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R and RStudio

@ R is a free software environment for statistical computing and graphics

e An independent implementation of the S language
o Available from https://cran.r-project.org

@ RStudio provides a free and open-source integrated development
environment (IDE) for R
o Available to run on the desktop (Windows, Mac, and Linux) or in a

browser connected to RStudio Server
o Available from https://www.rstudio.com/products/rstudio/
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R Packages

@ Statistical tools available in R as packages

@ Each package bundles together codes, data, and documentation to
share

@ There are over 10,000 R packages available in the Comprehensive R
Archive Network (CRAN)

@ Packages we are going to use today:

stat: 7 "stats-package"
pls: ? pcr or 7 plsr
systemfit:

pocre: available from us
randomForest:
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Data Structure in R

@ Common: vectors of character, numeric, logical, factor; list, matrix,

array

@ Most popular data structure: data.frame
@ Data frame is a list of variables of the same length

mbd <- read.table("metabdata.csv",header=T,sep=

’II)

head(mbd[,1:7]) # metabolites' abundance in mbd[,7:30]

##
#Hit
##
#Hit
##
##
##

Diagnosis Age Gender

Polyps
Polyps
Polyps
Polyps
Polyps
Polyps

o O WN -
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48
50
53
53
55
55

ERAMmE=R

Advanced Multivariate Statistical Methods f

22.
32.
23.
22.
24.
33.

BMI Smoking Alcohol

00
80
34
30
50
00

Yes
No
No
No
No
No

No
No
Yes
No
Yes
No

Formate
10.284198
2.190488
12.954623
4.533463
8.096929
12.643753
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summary (mbd[,1:4])

## Diagnosis Age Gender
## Healthy:58 Min. :48.00 F:49
## Polyps :44 1st Qu.:56.00 M:53
## Median :61.00

#i# Mean :60.85

## 3rd Qu.:66.00

#i#t Max. :72.00
summary (mbd [,5:8])

## Smoking Alcohol Formate

## No :55 No :30 Min. 1.017
## Yes:47 Yes:72 1st Qu.: 4.867
## Median : 7.489
## Mean ¢ 8.279
#it 3rd Qu.:10.797
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BMI
Min. :18.
1st Qu.:24.
Median :27.
Mean :28.
3rd Qu.:32.
Max. 147,
Histidine
Min. : b,
1st Qu.: 84.
Median :105.
Mean :101.
3rd Qu.:121

30
25
04
40
35
93

985
514
250
397
.240
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Principal Component Analysis (PCA)

@ PCA is an unsupervised dimension reduction approach to construct
principal components

o First Principal Component: The direction which has the largest variation
e Second Principal Component: The direction which has the second
largest variation

@ Function in statS package: prcomp(x, retx=T, center=T, scale.=F)

? prcomp

@ As different variables may vary at significantly different scales, scaling
is preferred, i.e., set scale.=T
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plot (nspca<-prcomp (mbd[,7:30]))

Variances

nspca <— prcomp(mbdl[, 7:30])
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plot (scpca<-prcomp(mbd[,7:30],scale.=T))

scpca <— prcomp(mbd[, 7:30], scale. = T)

Variances
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@ Checking with summary (scpca), we observe that the first two PCs
account for 44.51% and 11.86% of the total variation, respectively.

@ The first five PCs account for over 75% of the total variation.

@ We can choose the number of components based on how much of the
total variation can be accounted for.

@ Question: What do the PCs imply?
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@ There are culsters of metabolites shown in biplot of the first two PCs

biplot(scpca)
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Principal Components Regression

@ When some response variables like clinical traits are interested, we may
regressing Y against principal components of predictors, instead of
regressing directly against the original predictors

o Avoid collinearity between predictors!
o Avoid overfitting due to a large number of predictors!

@ Function in pls package: pcr(y~x, scale=FALSE, validation=c("none",
“CV", “LOO"))

? pcr

@ As different variables may vary at significantly different scales, scaling
is preferred, i.e., set scale=T
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require(pls,warn.conflicts=F,quietly=T)

idiag <- as.integer(mbd$Diagnosis) # 1~Healthy, 2~Polyps
lmpcr <- pcr(idiag~as.matrix(mbd[,7:30]),5)

summary (lmpcr)

## Data: X dimension: 102 24

## Y dimension: 102 1

## Fit method: svdpc

## Number of components considered: 5

## TRAINING: J variance explained

#i# 1 comps 2 comps 3 comps 4 comps b5 comps
## X 69.927 82.850 91.884 94.922 96.351
## idiag 1.931 1.942 2.125 2.216 2.753
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@ Although the first five PCs account for over 95% of the variation in
metabolites, they only account for less than 3% of the total variation
in the clinical trait
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x1 <- as.matrix(mbd[,7:30])%*%scpca$rotation

idiag <- as.integer(mbd$Diagnosis) # 1~Healthy, 2~Polyps
plot(x1[,1],x1[,2],type = "n"
text(x1[,1],x1[,2],labels=idiag,col=c('red', 'blue') [idiag])
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bmipcr <- pcr(mbd$BMI~as.matrix(mbd[,7:30]),5)
summary (bmipcr)

## Data: X dimension: 102 24

## Y dimension: 102 1

## Fit method: svdpc

## Number of components considered: 5

## TRAINING: % variance explained

## 1 comps 2 comps 3 comps 4 comps b5 comps
## X 69.93 82.85 91.88 94 .92 96.35
## mbd$BMI 23.71 24.77 24 .87 24 .88 25.09

@ Although the first five PCs account for over 95% of the variation in
metabolites, they only account for about 25% of the total variation in
BMI

@ Therefore, the leading principal components may not contribute
significantly to explaining Y
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Partial Least Squares (PLS)

@ PLS is a supervised dimension reduction approach to construct
principal components
e principal components are constructed to be the most correlated to the
response variable (like clinical traits)

e also works for multiple responses (e.g., multiple clinical traits), and
builds a latent model

@ PLS has all the advantages that PCA has

o Avoid collinearity!
o Avoid overfitting!

@ Function in pls package: plsr(Y~X, ncomp, scale=F,
validation=c("none","CV","L0O0O"))

? plsr
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plsres <- plsr(idiag~as.matrix(mbd[,7:30]),5,scale=T)
summary (plsres)

## Data: X dimension: 102 24

## Y dimension: 102 1

## Fit method: kernelpls

## Number of components considered: 5

## TRAINING: % variance explained

#i# 1 comps 2 comps 3 comps 4 comps 5 comps
## X 43.273  52.666 58.69 62.99 66.68
## idiag 2.802 7.867 13.07 16.08 17.75

@ The first five components account for about 2/3 of total variation in
metabolites, and about 18% of total variation in the clinical trait,
significantly improved from PCR.
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plsres <- plsr(mbd$BMI~as.matrix(mbd[,7:30]),5,scale=T)
summary (plsres)

## Data: X dimension: 102 24

## Y dimension: 102 1

## Fit method: kernelpls

## Number of components considered: 5

## TRAINING: J variance explained

#i# 1 comps 2 comps 3 comps 4 comps 5 comps
## X 44 .24 50.35 59.07 64.03 68.21
## mbd$BMI 20.84 32.31 35.79 39.22 41.44

@ The first five components account for almost 70% of total variation in
metabolites, and also over 40% of total variation in BMI.
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@ Question: How many components to choose? How to choose?

o Based on R?

o Cross-validation
o Significance test?
o Predictibility?
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@ PLS can also construct the same set of principal components for

multiple traits (i.e., multiple Y)

dbpres <- plsr(as.matrix(mbd[,c(12,4)])~as.matrix(mbd[,7:11])

+as.matrix(mbd[,13:30]),5)
summary (dbpres)

## Data: X dimension: 102 23

## Y dimension: 102 2

## Fit method: kernelpls

## Number of components considered: 5
## TRAINING: J variance explained

#i# 1 comps 2 comps 3
## X 63.66 73.63
## Unsaturate.Lipids 70.97 94.48
## BMI 23.97 23.99
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@ The first five PCs account for almost 95% of total variation in
metabolites (excluding the unsaturated lipids), and also account over
97% of total variation in the unsaturated lipids and almost one-quarter
of total variation in BMI.

mbd$idiag <- as.integer(mbd$Diagnosis)

mbd$igender <- as.integer (mbd$Gender)

mbd$ismoke <- as.integer (mbd$Smoking)

mbd$ialco <- as.integer(mbd$Alcohol)

mbres <- plsr(as.matrix(mbd[,7:30])~idiag+igender+ismoke
+ialco+I(as.matrix(mbd[,c(2,4)])),3,data=mbd)
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summary (mbres)

##
#t
##
#Hit
##
#Hit
##
##
##
##
##
##
#Ht
##
#Hit
##

Data: X dimension: 102 6
Y dimension: 102 24
Fit method: kernelpls

Number of components considered:

TRAINING: % variance explained

1 comps
X 46.1429
Formate 9.2535
Histidine 20.2880
Phenylalanine 1.3291
Tyrosine 8.9094
Urea 1.5972
Unsaturate.Lipids 19.3383
Glucose 9.3427
Threonine 5.0259
Lactate 3.1344

2 comps

.8788
.8472
.5142
.3539

9.1081

.5984
. 3432
.6421
.03562
.7664
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Seemingly Unrelated Regression (SUR)

@ Simultaneous modeling multiple traits (Y’), both PLS and SUR allow
each trait to borrow information from other traits

@ PLS assumes a latent-variable model. That is, every trait is affected by
the same set of latent varibles (PCs).

@ Unlike PLS, SUR allows each trait has its unique linear model.

@ Function in systemfit package: systemfit(formula,method =
"QLsS",...)

require(systemfit,warn.conflicts=F,quietly=T)

##
## Attaching package: 'zoo'

## The following objects are masked from 'package:base':
##

## as.Date, as.Date.numeric
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eqAcetoac <- Acetoacetate~Age+BMI+idiag+igender+ismoke+ialco
eqX3 <- X3.hydroxybutyric.acid~Age+BMI+idiag+igender+ismoke+i:
system <- list(Acetoac=egAcetoac,X3=eqX3)

sres <- systemfit(system,method="SUR",data=mbd)

summary (sres)

##

## systemfit results

## method: SUR

##

#H N DF SSR  detRCov  OLS-R2 McElroy-R2
## system 204 190 11482707 173336955 0.092359  0.074933
##

#i# N DF SSR MSE RMSE R2  Adj I
## Acetoac 102 95 651239 6855.14 82.7958 0.082152 0.0241¢
## X3 102 95 10831468 114015.45 337.6617 0.092965 0.0356"
#i#

## The covariance matrix of the residuals used for estimation
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coefficients(summary(sres))

##
##
##
##
##
#Ht
##
#Hit
##
##
##
##
##
##
##t

Acetoac_(Intercept) 354.
Acetoac_Age -1.
Acetoac_BMI -2.
Acetoac_idiag 5.
Acetoac_igender -12.
Acetoac_ismoke 0.
Acetoac_ialco 26.
X3_(Intercept) 1577.
X3_Age -6.
X3_BMI -12.
X3_idiag 48.
X3_igender -91.
X3_ismoke -28.
X3_ialco 51.

Estimate Std.

2969326
8018247
5804107
9346055
8776547
6527157
6352316

8926237
8266555
6615663
9532559
4934840
5094591

90
1
1

17.
17.
17.
18.
2358868 369.
5.
5.
T1.
70.
70.
4.

Error
.578853
.313164
.395189
519627
167888
356886
345641
403012
355406
689926
449381
014904
785685
818070
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.33874041
.75010127
.03760557
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t value
91147516
37212509

4.26968875
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High-Dimensional Data & Big Data

@ Challenge due to High-Dimensional Data:

o A large number of available covariates
o A relative small number of them are correlated to y

o Example:
o Number of metabolites may be much larger than the sample size!

@ With all metabolites included to study a clinical trait, principal
components may be dominated by variation of unrelated metabolites

e The importance of related metabolites may be significantly perturbed
o Reults in low predictibility
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library(POCRE); data(simdata)

yy <- simdata[1:50,1]

xx <- as.matrix(simdata[1:50,2:1001])

xxs <- as.matrix(xx[,1:200])

axpls <- plsr(yy~xx,5) # Using all z

sxpls <- plsr(yy~xxs,5) # Using selected z
xxn <- simdata[51:100,2:1001] # new z

xxsn <- as.matrix(xxn[,1:200]) # new =

ya <- predict(axpls,xxn)

ys <- predict(sxpls,xxsn)
sum((simdatal[51:100,1]-yal,,5])"2) #prediction error when usi

## [1] 34609.83

sum((simdata[51:100,1]-ys[,,5])"2) #prediction error when usi

## [1] 1148.673
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@ The simulated Y is affected by twenty true predictors:
X1, X10, X101, - -+, X110

@ When we apply PLS to all 1,000 predictors, the prediction error is over
34,000.

@ When we apply PLS to 200 predictors including the true twenty, the
prediction error is dramatically decreased under 1,150.

@ Indeed, the correlation of predicted values to the true values is also
significantly increased from 0.15 to 0.99.

cor(simdata[51:100,1],cbind(yal,,5],ys[,,5]))

#it [,1] [,2]
## [1,] 0.1523343 0.9858016

@ Therefore, it is crucial to selecte important predictors to build up
high-dimensional models, even for supervised dimension reduction.
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Penalized Orthogonal-Components Regression
(POCRE)

@ POCRE is a supervised dimension reduction method for
high-dimensional data

@ POCRE simultaneously selects important variables and constructs
principal components of selected variables

@ Like PLS, POCRE constructs principal components which are the most
correlated to Y

@ Like PLS, POCRE also works for multiple Y, and builds a latent model

@ Advantage:

e Avoid collinearity!
e Avoid overfitting!
o Select important variables

@ The R package POCRE is available: POCRE_0.1.0.tar

install.packages("POCRE_0.1.0.tar")
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@ Major functions available in POCRE:

e pocrescreen — Screen for a pre-specified number of predictors based on
supervised dimension reduction

e pocre — Build linear regression model based on supervised dimension
reduction with a pre-specified tuning parameter

e pocrepath — Build linear regression model for a series of tuning
parameters

o selectmodel — Select the optimal tuning parameter and the
corresponding model based on information criteria, including EBIC, BIC,
AIC, AlCc.

e cvpocre — Choose the optimal tuning parameter via cross-validation

e sipocre — Evaluate the significance of predictions identified by POCRE
using the multiple splitting method.
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pocrescreen(inY, inX, maxvar=nrow(inX),
maxcmp=5, inEIdx=NULL, ...)

@ It screens the variables and stores the selected predictors and their
indices.

xx <- scale(as.matrix(simdatal,-1]))
yy <- scale(as.matrix(simdatal,1]))
psres <- pocrescreen(yy,xx,maxvar=50,maxcmp=10)

## Screening variables ..........

psX <- psres$retX; psXIdx <- psres$retSIdx
rbind (psXIdx[1:10],psXIdx[11:20])

#it (,11 [,2]1 [,3] [,4] [,5]1 [,6] L[,7] [,8] [,9] [,10]
## [1,] 1 2 3 4 5 6 7 9 10 11
##t [2 13 15 101 102 104 105 106 107 108 110
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R
pocre(inY, inX, inTP=1, covidx=NA,
maxvar=dim(inX) [1]/2, maxcmp=10, ...)

@ Build linear regression model based on supervised dimension reduction
with a pre-specified tuning parameter (inTP)

o The tuning parameter should be positive and usually around one,
implying that the correlation among high-dimensional data may bias
down or up the variance estimate.

tres <- pocre(yy,xx)$retRes # inTP=1 by default
tXIdx <- which(abs(tres$beta)>1e-6)
tXIdx

@ POCRE identifies Xi,--- , X5, X101, - - , X117, including all true
predictors
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pocrepath(inY, inX, covidx=NA, XId=NA,
maxvar=dim(inX) [1]/2, maxcmp=10, delta=0.1,
ce)

@ Run POCRE by automatically scanning a series of tuning parameter
values around one

ppres <- pocrepath(yy,xx,delta=0.01) # Scan tuning paramet

@ By default, pocrepath() starts at inTP=1 and increase inTP by delta
consecutively until it will identify no predictor because of too large
inTP; Then it will decrease at inTP=1-delta until it
identifies too many predictors.

o It will return the results for each scanned tuning parameter inTP (also
known as lambda in the below).

o The function selectmodel can be applied to pocrepath() results to
select the optimal tuning parameter.
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@ selectmodel (inRes) select the optimal tuningparameter based on
some information criteria, such as EBIC, BIC, AIC, and AlCc.

optres <- selectmodel (inRes=ppres)

@ Several functions are available in POCRE package to plot the results of
pocrepath() and help select the tuning parameter (inTP=Ilambda).

o plotbetanzbeta() provides the plot of lambda vs. beta and number of
nonzero-beta for the results from pocrepath().

o plotbetarsq() provides the plot of lambda vs. beta and R? for the results
from pocrepath().

o plotrsqnzbeta() provides the plot of lambda vs. R? and number of
nonzero-beta.

plotbetanzbeta(ppres)
plotbetarsq(ppres)
plotrsqnzbeta(ppres)
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@ As shown in the above figures, we may choose an appropri.ate tuning
parameter (inTP=Ilambda) based on R? and the number of identified
predictors.
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@ POCRE can also fit a high-dimensional linear regression model for

multiple traits (Y)

@ Example: the data set simbydata in POCRE package has five response

variables simulated from the same components.

data('simbydata')
dim(simbydata)

## [1] 100 1005

xx = as.matrix(simbydatal,-(1:5)])

yy = as.matrix(simbydatal,1:5])
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@ Similarly, we can first run pocrepath() to automatically scan a seires
of possible tuning parameter values (inTP=Ilambda), and then use
‘selectmodel()’ to select the optimal tuning parameter based on some
information criteria.

ppres <- pocrepath(yy, xx, delta=0.01)
optres <- selectmodel(inRes = ppres)

@ Again, we can use the differnt functions to plot the results of
pocrepath() and select an appropriate tuning parameter based on R?
and/or the number of identified predictors.

plotbetanzbeta(ppres)

plotbetarsq(ppres)

plotrsqnzbeta(ppRes)
plotcomponents (ppres, inLambda=optres$lambda)
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A Real High-Dimensional Data Set

@ The objective of this research is to assess the effect of the miRNA on
the protein expression in breast cancer.
e Tumors from 283 primary breast cancer patients belonging to Oslo2

cohort were profiled for genome-wide miRNA expression using Agilent
microarrays

o A selected panel of 105 cancer-related proteins were profiled for protein
expression using reverse-phase protein arrays as well.
@ The miRNA expression data can be found on Gene Expression
Omnibus (GEO) database with accession number GSE58210.

*The protein expression data can be found on the additional file 4 attached
to the paper + Aure MR, Jernstrom S, Krohn M, Vollan HK, Due EU,
Rodland E, Oslo Breast Cancer Research Consortium, Ram P, Lu Y, Mills
GB, Sahlberg KK, Borresen-Dale A-L, Lingjerde OC, Kristensen VN (2015).
Integrated analysis reveals microRNA networks coordinately expressed with
key proteins in breast cancer. Genome Medicine, 7: 21.
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protein<-read.xlsx('pe.xlsx',17,startRow = 2,
colNames = TRUE,rowName=T) [,-1]

protein<-t(protein)

miRNA<-fread('GSE58210_NormalizedData_withannotations.txt',
header=T,fill=T)

miRNA<-as.data.frame (miRNA)

namemiRNA<-miRNA[, 1]

miRNA<-miRNA[,-(1:7)]

rownames (miRNA) <-namemiRNA

miRNA<-t (miRNA)

ry<-protein

rx<-miRNA

dim(rx)

dim(ry)
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@ We first screen the variables with pocrescreen() and store the
selected X variables and their indices

resultmiRNA <- pocrescreen(ry, rx, maxvar=100, maxcmp=5)
tmpX <- resultmiRNA$retX
tmpXIdx <- resultmiRNA$retSIdx

@ We then fit the data with pocrepath()

ppResmiRNA <- pocrepath(ry, inX=tmpX, XId=tmpXIdx, delta=0.02!
maxvar=50, maxcmp=10, pval=F)
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@ We then use selectmodel () to select the best model on the basis of
a prespecified criterion ( AIC by default)

optResmiRNA <- selectmodel (inRes=ppResmiRNA)

@ We can also visualize the results by interactive plots
plotbetanzbeta(ppResmiRNA,XId=tmpXIdx)

plotbetarsq(ppResmiRNA,XId=tmpXIdx)
plotrsgnzbeta(ppResmiRNA)

@ We can plot the principal components for the optimal model we select.

plotcomponents (ppResmiRNA, inLambda=optResmiRNA$lambda,
XIdx=tmpXIdx,name=T)
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