Lecture 11: Blocking and Confounding in 2^{k} design

Montgomery: Chapter 7

Randomized Complete Block 2^{k} Design

- There are n blocks
- Within each block, all treatments (levl combinations) are conducted.
- Run order in each block must be randomized
- Analysis follows general block factorial design
- When k is large, cannot afford to conduct all the treatments within each block. Other blocking strategy should be considered.

Filtration Rate Experiment (revisited)

factor				
A	B	C	D	original response
-	-	-	-	45
+	-	-	-	71
-	+	-	-	48
+	+	-	-	65
-	-	+	-	68
+	-	+	-	60
-	+	+	-	80
+	+	+	-	65
-	-	-	+	43
+	-	-	+	100
-	+	-	+	45
+	+	-	+	104
-	-	+	+	75
+	-	+	+	86
-	+	+	+	70
+	+	+	+	96

- Suppose there are two batches of raw material. Each batch can be used for only 8 runs. It is known these two batches are very different. Blocking should be employed to eliminate this variability.
- How to select 8 treatments (level combinations, or runs) for each block?

2^{2} Design with Two Blocks

Suppose there are two factors (A, B) each with 2 levels, and two blocks $\left(b_{1}, b_{2}\right)$ each contiaining two runs (treatments). Since b_{1} and b_{2} are interchangeable, there are three possible blocking scheme:

			blocking scheme		
A	B	response	1	2	3
-	-	$y--$	b_{1}	b_{1}	b_{2}
+	-	y_{+-}	b_{1}	b_{2}	b_{1}
-	+	$y-+$	b_{2}	b_{1}	b_{1}
+	+	y_{++}	b_{2}	b_{2}	b_{2}

Comparing blocking schemes:
Scheme 1:

- block effect: $b=\bar{y}_{b_{2}}-\bar{y}_{b_{1}}=\frac{1}{2}\left(-y_{--}-y_{+-}+y_{-+}+y_{++}\right)$
- main effect: $B=\frac{1}{2}\left(-y_{--}-y_{+-}+y_{-+}+y_{++}\right)$
- B and b are not distinguishable, or, confounded.

Comparing Blocking Schemes (continued)

Scheme 2:

$$
\begin{gathered}
\text { block effect: } b=\bar{y}_{b_{2}}-\bar{y}_{b_{1}}=\frac{1}{2}\left(-y_{--}+y_{+-}-y_{-+}+y_{++}\right) \\
\text {main effect: } A=\frac{1}{2}\left(-y_{--}+y_{+-}-y_{-+}+y_{++}\right)
\end{gathered}
$$

A and b are not distinguishable, or confounded.

Scheme 3:

$$
\begin{gathered}
\text { block effect: } b=\bar{y}_{b_{2}}-\bar{y}_{b_{1}}=\frac{1}{2}\left(y_{--}-y_{+-}-y_{-+}+y_{++}\right) \\
\text {interaction: } A B=\frac{1}{2}\left(y_{--}-y_{+-}-y_{-+}+y_{++}\right)
\end{gathered}
$$

$A B$ and b become indistinguishable, or confounded.

The reason for confounding: the block arrangement matches the contrast of some factorial effect.

Confounding makes the effect Inestimable.

Question: which scheme is the best (or causes the least damage)?

2^{k} Design with Two Blocks via Confounding

Confound blocks with the effect (contrast) of the highest order

Block 1 consists of all treatments with the contrast coefficient equal to -1 Block 2 consists of all treatments with the contrast coefficient equal to 1

Example 1. Block 2^{3} Design

factorial effects (contrasts)							
।	A	B	C	AB	AC	BC	ABC
1	-1	-1	-1	1	1	1	-1
1	1	-1	-1	-1	-1	1	1
1	-1	1	-1	-1	1	-1	1
1	1	1	-1	1	-1	-1	-1
1	-1	-1	1	1	-1	-1	1
1	1	-1	1	-1	1	-1	-1
1	-1	1	1	-1	-1	1	-1
1	1	1	1	1	1	1	1

Defining relation: $b=A B C$:
Block 1: (---), (+ + -), (+-+), (-++)
Block 2: (+ - -), (-+-), (-++), $(+++)$

Example 2: For 2^{4} design with factors: A, B, C, D, the defining contrast
(optimal) for blocking factor (b) is

$$
b=A B C D
$$

In general, the optimal blocking scheme for 2^{k} design with two blocks is given by $b=A B \ldots K$, where A, B, \ldots, K are the factors.

Analyze Unreplicated Block 2^{k} Experiment

Filtration Experiment (four factors: A, B, C, D):

- Use defining relation: $b=A B C D$, i.e., if a treatment satisfies
$A B C D=-1$, it is allocated to block $1\left(b_{1}\right)$; if $A B C D=1$, it is allocated to block $2\left(b_{2}\right)$.
- (Assume that, all the observations in block 2 will be reduced by 20 because of the poor quality of the second batch of material, i.e. the true block effect=-20).

factor					blocks		
A	B	C	D	$b=A B C D$	response		
-	-	-	-	$1=b_{2}$	$45-20=25$		
+	-	-	-	$-1=b_{1}$	71		
-	+	-	-	$-1=b_{1}$	48		
+	+	-	-	$1=b_{2}$	$65-20=45$		
-	-	+	-	$-1=b_{1}$	68		
+	-	+	-	$1=b_{2}$	$60-20=40$		
-	+	+	-	$1=b_{2}$	$80-20=60$		
+	+	+	-	$-1=b_{1}$	65		
-	-	-	+	$-1=b_{1}$	43		
+	-	-	+	$1=b_{2}$	$100-20=80$		
-	+	-	+	$1=b_{2}$	$45-20=25$		
+	+	-	+	$-1=b_{1}$	104		
-	-	+	+	$1=b_{2}$	$75-20=55$		
+	-	+	+	$-1=b_{1}$	86		
-	+	+	+	$-1=b_{1}$	70		
+	+	+	+	$1=b_{2}$	$96-20=76$		

SAS File for Block Filtration Experiment

```
goption colors=(none);
data filter;
    do D = -1 to 1 by 2; do C = -1 to 1 by 2;
    do B = -1 to 1 by 2; do A = -1 to 1 by 2;
    input y @@; output;
    end; end; end; end;
cards;
25
;
data inter;
set filter; AB=A*B; AC=A*C; AD=A*D; BC=B*C; BD=B*D; CD=C*D; ABC=AB*C;
ABD=AB*D; ACD=AC*D; BCD=BC*D; block=ABC*D;
proc glm data=inter;
class A B C D AB AC AD BC BD CD ABC ABD ACD BCD block;
model y=block A B C D AB AC AD BC BD CD ABC ABD ACD BCD; run;
proc reg outest=effects data=inter;
```

```
model y=A B C D AB AC AD BC BD CD ABC ABD ACD BCD block;
data effect2; set effects; drop y intercept _RMSE_;
proc transpose data=effect2 out=effect3;
data effect4; set effect3; effect=col1*2;
proc sort data=effect4; by effect;
proc print data=effect4;
data effect5; set effect4; where __NAME__='block';
proc print data=effect5; run;
proc rank data=effect5 normal=blom;
var effect; ranks neff;
symbol1 v=circle;
proc gplot; plot effect*neff=_NAME_; run;
```


SAS output: ANOVA Table

Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	7110.937500	474.062500	-	-
Error		0	0.000000	-	
Co Total	15	7110.937500			
Source	DF	Type I SS	Mean Square	F Value	$\operatorname{Pr}>\mathrm{F}$
block	1	1387.562500	1387.562500	-	-
A	1	1870.562500	1870.562500	-	-
B	1	39.062500	39.062500	-	-
C	1	390.062500	390.062500	-	.
D	1	855.562500	855.562500	-	-
AB	1	0.062500	0.062500	-	-
AC	1	1314.062500	1314.062500	-	-
AD	1	1105.562500	1105.562500	-	-
BC	1	22.562500	22.562500	-	-
BD	1	0.562500	0.562500	-	-
CD	1	5.062500	5.062500	-	-
ABC	1	14.062500	14.062500	.	-

ABD	1	68.062500	68.062500
ACD	1	10.562500	10.562500
BCD	1	27.562500	27.562500

proportion of variance explained by blocks

$$
\frac{1387.5625}{7110.9375}=19.5 \%
$$

Similarly proportion of variance can be calculated for other effects.

SAS output: factorial effects and block effect

Obs	_NAME_	COL1	effect
1	block	-9.3125	-18.625
2	AC	-9.0625	-18.125
3	BCD	-1.3125	-2.625
4	ACD	-0.8125	-1.625
5	CD	-0.5625	-1.125
6	BD	-0.1875	-0.375
7	AB	0.0625	0.125
8	ABC	0.9375	1.875
9	BC	1.1875	2.375
10	B	1.5625	3.125
11	ABD	2.0625	4.125
12	C	4.9375	9.875
13	D	7.3125	14.625
14	AD	8.3125	16.625
15	A	10.8125	21.625

Factorial effects are exactly the same as those from the original data (why?)
blocking effect: $-18.625=\bar{y}_{b_{2}}-\bar{y}_{b_{1}}$, is in fact
-20 (true blocking effect) +1.375 (some interaction of $A B C)$

This is caused by confounding between b and $A B C$.

SAS output: QQ plot without Blocking Effect

significant effects are:

$$
A, C, D, A C, A D
$$

2^{k} Design with Four Blocks

Need two 2-level blocking factors to generate 4 different blocks.
Confound each blocking factors with a high order factorial effect.
The interaction between these two blocking factors matters.
The interaction will be confounded with another factorial effect.

Optimal blocking scheme has least confounding severity.
2^{4} design with four blocks: factors are A, B, C, D and the blocking factors are $b 1$ and $b 2$

possible blocking schemes:
Scheme 1:
defining relations: $b 1=A B C, b 2=A C D$; induce confounding

$$
b 1 b 2=A B C * A C D=A^{2} B C^{2} D=B D
$$

Scheme 2:
Defining relations: $b 1=A B C D, b 2=A B C$, induce confounding

$$
b 1 b 2=A B C D * A B C=D
$$

Which is better?

2^{k} Design with 2^{p} Blocks

- k factors: $A, B, \ldots K$, and p is usually much less than k.
- p blocking factors: $b 1, b 2, \ldots b p$ with levels -1 and 1
- confound blocking factors with k chosen high-order factorial effects, i.e., $b 1=$ effect1, $b 2=$ effect 2 , etc. (p defining relations)
- These p defining relations induce another $2^{p}-p-1$ confoundings.
- treatment combinations with the same values of $b 1, \ldots b p$ are allocated to the same block. Within each block.
- each block consists of 2^{k-p} treatment combinations (runs)
- Given k and p, optimal schemes are tabulated, e.g., Montgomery Table 7.8, or Wu\&Hamada Appendix 3A

