 + (p(t), 0 < t < 1, 
*i(*) = 

where 
1 

a0 */(!)-*>(!), 

t > 1, 

1 
?2 ^(1), 

(3.11) 

(3.12) 2 
r v 7 rv /7 

2 

belongs to the class <I>2 

A similar theorem with almost identical assumptions holds for ar and r > 1. This 

more general result is also proved by a reduction to the second criterion in Table 4, and we 

leave the details to the reader. If ip is a powered exponential or a Cauchy covariance, the 

conditions of Theorem 3 are satisfied if and only if a < 1. In particular, the function 

<7!(i) 
cxp(-et) 
o, 

li + IK 
e -e+2 
2L 't2 0 < t < 1, 

t> h 

belongs to the class $2, which proves a conjecture of Stein (2002a, p. 593). If (p is powered 

exponential with a = 
^ and 0 = 1, Equations (3.11) and (3.12) recover (2.4). For Mat?rn 
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Figure 4. Same as Figure 3 for Matern covariances with shape parameter v and scale parameter 9. 

covariances we conjecture that the conditions of Theorem 3 are satisfied if and only if 

v<\. 
For smoother covariances with a > 1 or v > \, respectively, analytical results are 

not available, and we report on numerical experiments instead. Generally, our experiments 

suggest that, if C(Prcrr, 2n, r/n) is nonnegative definite, then C(Pr'Gr', 2n', r'/nr) is non 

negative definite for n' < n and r' > r. Furthermore, our experiments indicate that, if 

C(P2g2, 2n, 2/n) fails to be nonnegative definite, then C(Prcrr, rn, 2/n) is not nonnega 
tive definite for r > 2 either. Figure 3 summarizes the results for the block circulant matrix 

C(PrGr, 2 2048, r/2048) and the powered exponential class. For instance, if 0 ? 1 and 

a < 1.7, then this matrix is nonnegative definite if r > 1.4. If 0 ? 1 and a ? 1.9, we 

cannot find an r that makes this matrix nonnegative definite. Figure 4 shows the respective 
results for the Mat?rn class. The results for Cauchy covariances with ? ? 1 or ? = 2 are 

similar to those for the powered exponential class. 

4. IMPLEMENTATION 

We now describe strategies for choosing a simulation algorithm, and we discuss the cur 

rent computational limits of exact simulation. The cut-off embedding and intrinsic embed 

ding techniques have been implemented in Version 1.3.7 of the RandomFields package 

(Schlather 2001) for the R language (Ihaka and Gentleman 1996), and we give an example 
of using this package. 
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4.1 Choice of Simulation Algorithm 

Recall that we wish to simulate a Gaussian surface Z with cov{Z(x), Z(y)} 
= p(\x?y\) 

on a square lattice of size n x n, with spacing s/n along each coordinate. Without loss of 

generality we can assume that s = 
l/\/2, which avoids a scaling argument in the use of the 

above results. Sophisticated users of the RandomFields package will specify the desired 

simulation technique directly, and in Section 4.3 we give an example of how this can be 

done. For less experienced users, the GaussRF function provides an automated search for 

a suitable simulation algorithm. In describing this search, we suppose that the fast Fourier 

transform can be applied to square matrices of size at most 2m x 2m. On our 512 MB RAM 

machine we found m = 2 048 to be a reasonable choice; m ? 4 096 was still feasible but 

caused discontinuities in the response time of the system. We say that an integer is highly 

composite if it factors into powers of 2, 3, and 5. 

If n is small, say n < 64, the Cholesky decomposition technique applies and performs 
well. For larger systems, the standard embedding approach is the most straightforward 

and the most easily applicable among the three variants of the circulant embedding tech 

nique. Hence, the automated search for an exact simulation algorithm considers the standard 

approach first, by checking whether the block circulant matrix C(Pcsp; 2cn, s/n) is non 

negative definite for some c G [1, m/n] such that en is a highly composite integer. If the 

standard embedding approach fails, the search proceeds based on the user's preferences. If 

the GaussRF parameter stationary. only is set to FALSE, stationarity is not essen 

tial, and the intrinsic embedding technique provides a particularly efficient alternative. Let 

c be such that en is the smallest highly composite integer greater than or equal to n/s, and 

define gcs as in (3.8). The GaussRF function uses the intrinsic embedding technique if 

en < m and the block circulant matrix C(Pcsacs; 2cn, s/n) is nonnegative definite, or if 

2cn < m and C(P2csg2cs; 2 2cn, s/n) is nonnegative definite. If the intrinsic embedding 

approach fails, or if the parameter stationary. only is set to TRUE, the search turns to 

the cut-off embedding approach. If (3.5) or (3.7) yield a cut-off, r, such that r/s < m/n, 
we define p by (3.4) or (3.6), respectively, find the smallest c > r/s such that en is a 

highly composite integer, and check whether the block circulant matrix C(Pcsp; 2cn, s/n) 
is nonnegative definite. There is no guarantee that any of the approaches works, and exact 

simulation may not be feasible. 

At various stages in this search, block circulant matrices need to be checked for nonneg 

ative definiteness. Whenever possible, we use theoretical results or look-up tables for doing 

this. A less computationally efficient alternative is to determine the eigenvalues numeri 

cally using the fast Fourier transform. In this numerical test, we consider a block circulant 

matrix to be nonnegative definite if the real parts of all eigenvalues are nonnegative and 

the moduli of the imaginary parts are small (10~8 or less, thereby allowing for numerical 

noise). Clearly, refinements in the automated search are possible. To simulate random fields 

with standard covariance structures, for instance, one might turn to the intrinsic embedding 

and cut-off embedding approaches directly, without attempting to invoke the standard ap 

proach. Applications in environmental risk assessment and simulation studies sometimes 

require large numbers of realizations. In these cases, parallel computing provides further 

improvements in computational feasibility and efficiency (Sevc?kov? 2004). 
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Figure 5. Current computational limits of exact simulation. We consider the simulation of intrinsically stationary 
Gaussian surfaces with powered exponential variogram, 7(h) 

= 1 ? exp( 
? 

\6\\\a ), on a square lattice in [0,1 ]2 
with spacing 1/n along each coordinate, using the standard circulant embedding (SE), cut-off embedding (CE), 
and intrinsic embedding (IE) techniques. For each method and for a = 0.50, 1.00, 1.50, and 1.75, the associated 

graph divides the (n, 6) plane into a lower area, for which exact simulation is feasible, and an upper area, for 
which the method fails. 

4.2 Current Computational Limits of Exact Simulation 

The cut-off embedding and intrinsic embedding approaches push the computational 

limits of exact simulation. Figure 5 illustrates the current limits for random fields with 

powered exponential dependence structure. Specifically, we consider the simulation of an 

intrinsically stationary Gaussian random field with variogram 7(h) 
= 1 ? exp( 

? 
Iflhl") 

on a square lattice in [0, l]2 with spacing 1/n along each coordinate. Assuming that we 

can apply the fast Fourier transform to square matrices of size at most 4096 x 4096, the 

graphs show the largest value of n for which exact simulation with the standard circulant 

embedding technique (SE), the cut-off embedding approach (CE), and the intrinsic embed 

ding approach (IE) is feasible. For each technique and for a = 
0.50,1.00,1.50, and 1.75, 

respectively, the associated graph divides the (n, 6) plane into a lower area, for which exact 

simulation is feasible, and an upper area, for which the method fails. The intrinsic embed 

ding approach applies very generally and allows for exact simulation on grids with spacing 

1/512 or larger for all parameter combinations that we considered. The cut-off embedding 

method outperforms the standard circulant embedding technique for various parameter 
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Figure 6. Exact realization of a Gaussian surface using the intrinsic embedding technique. The random field 
has powered exponential variogram, 7(h) 

= 1 ? exp(?Ihl1-75), and the simulation domain is a square grid in 

[0,1 ]2 with spacing 1/512 along each coordinate. 

combinations, particularly when a is small, but is not quite as generally applicable as the 

intrinsic embedding approach. 

4.3 Example 

Figure 6 shows a realization of an intrinsically stationary Gaussian surface with pow 
ered exponential variogram and parameter values a = 1.75 and 0 = 1, respectively. The 

simulation domain is a square grid in [0, l]2 with spacing 1/512 along each coordinate. The 

following commands were used to generate this surface with the RandomFields package 

using the intrinsic embedding technique: 

InitGaussRF(x=c(0/l/1/512), 7=0(0,1,1/512), grid=TRUE, 

gridtriple=TRUE, param=c(0,1,0,1,1.75), 

model="stable", method="intr") 

surface <- DoSimulateRF(n=n) 

Here, n is the desired number of simulations for the Gaussian surface. On our 512 MB RAM 

machine, the calls to the InitGaussRF and DoSimulateRF functions take 12 and 9 n 

seconds, respectively. The parameter method=" intr" enforces the use of the intrinsic 

embedding technique, without invoking a prior search for a suitable simulation method. 

The visual display in Figure 6 uses functions implemented in the RGL visualization device 

system for the R language (Adler, Nenadic, and Zucchini 2003). Neither the Cholesky 

decomposition nor the standard circulant embedding or the cut-off embedding approach 

provide exact simulations in this situation; see Figure 5 (p. 497). 
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5. DISCUSSION 

We studied the use of the cut-off embedding and intrinsic embedding techniques for 
fast and exact simulation of planar Gaussian surfaces. These methods allow for exact sim 

ulations on square lattices with 106 and more grid points for wide classes of processes, 

including those with isotropic powered exponential, Mat?rn, and Cauchy covariances. Ex 

tensions to rectangular lattice systems and more general second-order structures, such 

as geometric anisotropies, are feasible and have been implemented in Version 1.3.7 of 

the R package RandomFields. Detailed descriptions and examples are available in the 

RandomFields reference manual. 

In the theoretical part of this study, we showed that various types of compactly supported 
functions that derive from standard covariance models yield valid isotropic covariance func 

tions in the Euclidean plane. These results do not apply to random fields with differentiable 

sample paths whose covariance functions, cp, necessarily behave at the origin like (3.3) with 

a = 2. Generally, the smoother the process, the harder it is to make the cut-off embedding 

and intrinsic embedding techniques work, because a covariance function that is smooth at 

the origin requires even greater smoothness elsewhere (Stein 1999, p. 47; Gneiting 1999b). 
Hence, to find positive definite, compactly supported functions of the form (2.1) and (2.2) 
in cases in which p is smooth at the origin, it seems necessary that some of the higher order 
derivatives of p, i/j and the null function be matched as well. At present, we do not know 

of parametric forms for ip that maintain positive definiteness and achieve this. 
Numerical experiments can provide practical guidance when theoretical results are un 

available, as illustrated in Figures 1 through 4. Figure 4 (p. 495) shows that the intrinsic 

embedding approach can be successfully applied to simulate sample paths for some Mat?rn 

covariances with smoothness parameter v > 1, which are twice differentiable at the origin 

and correspond to random fields with differentiable realizations. It might also be of interest 
to note that arbitrarily smooth, stationary and isotropic covariance functions with compact 

support exist (Gneiting 2002). The respective random fields can be simulated using the 
standard circulant embedding technique. 

Another topic for future research is the use of cluster samples in simulation studies, 

which we alluded to in Section 2.2. Once the initial matrix decomposition has been achieved, 

any single simulation with the circulant embedding technique yields multiple, dependent 
realizations on the lattice of interest, of which traditionally only one is being used. Ver 

sion 1.3.7 of the R package RandomFields allows one to extract multiple (mutually 

dependent) realizations, and preliminary studies show evidence of notable increases in 

computational efficiency in using these. 
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