
Examples of Cokriging with the Function cok

Hao Zhang

April 2014

In this note, I will present two examples of using the function cok for ordinary
cokriging.

Example 1. Suppose we have two processes observed at two sets of locations, loc1
and loc2, and predict the first process at some new locations, newloc. Figure 1 shows
all the locations.

loc1 = cbind(rep(1:10, 10), rep(1:10, each = 10))/10

loc2 = cbind(rep(2 * (1:4) + 0.2, 4), rep(2 * (1:4) +

0.2, each = 4))/10

plot(loc1)

points(loc2, pch = 19)

newloc = cbind(rep(1:15, 15), rep(1:15, each = 15))/15

plot(loc1)

points(loc2, pch = 19)

newloc = cbind(rep(1:15, 15), rep(1:15, each = 15))/15

points(newloc, pch = 20)

Suppose we will use the following bivariate covariogram for the cokriging,

C(h) =

(
2 0.98
0.98 1

)
exp(−h/0.2) +

(
1 1.04

1.04 3

)
exp(−h/0.3).

We define the following covariogram in R

cov.lcm = function(distance, para) {
para[1] * exp(-distance/para[2]) + para[3] *

exp(-distance/para[4])

}

1

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

loc1[,1]

lo
c1

[,2
]

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

0.2 0.4 0.6 0.8 1.0
0.

2
0.

4
0.

6
0.

8
1.

0

loc1[,1]

lo
c1

[,2
]

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Figure 1: Locations

The function cok is applied as follows.

y = rnorm(nrow(loc1) + nrow(loc2))

cok(data = list(y[1:100], y[101:116]), sampleLoc = list(loc1,

loc2), predLoc = newloc[1:10,], cov.fun = list("cov.lcm",

"cov.lcm", "cov.lcm"), cov.pars = list(c(2, 0.2,

1, 0.3), c(1, 0.2, 3, 0.3), c(0.98, 0.2, 1.04,

0.3)))

[1] -0.52962 0.20465 1.37431 0.86329

[5] -0.01036 -0.66280 -0.41161 0.01664

[9] 0.18117 -0.45962

Note for illustration only, I generated i.i.d observations for y. Ideally, we would
want to generate from the underlying model. Whatever the observation vector y is,
you apply the function cok in the same way.

Example 2.The primary spatial variable is the soil temperature and the auxiliary
variable is the air temperature in the data set paws. Sample data revealed that the
two variables are correlated, as shown in Figure 2.

2

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

36 38 40 42 44 46

32
34

36
38

40
42

44

Air

S
oi

l

Figure 2: Locations in PAWS data

Let us apply the following model

Y1(s) = a + bY2(s) + e(s), (1)

where Y1(s) and Y2(s) represent the soil and temperature at location s, respectively,
e(s) is a stationary process and independent of the process Y2(s). The predictor for
Y1(s0) is

Ŷ1(s0) = a + bY2(s0) + ê(s0), (2)

where ê(s0) is the ordinary kriging predictor for e(s0) based on the residuals e(si) =
Y1(si)− a− bY2(si).

1. Let C11(h) and C22(h) denote the covariogram of Y1(s) and Y2(s), respectively,
and C(s) denote the covariogram of the error e(s). Also let C12(h) denote the
cross-covariogram of Y1(s) and Y2(s). Show that

C11(h) = b2C22(h) + C(h), C12(h) = bC22(h). (3)

2. Use a = 1.3389, b = 0.8458 to calculate the residuals e(si) = Y1(si) − a −
bY2(si). Fit an exponential covariogram model to the residuals by the maximum
likelihood method.

3

library(geoR)

attach(paws)

The following object is masked _by_ .GlobalEnv:

##

X

a = 1.3389

b = 0.8458

residuals = Soil8 - a - b * Air

plot(variog(coords = paws[, c("X", "Y")], data = residuals))

variog: computing omnidirectional variogram

residual.fit = likfit(coords = paws[, c("X", "Y")],

data = residuals, ini.cov.pars = c(2, 60), nugget = 8,

method = "ML")

likfit: likelihood maximisation using the function optim.

likfit: Use control() to pass additional

arguments for the maximisation function.

For further details see documentation for optim.

likfit: It is highly advisable to run this function several

times with different initial values for the parameters.

likfit: WARNING: This step can be time demanding!

likfit: end of numerical maximisation.

estim.resid = unlist(residual.fit[c(2, 4, 5)])

4

●

●

●

●
●

●
●

●

●

●

●

●

●

0 50 100 150 200

0
2

4
6

8
10

distance

se
m

iv
ar

ia
nc

e

3. Fit an exponential covariogram model to the air temperature Y2(s) through the
maximum likelihood method. You then have an estimated C22(h).

air.fit = likfit(coords = paws[, c("X", "Y")], data = paws$Air,

ini.cov.pars = c(6, 60), nugget = 1, method = "ML")

likfit: likelihood maximisation using the function optim.

likfit: Use control() to pass additional

arguments for the maximisation function.

For further details see documentation for optim.

likfit: It is highly advisable to run this function several

times with different initial values for the parameters.

likfit: WARNING: This step can be time demanding!

likfit: end of numerical maximisation.

(estim.air = unlist(air.likfit[c(2, 4, 5)]))

nugget sigmasq phi

0.7216 6.8878 85.2964

5

4. We now use model (2) to find the cokriging prediction for the soil temperature
at the last or the 39th location using the air temperature of all 39 locations and
the soil temperature at the first 38 locations.

cov.exp = function(x, para) {
para[1] * (x == 0) + para[2] * exp(-x/para[3])

}
cov.soil = function(x, para) {

beta = 0.8458

cov.exp(x, para) + beta^2 * cov.exp(x, estim.air)

}
cok(data = list(paws[-39,]$Soil8, paws$Air), sampleLoc = list(paws[-39,

c("X", "Y")], paws[, c("X", "Y")]), predLoc = c(paws[39,

]$X, paws[39,]$Y), cov.fun = list("cov.soil",

"cov.exp", "cov.exp"), cov.pars = list(estim.resid,

estim.air, c(b * estim.air[1:2], estim.air[3])))

[1] 38.93

answer=38.93365

5. As shown in class, the cokriging prediction should equal the the following pre-
diction

ŷ39 = 1.3389 + 0.8458Yair,39 + ê39,

where ê39 is the ordinary kriging for e(s39) based on the residuals at the first
38 locations. You should find that the two predictions are equal.

e.pred = krige.conv(coords = paws[-39, c("X", "Y")],

data = residuals[-39], locations = paws[39, c("X",

"Y")], krige = krige.control(cov.model = "exponential",

cov.pars = c(sigmasq = estim.resid[2], phi = estim.resid[3]),

nugget = estim.resid[1]))$predict

krige.conv: model with constant mean

krige.conv: Kriging performed using global neighbourhood

6

a + b * Air[39] + e.pred

data

38.93

7

