
A Game Theoretic Approach for

Adversarial Machine Learning:

Big Data Meets Cyber Security

Bowei Xi

Department of Statistics

Purdue University

xbw@purdue.edu

Joint Work with Wutao Wei (Purdue),

Murat Kantarcioglu (UT Dallas), Yan Zhou (UT Dallas)

Malicious Attacks on the Internet of Things (IoT)

Ultrasonic audio attacks, completely inaudible to people, can control

speech recognition systems including Siri, Google Now, and Alexa.

Inaudible commands can even manipulate the navigation system in

an Audi automobile.

Visual attacks can cause traffic signs to be mis-classified.

Adversarial samples in cyber security may come from a very different

distribution; adversarial images in computer vision are created by

adding minor perturbations.

Adversarial Machine Learning (ML)

ML techniques are used to detect cyber security incidents.

Adversaries actively transform their objects to avoid detection.

They defeat traditional ML techniques that assume same properties

for current and future datasets.

Need new ML techniques for adversarial environment.

Artificial Intelligence (AI) with Adversarial ML

AI needs adversarial ML capacities:

Game theoretic framework to model the interaction between attack-

ers and defender (e.g. a learning system)

Adversarial supervised learning, unsupervised learning, and active

learning algorithms

Break transferability of adversarial samples with randomness

Adversarial Stackelberg Game: Leader vs. Follower

Players take sequential actions and maximize their own utilities.

Defender being the follower is a m-leader-one-follower game.

Defender being the leader is a one-leader-m-follower game.

We study the players’ equilibrium behavior for the two games – de-

fender being the leader vs. defender being the follower. Wei, W., Xi,

B., Kantarcioglu, M., Adversarial Clustering: A Grid Based Clustering Algorithm against Active

Adversaries, submitted, arXiv:1804.04780

Adversarial Stackelberg Game: Leader vs. Follower
– Game when defender is the follower.

1. Given the joint attacks from the m adversaries, T = (t1, · · · , tm), solve for the defender’s optimal
strategy.

hT = argmax{h∈H} {D(t1, · · · , tm, h)}
2.With the solution above as the defender’s optimal strategy hT against joint attacks T = (t1, · · · , tm),
solve for the optimal joint attacks T e.

T e = (te1, ..., t
e
m) = argmax{ti∈Si,∀i}

m∑
i=1

Ai(ti, hT)

(hT
e
, te1, · · · , tem) is an equilibrium strategy for all players in the game.

– Game when Defender is the leader.

1. Given a leader’s strategy h fixed, assume the m adversaries’ (i.e., the followers’) strategies are
the attacks T = (t1, · · · , tm). For the i-th adversary, further assume all other adversaries’ strategies
are fixed, i.e., fixed tj, ∀j 6= i. Solve the following optimization for thi :

thi = argmax{ti∈Si} {Ai(ti, h)}

2. With the solution from above, T h = (th1, · · · , thm) is the m adversaries’ joint optimal attacks for a
given defender strategy h, the defender solves another optimization problem.

he = argmax{h∈H} {D(th1, · · · , thm, h)}

(he, th
e

1 , · · · , th
e

m) is an equilibrium strategy for all players in the game.

Adversarial Stackelberg Game: Leader vs. Follower

Attackers’ strategies are to move their objects toward the center of

the normal population by a factor t (0 ≤ t ≤ 1).

Defender’s strategy is to draw a α− level defensive wall, comparable

to a confidence region for multivariate Gaussian distribution.

Attackers’ payoffs are the respective expected values of the utilities

generated by the adversarial samples that avoid detection; defender’s

payoff is -1 times misclassification cost.

Defensive wall identifies high confidence normal region.

Equilibrium Behavior: Leader vs. Follower

Left is defender being the leader in the game – a smaller defensive

wall and strong attacks; right is defender being the follower in the

game – a larger defensive wall and mild attacks.

A Grid Adversarial Clustering Algorithm

Adversaries fill in the gap between previously well separated normal

and abnormal clusters with small amount of attack objects.

Previous work largely focused on adversarial classification. It needs

a reasonably large amount of carefully labeled data instances at high

cost, time and human expertise.

Meanwhile, a large number of unlabeled instances can also be used

to understand the adversaries’ behavior.

A Grid Adversarial Clustering Algorithm

Our algorithm, ADClust, identifies normal and abnormal sub-clusters

within a large mixed cluster along with the unlabeled overlapping

regions, and outliers as potential anomalies.

A classifier with a well defined classification boundary is comparable

to a point estimate, not accurate due to very few labeled objects.

Unlabeled overlapping areas identified by ADClust are comparable to

confidence regions.

We identify the high confidence normal regions in mixed clusters

through defensive walls.

A Grid Adversarial Clustering Algorithm

In the first pass, our algorithm (ADClust) groups the data points into

normal sub-clusters, abnormal sub-clusters, unlabeled sub-clusters

and unlabeled outliers. In a second pass, we do not use labels, and

simply group the data points into large unlabeled clusters and iden-

tify unlabeled outliers.

Next step is to match the normal, abnormal, unlabeled smaller sub-

clusters from the first pass with the unlabeled larger clusters from

the second pass.

The last step is to play a conservative strategy, drawing α−level de-

fensive walls inside normal sub-clusters to identify high confidence

normal areas.

A Grid Adversarial Clustering Algorithm
Compare with a semi-supervised learning algorithm, S4VM. α = 0.6.

−2

−1

0

1

2

−2 −1 0 1 2

−2

−1

0

1

2

−2 −1 0 1 2

−2

−1

0

1

2

−2 −1 0 1 2

Left: actual clusters with blue for normal and orange for abnormal;

Middle: our ADClust with purple for unlabeled; Right: S4VM. Solid

circles (normal) and solid triangles (abnormal) are known correctly

labeled objects.

A Grid Adversarial Clustering Algorithm

KDD Cup 1999 Network Intrusion Data: Around 40% are network

intrusion instances. Average over 100 runs. In one run, 100 instances

are randomly sampled with labels. 99.6% become unlabeled.

KDD data is highly mixed, yet we achieve on average nearly 90%

pure normal rate inside the defensive walls.

Adversarial Active Learning

Active learning is another approach when there are very few labeled

instances. It uses strategic sampling techniques.

Oracles assign labels to the most influential samples. Active learning

requires less training data points to achieve accurate results.

In adversarial settings, malicious oracles selectively return incorrect

labels. Also assume there are weak oracles that return noisy labels.

Adversarial Active Learning

1: Data is clustered using the labeled instances as seeds;

2: Oracle behavior profile is computed; Oracles are modeled as a

mixture of three components—genuine, weak and malicious;

3: The most accurate group of oracles are used to label a selected

sample;

4: The newly labeled sample is added to the labeled dataset. Go

back to Step 1.

Adversarial Active Learning

Webspam data is from LibSVM data repository. 350,000 instances,

approximately 60% are webspam.

Compare our adversarial active learning technique to 1.) majority-

vote; 2.) a crowd-sourcing technique—GLAD; and 3.) active learn-

ing technique without malicious and weak oracles.

We use support vector machine (SVM) as the underlying classifier in

the active learning process.

Adversarial Active Learning

20 40 60 80 100
Number of training examples

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y

Active Learning with Oracle Ensemble

Adversarial AL
Majority Vote
Ideal AL
GLAD

20 40 60 80 100
Number of training examples

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y

Active Learning with Oracle Ensemble

Adversarial AL
Majority Vote
Ideal AL
GLAD

Left: 5 genuine oracles; Right: 10 genuine oracles.

Total 30 oracles. Rest are 50% weak and 50% malicious oracles.

Results averaged over 10 runs.

Robust results when the majority are malicious and weak oracles.

Adversarial SVM

AD-SVM solves a convex optimization problem where the constraints

are tied to adversarial attack models.

Free-range attack: Adversary can move attack objects anywhere in

the domain.

Cf(xmin.j − xij) ≤ δij ≤ Cf(xmax.j − xij)

Targeted attack: Adversary can only move attack instances closer to

a targeted value.

0 ≤ (xtij − xij)δij ≤ Cξ

1− Cδ
|xtij − xij|
|xij|+ |xtij|

 (xtij − xij)
2

Adversarial SVM

SVM risk minimization model: free-range attack

argminw,b,ξi,ti,ui,vi
1
2||w||

2 + C
∑
i ξi

s.t. ξi ≥ 0
ξi ≥ 1− yi · (w · xi + b) + ti
ti ≥

∑
j Cf

(
vij(x

max
j − xij)− uij(xminj − xij)

)
ui − vi = 1

2(1 + yi)w
ui � 0
vi � 0

SVM risk minimization model: targeted attack

argminw,b,ξi,ti,ui,vi
1
2||w||

2 + C
∑
i ξi

s.t. ξi ≥ 0
ξi ≥ 1− yi · (w · xi + b) + ti
ti ≥

∑
j eijuij

(−ui + vi) ◦ (xti − xi) = 1
2(1 + yi)w

ui � 0
vi � 0

Adversarial SVM

The black dashed line is the standard SVM classification boundary,

and the blue line is the AD-SVM classification boundary. It is a

conservative strategy in anticipation of an attack.

DNN Models with a Randomness Factor

Attack a deep neural network (DNN) by adding minor perturbations

to an image.

An example of the 3’s

Many Proposed Defense and Detection Strategies

Enhance a DNN model by re-training on the adversarial samples –

overfit to the adversarial samples & adversary can compute new ad-

versarial samples against the re-trained DNN model.

Detection techniques are also proposed to differentiate adversarial

samples from benign ones.

Unfortunately many are quickly shown to fail the latest attacks.

DNN Models with a Randomness Factor

Attacks are designed to break DNN models, such as the Carlini and

Wagner’s iterative L2 attack.

x∗ = argminx′∈D (||x′ − x||22 + c · l(x′)),

Transferability of adversarial samples means that adversarial samples

that break one learning model have the ability to break another model

even if they belong to different model classes.

We show that creating DNN models with a randomness factor suc-

cessfully break the transferability of adversarial samples.

DNN Models with a Randomness Factor

Assume the adversarial perturbation is bounded by ε > 0. The trans-

ferability of an adversarial perturbation depends on the attack inten-

sity.

We train a set of DNN models with stochastic gradient descent from

several random initialization points.

To stop transferability, the distance between two decision boundaries

must be sufficiently large.

We measure the spread of the weights on 3 datasets: MNIST, CIFAR,

Traffic Sign.

DNN Models with a Randomness Factor

Weak Attack Scenario: Adversary has perfect knowledge of one

randomly selected DNN to generate adversarial samples. (MNIST)

Baseline DNN and Ensemble-AdTrain (re-train a set of DNNs with

adversarial samples) have accuracy 0.00 under attack.

Random-Model-10: randomly select 1 DNN to classify each query

request. Accuracy 0.863± 0.289

Ensemble-10: majority vote of 10 DNNs. Accuracy 0.991± 0.002

Ensemble-AdTrain-Random: apply randomization to the re-trained

DNNs. Accuracy 0.874± 0.291

Random-Weight-10: randomly select one in a set of DNNs and ran-

domly adding a small noise to the weights of the selected DNN to

classify each query request. Accuracy 0.779± 0.078

DNN Models with a Randomness Factor

Strong Attack Scenario: Adversary has perfect knowledge of all

10 DNNs to generate adversarial samples. Attacking the ensem-

ble requires greater data perturbation than attacking a single DNN.

(MNIST)

Random-Ensemble: Creating a larger pool of 100 trained DNNs. For

each new query, randomly selecting 10 DNNs. They may or may not

overlap with the 10 leaked DNNs.

Random-Single: For each new query, randomly select 1 DNN from

the set of 10 leaked DNNs

Random-std-x: Adding random noises to all leaked DNNs in the en-

semble

DNN Models with a Randomness Factor

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

sta0c_ensemble	 random_ensemble	 random_single	 randomw_std_0.1	 randomw_std_0.125	 randomw_std_0.15	

MNIST	Ensemble	Targeted	AEack:	L2		

Conf	=	0	 Conf	=	5	 Conf	=	10	 Conf	=	20	 No	AEack	

Discussion

IoT devices must be secured against both traditional cyber attacks

and new attacks based on adversarial machine learning.

We need to design robust machine learning techniques in different

application domains, where adversarial samples have different prop-

erties.

Related publications on http://www.stat.purdue.edu/∼xbw/

Thank you!

