Advanced Multivariate Statistical Methods for Metabolomic Data Analysis

Dabao Zhang, Min Zhang

June 24, 2018

Outline

- R and RStudio
- Principal Component Analysis (PCA)
- Partial Least Squares (PLS)
- Seemingly Unrelated Regression (SUR)
- Penalized Orthogonal-Components Regression (POCRE)
- Random Forest

- R is a free software environment for statistical computing and graphics
 - An independent implementation of the S language
 - Available from https://cran.r-project.org
- RStudio provides a free and open-source integrated development environment (IDE) for R
 - Available to run on the desktop (Windows, Mac, and Linux) or in a browser connected to RStudio Server
 - Available from https://www.rstudio.com/products/rstudio/

R Packages

- Statistical tools available in R as packages
- Each package bundles together codes, data, and documentation to share
- There are over 10,000 R packages available in the Comprehensive R Archive Network (CRAN)
- Packages we are going to use today:
 - stat: ? "stats-package"
 - pls: ? pcr or ? plsr
 - systemfit:
 - pocre: available from us
 - randomForest:

Data Structure in R

- Common: vectors of character, numeric, logical, factor; list, matrix, array
- Most popular data structure: data.frame
- Data frame is a list of variables of the same length

mbd <- read.table("metabdata.csv",header=T,sep=",")
head(mbd[,1:7]) # metabolites' abundance in mbd[,7:30]</pre>

##		Diagnosis	Age	Gender	BMI	Smoking	Alcohol	Formate
##	1	Polyps	48	М	22.00	Yes	No	10.284198
##	2	Polyps	50	М	32.80	No	No	2.190488
##	3	Polyps	53	F	23.34	No	Yes	12.954623
##	4	Polyps	53	F	22.30	No	No	4.533463
##	5	Polyps	55	М	24.50	No	Yes	8.096929
##	6	Polyps	55	М	33.00	No	No	12.643753

summary(mbd[,1:4])

##	Diagnosis	Ag	ge	Gender	BN	1I
##	Healthy:58	Min.	:48.00	F:49	Min.	:18.30
##	Polyps :44	1st Qu.	:56.00	M:53	1st Qu.	:24.25
##		Median	:61.00		Median	:27.04
##		Mean	:60.85		Mean	:28.40
##		3rd Qu.	:66.00		3rd Qu.	:32.35
##		Max.	:72.00		Max.	:47.93

summary(mbd[,5:8])

##	Smoking	Alcohol	Formate	Histidine
##	No :55	No :30	Min. : 1.017	Min. : 5.985
##	Yes:47	Yes:72	1st Qu.: 4.867	1st Qu.: 84.514
##			Median : 7.489	Median :105.250
##			Mean : 8.279	Mean :101.397
##			3rd Qu.:10.797	3rd Qu.:121.240
	Nelson Zhanna Mila	71	and a Market state Constant of Mark	bada (bure 04 0010

Dabao Zhang, Min Zhang

Advanced Multivariate Statistical Methods f

Principal Component Analysis (PCA)

- PCA is an unsupervised dimension reduction approach to construct principal components
 - First Principal Component: The direction which has the largest variation
 - Second Principal Component: The direction which has the second largest variation
 -
- Function in statS package: prcomp(x, retx=T, center=T, scale.=F)
- ? prcomp

 As different variables may vary at significantly different scales, scaling is preferred, i.e., set scale.=T plot(nspca<-prcomp(mbd[,7:30]))</pre>

1e+06 8e+05 6e+05 Variances 4e+05 2e+05 00+90

nspca <- prcomp(mbd[, 7:30])

plot(scpca<-prcomp(mbd[,7:30],scale.=T))</pre>

scpca <- prcomp(mbd[, 7:30], scale. = T)

- Checking with summary(scpca), we observe that the first two PCs account for 44.51% and 11.86% of the total variation, respectively.
- The first five PCs account for over 75% of the total variation.
- We can choose the number of components based on how much of the total variation can be accounted for.
- Question: What do the PCs imply?

• There are culsters of metabolites shown in biplot of the first two PCs

biplot(scpca)

PC1

Dabao Zhang, Min Zhang

Advanced Multivariate Statistical Methods

Principal Components Regression

- When some response variables like clinical traits are interested, we may regressing Y against principal components of predictors, instead of regressing directly against the original predictors
 - Avoid collinearity between predictors!
 - Avoid overfitting due to a large number of predictors!
- Function in pls package: pcr(y~x, scale=FALSE, validation=c("none", "CV", "LOO"))

? pcr

 As different variables may vary at significantly different scales, scaling is preferred, i.e., set scale=T

```
require(pls,warn.conflicts=F,quietly=T)
idiag <- as.integer(mbd$Diagnosis) # 1~Healthy, 2~Polyps
lmpcr <- pcr(idiag~as.matrix(mbd[,7:30]),5)
summary(lmpcr)</pre>
```

Data: X dimension: 102 24
Y dimension: 102 1
Fit method: svdpc
Number of components considered: 5
TRAINING: % variance explained
1 comps 2 comps 3 comps 4 comps 5 comps
X 69.927 82.850 91.884 94.922 96.351
idiag 1.931 1.942 2.125 2.216 2.753

 Although the first five PCs account for over 95% of the variation in metabolites, they only account for less than 3% of the total variation in the clinical trait xl <- as.matrix(mbd[,7:30])%*%scpca\$rotation idiag <- as.integer(mbd\$Diagnosis) # 1~Healthy, 2~Polyps plot(xl[,1],xl[,2],type = "n") text(xl[,1],xl[,2],labels=idiag,col=c('red','blue')[idiag])

June 24, 2018 15 / 44

bmipcr <- pcr(mbd\$BMI~as.matrix(mbd[,7:30]),5)
summary(bmipcr)</pre>

##	Data:	X dimens	ion: 102	24		
##	Y dimen	sion: 102	1			
##	Fit meth	od: svdpc				
##	Number of	f compone	nts consi	dered: 5		
##	TRAINING	: % varia	nce expla	ined		
##		1 comps	2 comps	3 comps	4 comps	5 comps
##	Х	69.93	82.85	91.88	94.92	96.35
##	mbd\$BMI	23.71	24.77	24.87	24.88	25.09

- Although the first five PCs account for over 95% of the variation in metabolites, they only account for about 25% of the total variation in BMI
- Therefore, the leading principal components may not contribute significantly to explaining *Y*

Partial Least Squares (PLS)

- PLS is a supervised dimension reduction approach to construct principal components
 - principal components are constructed to be the most correlated to the response variable (like clinical traits)
 - also works for multiple responses (e.g., multiple clinical traits), and builds a latent model
- PLS has all the advantages that PCA has
 - Avoid collinearity!
 - Avoid overfitting!
- Function in pls package: plsr(Y~X, ncomp, scale=F, validation=c("none", "CV", "LOO"))
- ? plsr

plsres <- plsr(idiag~as.matrix(mbd[,7:30]),5,scale=T)
summary(plsres)</pre>

##	Data:	X dime	nsion: 10	2 24		
##	Y dim	ension: 1	02 1			
##	Fit me	thod: ker	nelpls			
##	Number	of compo	nents con	sidered:	5	
##	TRAINI	NG: % var	iance exp	lained		
##		1 comps	2 comps	3 comps	4 comps	5 comps
##	Х	43.273	52.666	58.69	62.99	66.68
##	idiag	2.802	7.867	13.07	16.08	17.75

• The first five components account for about 2/3 of total variation in metabolites, and about 18% of total variation in the clinical trait, significantly improved from PCR.

plsres <- plsr(mbd\$BMI~as.matrix(mbd[,7:30]),5,scale=T)
summary(plsres)</pre>

##	Data:	X dimens	ion: 102	24		
##	Y dimen	sion: 102	1			
##	Fit meth	od: kerne	lpls			
##	Number o	f compone	nts consi	dered: 5		
##	TRAINING	: % varia	nce expla	ined		
##		1 comps	2 comps	3 comps	4 comps	5 comps
##	Х	44.24	50.35	59.07	64.03	68.21
##	mbd\$BMI	20.84	32.31	35.79	39.22	41.44

• The first five components account for almost 70% of total variation in metabolites, and also over 40% of total variation in BMI.

• Question: How many components to choose? How to choose?

- Based on R^2
- Cross-validation
- Significance test?
- Predictibility?

 PLS can also construct the same set of principal components for multiple traits (i.e., multiple Y)

##	Data: X dimension	: 102 2	3			
##	Y dimension: 102 2					
##	Fit method: kernelpl	S				
##	Number of components	consid	ered: 5			
##	TRAINING: % variance	explai	ned			
##	1	comps	2 comps	3 comps	4 comps	5 cc
##	Х	63.66	73.63	77.82	88.81	94
##	Unsaturate.Lipids	70.97	94.48	96.50	96.93	97
##	BMI	23.97	23.99	24.00	24.20	24

21/44

• The first five PCs account for almost 95% of total variation in metabolites (excluding the unsaturated lipids), and also account over 97% of total variation in the unsaturated lipids and almost one-quarter of total variation in BMI.

summary(mbres)

##	Data: X dimension	: 102 6		
##	Y dimension: 102 24			
##	Fit method: kernelpl	S		
##	Number of components	considered:	3	
##	TRAINING: % variance	explained		
##		1 comps	2 comps	3 comps
##	Х	46.1429	98.8788	99.211
##	Formate	9.2535	9.8472	9.905
##	Histidine	20.2880	20.5142	20.817
##	Phenylalanine	1.3291	1.3539	2.928
##	Tyrosine	8.9094	9.1081	9.391
##	Urea	1.5972	1.5984	2.329
##	Unsaturate.Lipids	19.3383	19.3432	23.564
##	Glucose	9.3427	10.6421	13.480
##	Threonine	5.0259	5.0352	5.744
	Lactate		3.7664	8.050
	Dabao Zhang, Min Zhang Advance	d Multivariate Statistical	Methods f	June 24, 20

June 24, 2018 23 / 44

Seemingly Unrelated Regression (SUR)

- Simultaneous modeling multiple traits (Y), both PLS and SUR allow each trait to borrow information from other traits
- PLS assumes a latent-variable model. That is, every trait is affected by the same set of latent varibles (PCs).
- Unlike PLS, SUR allows each trait has its unique linear model.
- Function in systemfit package: systemfit(formula,method = "OLS",...)

require(systemfit,warn.conflicts=F,quietly=T)

##

```
## Attaching package: 'zoo'
```

The following objects are masked from 'package:base':
##

as.Date, as.Date.numeric

```
eqAcetoac <- Acetoacetate~Age+BMI+idiag+igender+ismoke+ialco
eqX3 <- X3.hydroxybutyric.acid~Age+BMI+idiag+igender+ismoke+ia
system <- list(Acetoac=eqAcetoac,X3=eqX3)
sres <- systemfit(system,method="SUR",data=mbd)
summary(sres)
```

##								
##	systemf	it 1	resu	lts				
##	method:	SUF	1					
##								
##		Ν	DF	SSR	detRCov	OLS-R2	McElroy-H	32
##	system	204	190	11482707	173336955	0.092359	0.07493	33
##								
##		1	J DF	SSR	MSE	RMSE	R2	Adj F
##	Acetoac	: 102	2 95	651239	6855.14	82.7958	0.082152	0.02418
##	XЗ	102	2 95	10831468	114015.45	337.6617	0.092965	0.03567
##								
##	The cov	aria	ance	matrix of	f the resid	duals used	d for est:	imation
	Dabao Zhang,	Min Zha	ng	Advanced Mult	ivariate Statistical M	ethods f	June 24, 2018	25/44

coefficients(summary(sres))

##		Estimate	Std. Error	t value	
##	<pre>Acetoac_(Intercept)</pre>	354.2969326	90.578853	3.91147516	1.7
##	Acetoac_Age	-1.8018247	1.313164	-1.37212509	1.7
##	Acetoac_BMI	-2.5804107	1.395189	-1.84950625	6.7
##	Acetoac_idiag	5.9346055	17.519627	0.33874041	7.3
##	Acetoac_igender	-12.8776547	17.167888	-0.75010127	4.5
##	Acetoac_ismoke	0.6527157	17.356886	0.03760557	9.7
##	Acetoac_ialco	26.6352316	18.345641	1.45185616	1.4
##	X3_(Intercept)	1577.2358868	369.403012	4.26968875	4.6
##	X3_Age	-6.8926237	5.355406	-1.28704025	2.0
##	X3_BMI	-12.8266555	5.689926	-2.25427439	2.6
##	X3_idiag	48.6615663	71.449381	0.68106352	4.9
##	X3_igender	-91.9532559	70.014904	-1.31333832	1.9
##	X3_ismoke	-28.4934840	70.785685	-0.40253173	6.8
##	X3_ialco	51.5094591	74.818070	0.68846281	4.9

High-Dimensional Data & Big Data

- Challenge due to High-Dimensional Data:
 - A large number of available covariates
 - A relative small number of them are correlated to y
- Example:
 - Number of metabolites may be much larger than the sample size!
- With all metabolites included to study a clinical trait, principal components may be dominated by variation of unrelated metabolites
 - The importance of related metabolites may be significantly perturbed
 - Reults in low predictibility

```
library(POCRE); data(simdata)
yy <- simdata[1:50,1]</pre>
xx <- as.matrix(simdata[1:50,2:1001])</pre>
xxs <- as.matrix(xx[.1:200])
axpls <- plsr(yy~xx,5) # Using all x
sxpls <- plsr(yy~xxs,5) # Using selected x</pre>
xxn <- simdata[51:100,2:1001] # new x
xxsn <- as.matrix(xxn[,1:200]) # new x
ya <- predict(axpls,xxn)</pre>
ys <- predict(sxpls,xxsn)</pre>
sum((simdata[51:100,1]-ya[,,5])^2) #prediction error when usis
```

[1] 34609.83

sum((simdata[51:100,1]-ys[,,5])^2) #prediction error when usis

[1] 1148.673

28/44

- The simulated Y is affected by twenty true predictors: $X_1, \dots, X_{10}, X_{101}, \dots, X_{110}$
- When we apply PLS to all 1,000 predictors, the prediction error is over 34,000.
- When we apply PLS to 200 predictors including the true twenty, the prediction error is dramatically decreased under 1,150.
- Indeed, the correlation of predicted values to the true values is also significantly increased from 0.15 to 0.99.

cor(simdata[51:100,1],cbind(ya[,,5],ys[,,5]))

[,1] [,2]
[1,] 0.1523343 0.9858016

• Therefore, it is crucial to selecte important predictors to build up high-dimensional models, even for supervised dimension reduction.

Dabao Zhang, Min Zhang Advanced Multivaria

Advanced Multivariate Statistical Methods

Penalized Orthogonal-Components Regression (POCRE)

- POCRE is a supervised dimension reduction method for high-dimensional data
- POCRE simultaneously selects important variables and constructs principal components of selected variables
- Like PLS, POCRE constructs principal components which are the most correlated to *Y*
- Like PLS, POCRE also works for multiple Y, and builds a latent model
- Advantage:
 - Avoid collinearity!
 - Avoid overfitting!
 - Select important variables
- The R package POCRE is available: POCRE_0.1.0.tar

install.packages("POCRE_0.1.0.tar")

- Major functions available in POCRE:
 - pocrescreen Screen for a pre-specified number of predictors based on supervised dimension reduction
 - pocre Build linear regression model based on supervised dimension reduction with a pre-specified tuning parameter
 - pocrepath Build linear regression model for a series of tuning parameters
 - selectmodel Select the optimal tuning parameter and the corresponding model based on information criteria, including EBIC, BIC, AIC, AICc.
 - cvpocre Choose the optimal tuning parameter via cross-validation
 - sipocre Evaluate the significance of predictions identified by POCRE using the multiple splitting method.

pocrescreen(inY, inX, maxvar=nrow(inX),
maxcmp=5, inEIdx=NULL, ...)

 It screens the variables and stores the selected predictors and their indices.

```
xx <- scale(as.matrix(simdata[,-1]))
yy <- scale(as.matrix(simdata[,1]))
psres <- pocrescreen(yy,xx,maxvar=50,maxcmp=10)</pre>
```

Screening variables

psX <- psres\$retX; psXIdx <- psres\$retSIdx rbind(psXIdx[1:10],psXIdx[11:20])

pocre(inY, inX, inTP=1, covidx=NA, maxvar=dim(inX)[1]/2, maxcmp=10, ...)

- Build linear regression model based on supervised dimension reduction with a pre-specified tuning parameter (inTP)
 - The tuning parameter should be positive and usually around one, implying that the correlation among high-dimensional data may bias down or up the variance estimate.

tres <- pocre(yy,xx)\$retRes # inTP=1 by default
tXIdx <- which(abs(tres\$beta)>1e-6)
tXIdx

POCRE identifies X₁, · · · , X₁₅, X₁₀₁, · · · , X₁₁₇, including all true predictors

pocrepath(inY, inX, covidx=NA, XId=NA, maxvar=dim(inX)[1]/2, maxcmp=10, delta=0.1, ...)

• Run POCRE by automatically scanning a series of tuning parameter values around one

ppres <- pocrepath(yy,xx,delta=0.01) # Scan tuning paramete</pre>

- By default, pocrepath() starts at inTP=1 and increase inTP by delta consecutively until it will identify no predictor because of too large inTP; Then it will decrease at inTP=1-delta until it identifies too many predictors.
 - It will return the results for each scanned tuning parameter inTP (also known as lambda in the below).
 - The function selectmodel can be applied to pocrepath() results to select the optimal tuning parameter.

Dabao Zhang, Min Zhang Advanced Multivariate Statistical Methods f

• selectmodel(inRes) select the optimal tuningparameter based on some information criteria, such as EBIC, BIC, AIC, and AICc.

optres <- selectmodel(inRes=ppres)</pre>

- Several functions are available in POCRE package to plot the results of pocrepath() and help select the tuning parameter (inTP=lambda).
 - plotbetanzbeta() provides the plot of lambda vs. beta and number of nonzero-beta for the results from pocrepath().
 - plotbetarsq() provides the plot of lambda vs. beta and R^2 for the results from pocrepath().
 - plotrsqnzbeta() provides the plot of lambda vs. R^2 and number of nonzero-beta.

plotbetanzbeta(ppres)
plotbetarsq(ppres)
plotrsqnzbeta(ppres)

 As shown in the above figures, we may choose an appropriate tuning parameter (inTP=lambda) based on R² and the number of identified predictors.

- POCRE can also fit a high-dimensional linear regression model for multiple traits (Y)
- Example: the data set sim5ydata in POCRE package has five response variables simulated from the same components.

```
data('sim5ydata')
dim(sim5ydata)
```

```
## [1] 100 1005
```

```
xx = as.matrix(sim5ydata[,-(1:5)])
yy = as.matrix(sim5ydata[,1:5])
```

• Similarly, we can first run pocrepath() to automatically scan a seires of possible tuning parameter values (inTP=lambda), and then use 'selectmodel()' to select the optimal tuning parameter based on some information criteria.

```
ppres <- pocrepath(yy, xx, delta=0.01)
optres <- selectmodel(inRes = ppres)</pre>
```

• Again, we can use the differnt functions to plot the results of pocrepath() and select an appropriate tuning parameter based on R^2 and/or the number of identified predictors.

```
plotbetanzbeta(ppres)
plotbetarsq(ppres)
plotrsqnzbeta(ppRes)
plotcomponents(ppres,inLambda=optres$lambda)
```

A Real High-Dimensional Data Set

- The objective of this research is to assess the effect of the miRNA on the protein expression in breast cancer.
 - Tumors from 283 primary breast cancer patients belonging to Oslo2 cohort were profiled for genome-wide miRNA expression using Agilent microarrays
 - A selected panel of 105 cancer-related proteins were profiled for protein expression using reverse-phase protein arrays as well.
- The miRNA expression data can be found on Gene Expression Omnibus (GEO) database with accession number GSE58210.

*The protein expression data can be found on the additional file 4 attached to the paper + Aure MR, Jernstrom S, Krohn M, Vollan HK, Due EU, Rodland E, Oslo Breast Cancer Research Consortium, Ram P, Lu Y, Mills GB, Sahlberg KK, Borresen-Dale A-L, Lingjerde OC, Kristensen VN (2015). Integrated analysis reveals microRNA networks coordinately expressed with key proteins in breast cancer. Genome Medicine, 7: 21.

```
protein<-read.xlsx('pe.xlsx',17,startRow = 2,</pre>
                    colNames = TRUE, rowName=T)[,-1]
protein<-t(protein)
miRNA<-fread('GSE58210_NormalizedData_withannotations.txt',
              header=T.fill=T)
miRNA<-as.data.frame(miRNA)
namemiRNA<-miRNA[.1]
miRNA < -miRNA[.-(1:7)]
rownames(miRNA) <- namemiRNA
miRNA<-t(miRNA)
ry<-protein
rx<-miRNA
dim(rx)
dim(ry)
```

• We first screen the variables with pocrescreen() and store the selected X variables and their indices

```
resultmiRNA <- pocrescreen(ry, rx, maxvar=100, maxcmp=5)
tmpX <- resultmiRNA$retX
tmpXIdx <- resultmiRNA$retSIdx</pre>
```

• We then fit the data with pocrepath()

```
ppResmiRNA <- pocrepath(ry, inX=tmpX, XId=tmpXIdx, delta=0.02
maxvar=50, maxcmp=10, pval=F)
```

• We then use selectmodel() to select the best model on the basis of a prespecified criterion (AIC by default)

optResmiRNA <- selectmodel(inRes=ppResmiRNA)</pre>

• We can also visualize the results by interactive plots

plotbetanzbeta(ppResmiRNA,XId=tmpXIdx)
plotbetarsq(ppResmiRNA,XId=tmpXIdx)
plotrsqnzbeta(ppResmiRNA)

• We can plot the principal components for the optimal model we select.

42 / 44

- Zhang, D., Lin, Y., & Zhang, M. (2009). Penalized orthogonal-components regression for large p small n data. Electronic Journal of Statistics, 3: 781-796. doi:10.1214/09-ejs354
- Aure MR, Jernstrom S, Krohn M, Vollan HK, Due EU, Rodland E, Oslo Breast Cancer Research Consortium, Ram P, Lu Y, Mills GB, Sahlberg KK, Borresen-Dale A-L, Lingjerde OC, Kristensen VN (2015). Integrated analysis reveals microRNA networks coordinately expressed with key proteins in breast cancer. Genome Medicine, 7: 21.

Acknowledgement

- Collaborators:
 - Dan Raftery
 - Nagana Gowda
 - Marietta Harrison
- Graduate Students:
 - Chen Chen
 - Zhongli Jiang
 - Yanzhu Lin
 - Zeyu Zhang
- NIH Big Data to Knowledge (BD2K)
- National Cancer Institute
- National Science Foundation