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Fundamental Principles Regarding Factorial Effects

Suppose there are k factors (A,B,...,J ,K) in an experiment. All possible factorial effects

include

effects of order 1: A, B, ..., K (main effects)

effects of order 2: AB, AC , ....,JK (2-factor interactions)

.................

• Hierarchical Ordering principle

– Lower order effects are more likely to be important than higher order effects.

– Effects of the same order are equally likely to be important

• Effect Sparsity Principle (Pareto principle)

– The number of relatively important effects in a factorial experiment is small

• Effect Heredity Principle

– In order for an interaction to be significant, at least one of its parent factors should

be significant.
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Fractional Factorials

• May not have sources (time,money,etc) for full factorial design

• Number of runs required for full factorial grows quickly

– Consider 2k design

– If k = 7 → 128 runs required

– Can estimate 127 effects

– Only 7 df for main effects, 21 for 2-factor interactions

– the remaining 99 df are for interactions of order ≥ 3

• Often only lower order effects are important

• Full factorial design may not be necessary according to

– Hierarchical ordering principle

– Effect Sparsity Principle

• A fraction of the full factorial design ( i.e. a subset of all possible level combinations) is

sufficient.

Fractional Factorial Design
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Example 1

• Suppose you were designing a new car

• Wanted to consider the following nine factors each with 2 levels

– 1. Engine Size; 2. Number of cylinders; 3. Drag; 4. Weight; 5. Automatic vs

Manual; 6. Shape; 7. Tires; 8. Suspension; 9. Gas Tank Size;

• Only have resources for conduct 26 = 64 runs

– If you drop three factors for a 26 full factorial design, those factor and their

interactions with other factors cannot be investigated.

– Want investigate all nine factors in the experiment

– A fraction of 29 full factorial design will be used.

– Confounding (aliasing) will happen because using a subset

How to choose (or construct) the fraction?
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Example 2

Filtration rate experiment:

Recall that there are four factors in the experiment(A, B, C and D), each of 2 levels.

Suppose the available resource is enough for conducting 8 runs. 24 full factorial design

consists of all the 16 level combinations of the four factors. We need to choose half of

them.

The chosen half is called 24−1 fractional factorial design.

Which half we should select (construct)?
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factor

A B C D

− − − −
+ − − −
− + − −
+ + − −
− − + −
+ − + −
− + + −
+ + + −
− − − +

+ − − +

− + − +

+ + − +

− − + +

+ − + +

− + + +

+ + + +
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24−1 Fractional Factorial Design

• the number of factors: k = 4

• the fraction index: p = 1

• the number of runs (level combinations): N = 24

21 = 8

• Construct 24−1 designs via “confounding” (aliasing )

– select 3 factors (e.g. A, B, C) to form a 23 full factorial (basic design)

– confound (alias ) D with a high order interaction of A, B and C . For example,

D = ABC
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factorial effects (contrasts)

I A B C AB AC BC ABC=D

1 -1 -1 -1 1 1 1 -1

1 1 -1 -1 -1 -1 1 1

1 -1 1 -1 -1 1 -1 1

1 1 1 -1 1 -1 -1 -1

1 -1 -1 1 1 -1 -1 1

1 1 -1 1 -1 1 -1 -1

1 -1 1 1 -1 -1 1 -1

1 1 1 1 1 1 1 1

• Therefore, the chosen fraction includes the following 8 level combinations:

• (−,−,−,−), (+,−,−,+), (−,+,−,+), (+,+,−,−), (−,−,+,+), (+,−,+,−),

(−,+,+,−), (+,+,+,+)

• Note: 1 corresponds to + and −1 corresponds to −.
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Verify:

1. the chosen level combinations form a half of the 24 design.

2. the product of columns A, B, C and D equals 1, i.e.,

I = ABCD

which is called the defining relation , or ABCD is called a defining word (contrast).
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Aliasing in 24−1 Design

For four factors A, B, C and D, there are 24 − 1 effects: A, B, C , D, AB, AC , AD,

BC , BD, CD, ABC , ABD, ACD, BCD, ABCD

Response I A B C D AB .. CD ABC BCD ... ABCD

y1 1 -1 -1 -1 -1 1 .. 1 -1 -1 ... 1

y2 1 1 -1 -1 1 -1 .. -1 1 1 ... 1

y3 1 -1 1 -1 1 -1 .. -1 1 -1 ... 1

y4 1 1 1 -1 -1 1 .. 1 -1 1 ... 1

y5 1 -1 -1 1 1 1 .. 1 1 -1 ... 1

y6 1 1 -1 1 -1 -1 .. -1 -1 1 ... 1

y7 1 -1 1 1 -1 -1 .. -1 -1 -1 ... 1

y8 1 1 1 1 1 1 .. 1 1 1 ... 1

Contrasts for main effects by converting − to -1 and + to 1; contrasts for other effects

obtained by multiplication.

A = ȳA+ − ȳA− = 1
4
(−y1 + y2 − y3 + y4 − y5 + y6 − y7 + y8)
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BCD = 1
4
(−y1 + y2 − y3 + y4 − y5 + y6 − y7 + y8)

A, BCD are aliases or aliased. The contrast is for A+BCD. A and BCD are not

distinguishable.

AB = ȳAB+ − ȳAB− = 1
4
(y1 − y2 − y3 + y4 + y5 − y6 − y7 + y8)

CD = ȳCD+ − ȳCD− = 1
4
(y1 − y2 − y3 + y4 + y5 − y6 − y7 + y8)

AB, CD are aliases or aliased. The contrast is for AB+CD. AB and CD are not

distinguishable.

There are other 5 pairs. They are caused by the defining relation

I = ABCD,

that is, I (the intercept) and 4-factor interaction ABCD are aliased.
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Alias Structure for 24−1 with I = ABCD (denoted by d1)

• Alias Structure:

I = ABCD

A = A ∗ I = A ∗ ABCD = BCD

B = .......... = ACD

C = .......... = ABD

D = .......... = ABC

AB = AB ∗ I = AB ∗ ABCD = CD

AC = ............ = BD

AD = ............ = BC

all 16 factorial effects for A, B, C and D are partitioned into 8 groups each with 2

aliased effects.
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A Different 24−1 Fractional Factorial Design

• the defining relation I = ABD generates another 24−1 fractional factorial design,

denoted by d2. Its alias structure is given below.

I = ABD

A = BD

B = AD

C = ABCD

D = AB

ABC = CD

ACD = BC

BCD = AC

• Recall d1 is defined by I = ABCD. Comparing d1 and d2, which one we should

choose or which one is better?

1. Length of a defining word is defined to be the number of the involved factors.

2. Resolution of a fractioanl factorial design is defined to be the minimum length of

the defining words, usually denoted by Roman numbers, III, IV, V, etc...
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Resolution and Maximum Resolution Criterion

• d1: I = ABCD is a resolution IV design denoted by 24−1
IV .

• d2: I = ABC is a resolution III design denoted by 24−1
III .

• If a design is of resolution R, then none of the i-factor interactions is aliased

with any other interaction of order less than R − i.

d1: main effects are not aliased with other main effects and 2-factor

interactions

d2: main effects are not aliased with main effects

• d1 is better, because b1 has higher resolution than d1. In fact, d1 is optimal

among all the possible fractional factorial 24−1 designs

• Maximum Resolution Criterion

fractional factorial design with maximum resolution is optimal
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Analysis for 24−1 Design: Filtration Experiment

Recall that the filtration rate experiment was originally a 24 full factorial experiment. We

pretend that only half of the combinations were run. The chosen half is defined by

I = ABCD. So it is now a 24−1 design. We keep the original responses.

basic design

A B C D = ABC filtration rate

− − − − 45

+ − − + 100

− + − + 45

+ + − − 65

− − + + 75

+ − + − 60

− + + − 80

+ + + + 96

Let Leffect denote the estimate of effect (based on the corresponding contrast). Because of

aliasing,
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LI → I + ABCD

LA → A + BCD

LB → B + ACD

LC → C + ABD

LD → D + ABC

LAB → AB + CD

LAC → AC + BD

LAD → AD + BC
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SAS file for 24−1 Filtration Experiment

goption colors=(none);

data filter;

do C = -1 to 1 by 2;

do B = -1 to 1 by 2;do A = -1 to 1 by 2; D=A*B*C;

input y @@; output; end; end; end;

datalines;

45 100 45 65 75 60 80 96;

data inter; /* Define Interaction Terms */

set filter;

AB=A*B; AC=A*C; AD=A*D;

proc glm data=inter; /* GLM Proc to Obtain Effects */

class A B C D AB AC AD;

model y=A B C D AB AC AD;

estimate ’A’ A -1 1; estimate ’B’ B -1 1; estimate ’C’ C -1 1;

estimate ’D’ D -1 1; estimate ’AB’ AB -1 1; estimate ’AC’ AC -1 1;

estimate ’AD’ AD -1 1; run;
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proc reg outest=effects data=inter; /* REG Proc to Obtain Effects */

model y=A B C D AB AC AD;

data effect2; set effects;

drop y intercept _RMSE_;

proc transpose data=effect2 out=effect3;

data effect4; set effect3; effect=col1*2;

proc sort data=effect4; by effect;

proc print data=effect4;

proc rank data=effect4 normal=blom;

var effect; ranks neff;

symbol1 v=circle;

proc gplot;

plot effect*neff=_NAME_;

run;
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SAS Output

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 7 3071.500000 438.785714 . .

Error 0 0.000000 .

CoTotal 7 3071.500000

Source DF Type I SS Mean Square F Value Pr > F

A 1 722.0000000 722.0000000 . .

B 1 4.5000000 4.5000000 . .

C 1 392.0000000 392.0000000 . .

D 1 544.5000000 544.5000000 . .

AB 1 2.0000000 2.0000000 . .

AC 1 684.5000000 684.5000000 . .

AD 1 722.0000000 722.0000000
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Obs _NAME_ COL1 effect

1 AC -9.25 -18.5

2 AB -0.50 -1.0

3 B 0.75 1.5

4 C 7.00 14.0

5 D 8.25 16.5

6 A 9.50 19.0

7 AD 9.50 19.0
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QQ plot to Identify Important Effects

Potentially important effects: A, C , D, AC and AD.
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Regression Model

Let x1, x3, x4 be the variables for factor A, C and D. The model is

y = 70.75 + 9.50x1 + 7.00x3 + 8.25x4 − 9.25x1x3 + 9.50x1x4

In Lecture 10, the regression model based on all the data (24) is

y = 70.06 + 10.81x1 + 4.94x3 + 7.31x4 − 9.06x1x3 + 8.31x1x4

It appears that the model based on 24−1 is as good as the original one.

Is this really true? The answer is NO, because the chosen effects are aliased

with other effects, so we have to resolve the ambiguities between the aliased

effects first.
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Aliased effects and Techniques for Resolving the Ambiguities

The estimates are for the sum of aliased factorial effects.

LI = 70.75 → I + ABCD

LA = 19.0 → A + BCD

LB = 1.5 → B + ACD

LC = 14.0 → C + ABD

LD = 16.5 → D + ABC

LAB = −1.0 → AB + CD

LAC = −18.5 → AC + BD

LAD = 19.0 → AD + BC

Techniques for resolving the ambiguities in aliased effects

• Use the fundamental principles (Slide 1)

• Follow-up Experiment

– add orthogonal runs, or optimal design approach, or fold-over design
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Sequential Experiment

If it is necessary, the remaining 8 runs of the original 24 design can be conducted.

• Recall that the 8 runs we have used are defined defined by I = ABCD. The

remaining 8 runs are indeed defined by the following relationship

D = −ABC, or I = −ABCD

basic design

A B C D = −ABC filtration rate

− − − + 43

+ − − − 71

− + − − 48

+ + − + 104

− − + − 68

+ − + + 86

− + + + 70

+ + + − 65

I = −ABCD implies that: A = −BCD, B = −ACD, . . . , AB = −CD . . .
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Similarly, we can derive the following estimates (L̃effect) and alias structure

L̃I = 69.375 → I − ABCD

L̃A = 24.25 → A − BCD

L̃B = 4.75 → B − ACD

L̃C = 5.75 → C − ABD

L̃D = 12.75 → D − ABC

L̃AB = 1.25 → AB − CD

L̃AC = −17.75 → AC − BD

L̃AD = 14.25 → AD − BC
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Combine Sequential Experiments

Combining two experiments ⇒ 24 full factorial experiment

Combining the estimates from these two experiments ⇒ estimates based on the full

experiment

LA = 19.0 → A + BCD

L̃A = 24.25 → A − BCD

A =
1

2
(LA + L̃A) = 21.63

ABC =
1

2
(LA − L̃A) = −2.63

Other effects are summarized in the following table
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i 1
2
(Li + L̃i)

1
2
(Li − L̃i)

A 21.63→ A -2.63 → BCD

B 3.13→ B -1.63 → ACD

C 9.88→ C 4.13 → ABD

D 14.63→ D 1.88 → ABC

AB .13→ AB -1.13 → CD

AC -18.13→ AC -0.38 → BD

AD 16.63→ AD 2.38 → BC

We know the combined experiment is not a completely randomized experiment. Is there

any underlying factor we need consider? what is it?
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General 2k−1 Design

• k factors: A, B, . . . , K

• can only afford half of all the combinations (2k−1)

• Basic design: a 2k−1 full factorial for k − 1 factors: A, B, . . . , J .

• The setting of kth factor is determined by alasing K with the ABC....J , i.e.,

K = ABC · · · JK

• Defining relation: I = ABCD....ĨJK . Resolution=k

• 2k factorial effects are partitioned into 2k−1 groups each with two aliased effects.

• only one effect from each group (the representative) should be included in ANOVA or

regession model.

• Use fundamental principles, domain knowledge, follow-up experiment to de-alias.
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One Quarter Fraction: 2k−2 Design

Parts manufactured in an injection molding process are showing excessive shrinkage. A

quality improvement team has decided to use a designed experiment to study the injection

molding process so that shrinkage can be reduced. The team decides to investigate six

factors

A: mold temperature

B: screw speed

C : holding time

D: cycle time

E: gate size

F : holding pressure

each at two levels, with the objective of learning about main effects and interactions.

They decide to use 16-run fractional factorial design.

• a full factorial has 26=64 runs.

• 16-run is one quarter of the full factorial

• How to construct the fraction?
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Injection Molding Experiment: 26−2 Design

basic design

A B C D E = ABC F = BCD shrinkage

− − − − − − 6

+ − − − + − 10

− + − − + + 32

+ + − − − + 60

− − + − + + 4

+ − + − − + 15

− + + − − − 26

+ + + − + − 60

− − − + − + 8

+ − − + + + 12

− + − + + − 34

+ + − + − − 60

− − + + + − 16

+ − + + − − 5

− + + + − + 37

+ + + + + + 52
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Two defining relations are used to generate the columns for E and F .

I = ABCE, and I = BCDF

They induce another defining relation:

I = ABCE ∗ BCDF = AB2C2DEF = ADEF

The complete defining relation:

I = ABCE = BCDF = ADEF

Defining contrasts subgroup: {I, ABCE, BCDF, ADEF}
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Alias Structure for 26−2 with I = ABCE = BCDF = ADEF

I = ABCE = BCDF = ADEF implies

A = BCE = ABCDF = ADEF

Similarly, we can derive the other groups of aliased effects.

A = BCE = DEF = ABCDF AB = CE = ACDF = BDEF

B = ACE = CDF = ABDEF AC = BE = ABDF = CDEF

C = ABE = BDF = ACDEF AD = EF = BCDE = ABCF

D = BCF = AEF = ABCDE AE = BC = DF = ABCDEF

E = ABC = ADF = BCDEF AF = DE = BCEF = ABCD

F = BCD = ADE = ABCEF BD = CF = ACDE = ABEF

BF = CD = ACEF = ABDE

ABD = CDE = ACF = BEF

ACD = BDE = ABF = CEF
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Wordlength pattern W = (W0, W1, . . . , W6), where Wi is the number of

defining words of length i (i.e., involving i factors)

W = (1, 0, 0, 0, 3, 0, 0)

Resolution is the smallest i such that i > 0 and Wi > 0. Hence it is a 26−2
IV

design
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24−2 Design: an Alternative

• Basic Design: A, B, C , D

• E = ABCD, F = ABC , i.e., I = ABCDE, and I = ABCF

• which induces: I = DEF

• complete defining relation: I = ABCDE = ABCF = DEF

• wordlength pattern: W = (1, 0, 0, 1, 1, 1, 0)
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• Alias structure (ignore effects of order 3 or higher)

A = .. AB = CF = ..

B = .. AC = BF = ..

C = .. AD = ..

D = EF = .. AE = ..

E = DF = .. AF = BC = ..

F = DE = .. BD = ..

BE = ..

CD = ..

CE = ..

• an effect is said to be clearly estimable if it is not aliased with main effect or

two-factor interactions.

• Which design is better d1 or d2? d1 has six clearly estimable main effects while d2

has three clearly estimable main effects and six clearly estimable two-factor ints.
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Injection Molding Experiment Analysis

goption colors=(none);

data molding;

do D = -1 to 1 by 2;

do C = -1 to 1 by 2;

do B = -1 to 1 by 2; do A = -1 to 1 by 2; E=A*B*C; F=B*C*D;

input y @@; output; end; end; end; end;

datalines;

6 10 32 60 4 15 26 60 8 12 34 60 16 5 37 52

;

data inter; /* Define Interaction Terms */

set molding;

AB=A*B; AC=A*C; AD=A*D; AE=A*E; AF=A*F; BD=B*D; BF=B*F; ABD=A*B*D;

ACD=A*C*D;

proc glm data=inter; /* GLM Proc to Obtain Effects */

class A B C D E F AB AC AD AE AF BD BF ABDACD;

model y=A B C D E F AB AC AD AE AF BD BF ABDACD;

estimate ’A’ A -1 1; estimate ’B’ B -1 1; estimate ’C’ C -1 1;

estimate ’D’ D -1 1; estimate ’E’ E -1 1; estimate ’F’ F -1 1;
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estimate ’AB’ AB -1 1; estimate ’AC’ AC -1 1; estimate ’AD’ AD -1 1;

estimate ’AE’ AE -1 1; estimate ’AF’ AF -1 1; estimate ’BD’ BD -1 1;

estimate ’BF’ BF -1 1; estimate ’ABD’ ABD -1 1; estimate ’ACD’ ACD -1 1 ;

run;

proc reg outest=effects data=inter; /* REG Proc to Obtain Effects */

model y=A B C D E F AB AC AD AE AF BD BF ABDACD;

data effect2; set effects; drop y intercept _RMSE_;

proc transpose data=effect2 out=effect3;

data effect4; set effect3; effect=col1*2;

proc sort data=effect4; by effect;

proc print data=effect4;

proc rank data=effect4 normal=blom; var effect; ranks neff;

symbol1 v=circle;

proc gplot; plot effect*neff=_NAME_; run;
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Estimates of factorial effects

Obs _NAME_ COL1 effect aliases

1 AD -2.6875 -5.375 AD+EF

2 ACD -2.4375 -4.875

3 AE -0.9375 -1.875 AE+BC+DF

4 AC -0.8125 -1.625 AC+BE

5 C -0.4375 -0.875

6 BD -0.0625 -0.125 BD+CF

7 BF -0.0625 -0.125 BF+CD

8 ABD 0.0625 0.125

9 E 0.1875 0.375

10 F 0.1875 0.375

11 AF 0.3125 0.625 AF+DE

12 D 0.6875 1.375

13 AB 5.9375 11.875 AB+CE

14 A 6.9375 13.875

15 B 17.8125 35.625

Effcts B, A, AB, AD, ACD, are large.
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QQ plot to Identify Important Effects

Effects B, A, AB appear to be important; effects AD and ACD are suspicious.
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De-aliasing and Model Selection

Model 1:

proc reg data=inter;

model y=A B AB AD ACD;

run;

--------------------

Root MSE 1.95256 R-Square 0.9943

Dependent Mean 27.31250 Adj R-Sq 0.9914

Coeff Var 7.14897

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 27.31250 0.48814 55.95 <.0001

A 1 6.93750 0.48814 14.21 <.0001

B 1 17.81250 0.48814 36.49 <.0001

AB 1 5.93750 0.48814 12.16 <.0001

AD 1 -2.68750 0.48814 -5.51 0.0003

ACD 1 -2.43750 0.48814 -4.99 0.0005

============================================
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Model 2:

proc reg data=inter;

model y=A B AB;

-----------------------

Root MSE 4.55293 R-Square 0.9626

Dependent Mean 27.31250 Adj R-Sq 0.9533

Coeff Var 16.66976

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 27.31250 1.13823 24.00 <.0001

A 1 6.93750 1.13823 6.09 <.0001

B 1 17.81250 1.13823 15.65 <.0001

AB 1 5.93750 1.13823 5.22 0.0002
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Three-Factor Interaction: SAS code

data inter; /* Define Interaction Terms */

set molding;

AB=A*B; AC=A*C; AD=A*D; AE=A*E; AF=A*F; BD=B*D; BF=B*F; ABD=A*B*D;

ACD=A*C*D;

if B=-1 and F=-1 then SBF=’B-F-’;

if B=-1 and F=1 then SBF=’B-F+’;

if B=1 and F=-1 then SBF=’B+F-’;

if B=1 and F=1 then SBF=’B+F+’;

proc sort data=inter; by A SBF;

proc means noprint;

var y; by A SBF;

output out=ymeanabf mean=mn;

symbol1 v=circle i=join; symbol2 v=square i=join;

symbol3 v=diamond i=join; symbol4 v=dot i=join;

proc gplot data=ymeanabf;

plot mn*A=SBF
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3-Factor Interaction Plot
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General 2k−p Fractional Factorial Designs

• k factors, 2k level combinations, but want to run a 2−p fraction only.

• Select the first k − p factors to form a full factorial design (basic design).

• Alias the remaining p factors with some high order interactions of the basic design.

• There are p defining relation, which induces other 2p − p − 1 defining relations. The

complete defining relation is I = .. = ... = ....

• Defining contrasts subgroup: G = { defining words}
• Wordlength pattern: W = (Wi) Wi=the number of defining words of length i.

• Alias structure: 2k factorial effects are partitioned into 2k−p groups of effects, each of

which contains 2p effects. Effects in the same group are aliased (aliases).

• Use maximum resolution and minimum aberration to choose the optimal design.

• In analysis, only select one effect from each group to be included in the full model.

• Choose important effect to form models, pool unimportant effects into error component

• De-aliasing and model selection.
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Minimun Aberration Criterion

Recall 2k−p with maximum resolution should be preferred. But, it is possible that there are

two deisgns that attain the maximum resolution. How should we further distinguish them?

For example, consider 27−2 fractional factorial design

d1: basic design: A, B, C , D, E; F = ABC , G = ABDE

complete defining relation: I = ABCF = ABDEG = CDEFG

wordlength pattern: W = (1, 0, 0, 0, 1, 2, 0, 0)

Resolution: IV

d2: basic design: A, B, C , D, E; F = ABC , G = ADE

complete defining relation: I = ABCF = ADEG = BCDEGF

wordlength pattern: W = (1, 0, 0, 0, 2, 0, 1, 0)

Resolution: IV
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d1 and d2, which is better?

Minimum Aberration Criterion

Definition: Let d1 and d2 be two 2k−p designs, let r be the smallest positive integer such

that Wr(d1) 6= Wr(d2).

If Wr(d1) < Wr(d2) , then d1 is said to have less aberration than d2.

If there does

not exist any other design that has less aberration than d1, then d1 has minimum aberration.

Small Minimum Aberration Designs are used a lot in practice. They are tabulated in most

design books. See Table 8-14 in Montgomery. For the most comprehensive table, consult

Wu&Hamada.
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