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Active network tomography refers to an interesting class of large-scale inverse problems that arise in estimating the quality of service
parameters of computer and communications networks. This article focuses on estimation of loss rates of the internal links of a network
using end-to-end measurements of nodes located on the periphery. A class of flexible experiments for actively probing the network is
introduced, and conditions under which all of the link-level information is estimable are obtained. Maximum likelihood estimation using
the EM algorithm, the structure of the algorithm, and the properties of the maximum likelihood estimators are investigated. This includes
simulation studies using the ns (network simulator) to obtain realistic network traffic. The optimal design of probing experiments is also
studied. Finally, application of the results to network monitoring is briefly illustrated.
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1. INTRODUCTION

The term “network tomography” was introduced by Vardi
(1996) to characterize a certain class of inverse problems
in computer and communication networks. The goal here,
as in medical tomography problems, is to recover higher-
dimensional network information from lower-dimensional data.
Early work dealt with estimation of the origin–destination ma-
trix using passive monitoring (Vardi 1996; Zhang, Roughan,
Lund, and Donoho 2003); that is, monitoring agents are placed
at internal routers/switches in the network, and aggregate-level
data are collected on total traffic flowing into and out of the
monitored nodes. Because of the high volume of traffic, origin–
destination information cannot be collected at the individual
“packet” level. The inverse problem is to recover, from the ag-
gregate data, origin–destination information of the traffic pat-
terns in the network.

Active network tomography refers to a different class of
large-scale inverse problems that arise with networks, that is,
estimation of quality of service (QoS) parameters such as loss
rates and delay distributions at the routers and link-level band-
widths (Castro, Coates, Liang, Nowak, and Yu 2004). Charac-
terizing these parameters is critical for detecting congestion,
faults, and other anomalous behavior, ensuring compliance of
service-level agreements with users (Coates, Hero, Nowak, and
Yu 2002), and management of overlay networks (Chen, Bindel,
and Katz 2003). New applications with stringent QoS require-
ments, such as video conferencing, Internet telephony, and on-
line games, point to an even greater need for fast and efficient
algorithms for assessing and responding to changes in network
performance.

The traditional approach for characterizing network perfor-
mance is based on detailed queueing models at the individual
router level. But this has become inadequate for capturing over-
all network performance, because of the complexity and size of
modern networks. More importantly, estimating link-level QoS
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parameters requires access to the internal links and routers. But
the lack of centralized control of modern networks means that
Internet service providers typically do not have access to all the
nodes of interest, making collection of detailed QoS informa-
tion at the individual router/link level difficult. Active tomogra-
phy provides an alternative approach through the use of active
“probing,” i.e., sending “probe packets” from a source to one
or more receiver nodes located on the periphery of the network.
The active tomography problem involves “reconstructing” link-
level information from the end-to-end path-level measurements.

This article deals with two aspects of the active tomography
problem: design of probing experiments, and estimation of link-
level loss rates from end-to-end measurements using these ex-
periments. (A loss occurs when the packet is lost at an internal
router, typically due to buffer overflow.) The first part of the
article introduces a flexible class of experiments for probing a
large network and studies its properties. The second part fo-
cuses on estimation of loss rates and related issues.

The article is organized as follows. Section 2 introduces the
main elements of the active network tomography problem. Sec-
tion 3 describes the class of flexible experiments and addresses
associated issues of identifiability. Section 4 deals with various
aspects of maximum likelihood estimation using the EM algo-
rithm, and Section 5 addresses optimal design of probing ex-
periments in terms of allocation of probes. Section 6 describes
a simulation study using the ns-2 (network simulator) to assess
the bicast schemes in more realistic environments. The article
concludes with an application of the results to network moni-
toring.

2. FRAMEWORK AND BACKGROUND INFORMATION

2.1 Background

Some relevant facts about networking are briefly summa-
rized here. (See, e.g., Marchette 2001 for more details and a
very accessible introduction.) Suppose that one wants to trans-
fer a file from a remote location to the local workstation.
The file’s content is broken into pieces, and additional infor-
mation on origin–destination, reassembly instructions (such a
sequence numbers), and error-correcting features are added.
These pieces, called packets, are transmitted over the network.
All of the packets associated with a particular file are referred to
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as a “flow.” The origin–destination information is used by the
network elements (routers and switches) in conjunction with
the Internet protocol (IP), which is primarily responsible for
routing packets to their destination, to deliver the packets to
the intended recipient. The sequence numbers are crucial to the
operation of the transport protocol (e.g., TCP), which also is
responsible for regulating the transmission rate within a flow
and thus alleviating network congestion. The routers/switches
located at the core of the network play a role similar to that of
traffic intersections in road networks; namely, they queue up
incoming packets and forward them toward their destination
along the most effective route. The forwarding of packets at
routers follows some scheduling discipline, such as first-come,
first-served. Because a queue consists of a physical block of
computer memory (finite buffer size), if there are too many
incoming packets, then the router may be unable to accom-
modate some of them and will drop them. Depending on the
transmission protocol, senders of dropped packets may be no-
tified to arrange for retransmission. This queueing mechanism
is responsible for observed packet losses and, to a large extent,
for packet delays. Estimation of link-level delay distributions is
another important problem, but we do not consider it here.

Computer and communications networks can be represented
by graphs with the nodes corresponding to various comput-
ing devices such as workstations, routers, and switches and the
edges corresponding to physical links (e.g., fiberoptic cables)
connecting the devices. In active tomography, the network is
“probed” by actually sending packets from one or more source
nodes to a set of receiver nodes. The end-to-end measurements
on packet losses, delays, and other attributes are then used to re-
cover the information about performance at the individual links.
To make things concrete, consider the graph in Figure 1(a),
which shows a small network comprised of workstations lo-
cated on its periphery and routers at its core and their links.
This graph actually depicts an active probing scenario in which
packets are sent from the “source” node “0” to the “receiver”
nodes on the periphery: 5, 6, 7, 10, 11, 12, 13, 14, and 15.

For the purpose of the probing experiment, the physical
topology of the network in Figure 1(a) can be transformed to
the logical topology in Figure 1(b). Note that this has the struc-
ture of a tree: an acyclic graph with one vertex designated as the
root. We describe logical topologies in more detail in the next
section. Note, however, that the router located between nodes

1 and 3 in Figure 1(a) has disappeared in Figure 1(b). This is
because it forms a “chain” (a combination of two links without a
split), and the information for the two links cannot be estimated
separately. Thus any chains will be collapsed into a single link
in the logical topology.

Suppose now that packets are sent from source node 0 in Fig-
ure 1 to destination nodes 6, 7, 10, and 11 and the corresponding
path-level information on losses is obtained; that is, the losses
for the paths 0–6, 0–7, 0–10, and 0–11 are recorded. The goal is
to estimate from these end-to-end measurements the link-level
parameters of interest for the individual links 0–1, 1–2, 1–4,
2–6, and so on. This is the active network tomography prob-
lem.

2.2 Logical Topology and Trees

Most of the literature deals with logical topologies that can be
described by trees: acyclic graphs with one vertex designated as
the root [see Fig. 2(a)]. We also restrict our attention to single-
source topologies in the present article. Some of the same issues
also arise with multiple-sources, but multiple-source topologies
do present new challenges that we do not deal with here. Note
that the logical topology for any active tomography problem
with a single source can be represented as a tree. We will also
assume, as is commonly done in the literature, that the logical
topology is known and fixed during the probing experiment.

We use the following notation. Let T = (V,E) denote
a tree with root 0 ∈ V , a set of nodes V , and a set of
edges/links E . A link between nodes i and j is an ordered
pair, (i, j) ∈ V × V . The root node 0 represents the source
(sender) of the transmitted packets. Let d(i) be a direct de-
scendant (child) of node i, and let D(i) = { j ∈ V : j = d(i)}
denote the set of all direct descendants (children) of node i.
[In Fig. 2(a), D(1) = {2,3,4,5}.] The set of receiver nodes,
denoted by R ⊂ V , consists of all nodes without children,
that is, R = {i ∈ V :D(i) = ∅}. [Again, for Fig. 2(a), R =
{2,3,6,8,9,10,11,12,13,14,15}.] The set of internal nodes
I comprises the nodes that are neither the root nor the receivers
(i.e., I = {s ∈ V − {R∪ {0}}). We assume throughout that each
internal node has at least two children; otherwise, the internal
link characteristics (losses) associated with the node and its
child cannot be estimated separately.

For each node i ∈ V − {0}, there is a unique node j such that
d( j) = i. We refer to this as the parent node of i and denote it

(a) (b)

Figure 1. A Layout of a Small Computer Network (a) and the Corresponding Logical Topology of the Network for the Probing Experiment (b).
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(a) (b)

Figure 2. A General Tree Topology (a) and a Three-Layer Symmetric Binary Tree (b).

as f (i). Defining f n(i) recursively by f n(i) = f ( f n−1(i)), we say
that i is a descendant of j if j = f n(i) for some integer n > 0. [In
Fig. 2, f (6) = 4, f 2(6) = 1, and f 3(6) = 0.] Let Lj, j = 1,2, . . . ,

denote the jth layer of a tree, defined as the set of all nodes
whose shortest path from the root node 0 has j links; that is,
Lj = {i ∈ V : 0 = f j(i)}. [In Fig. 2(a), L3 = {6,7,8,9,10,11}.]
Finally, we let P(i, j) denote a path between nodes i and j that
comprises a set of connected links [see Fig. 2(b)].

We consider binary trees extensively in the numerical and
simulation sections of this article, because of their simplicity.
A binary tree is one in which each internal node has exactly two
children, that is, |D(i)| = 2 for all i ∈ V − (R∪ {0}). For a sym-
metric binary tree, the jth layer has 2j−1 nodes, for j = 1,2, . . . .

Figure 2(b) shows an example of a three-layer symmetric binary
tree.

The size of the networks being studied can vary from local
area networks (e.g., a university campus network) involving a
few dozen receivers to wide-area networks with several hun-
dred nodes and 10–20 layers. However, the size of the logi-
cal topology depends on the resolution that investigators want
to achieve. For a coarser look at network performance, several
links may be aggregated, whereas for detailed capacity plan-
ning, a finer resolution is required.

2.3 Transmission Protocols

There are two types of protocols for transmitting a probe
packet from a source node to a specified set of receiver nodes.
The most common type is the unicast scheme, which sends
a packet from the source to one receiver at a time (Walrand
and Varaiya 1999). At the other extreme, the multicast scheme
sends a packet to a collection of prespecified receivers simul-
taneously. For example, consider Figure 1(b), and suppose that
the packet needs to be sent to receivers 6, 7, and 12. One packet
is sent by the source node to node 1. At this node, the packet is
duplicated, and one copy is placed on each of the links going
to nodes 2 and 3. At node 2, the packet is further duplicated
and sent along to each child node, whereas node 3 sends it on
to node 8, which transmits the packet to 12. In the literature,
the case in which all of the receiver nodes in a network are
probed using a single multicast transmission scheme is called a

multicast experiment. In this article we refer to it instead as an
omnicast probing experiment, to distinguish the multicast trans-
mission protocol from a multicast experiment. (This distinction
is made clear in Sec. 3.) The class of flexible experiments in
Section 3 is also based on the multicast protocol.

Some networks have disabled the multicast protocol for se-
curity reasons; in these situations the unicast protocol must
be relied on. It is known that all of the link-level information
cannot be recovered from end-to-end data using just indepen-
dent unicast probing experiments (Coates and Nowak 2000).
The higher-order correlation information present in multicast
probes (information about losses on shared links in multicast
schemes) is critical for recovering link-level information. This
has led to the proposed back-to-back unicast protocol, which
seeks to mimic the multicast scheme by sending unicast probes
spaced very close together in time to several receivers (Coates
and Nowak 2000; Nowak and Caotes 2001; Castro et al. 2004).
Usually, this involves just one pair of receivers at a time. If the
pair of probes are sent back-to-back within nanoseconds of each
other, then the probes likely will experience identical network
conditions on the common links. In this case, back-to-back uni-
cast will mimic a multicast (specifically, a bicast) scheme.

In this article we consider this idealized back-to-back scheme
to be interchangeable with the multicast protocol. However, it is
important to keep in mind that the back-to-back probes may not
always experience the same losses in shared links, especially if
the shared path has many links. Moreover, if the back-to-back
probes are sent to all of the receivers in a large network (mim-
icking a multicast scheme to all receivers), then there can again
be differences in the performance of the shared links. Lo Presti,
Paxon, and Towsley (2001) proposed using striped probes to
improve the correlation among back-to-back unicasts. In ongo-
ing work, we are formally investigating the properties of such
back-to-back schemes using a latent-variable temporal model.

2.4 Stochastic Model

Let Zr(m) = 1 if the mth probe packet sent from the root
node 0 reached receiver node r ∈ R, and 0 otherwise. For a
one-cast (unicast) scheme, the root node transmits packets m =
1,2, . . . to one receiver at a time, so we observe only Zr(m)
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for a single receiver r for each probe packet. For an omnicast
scheme, where the sender transmits each packet simultaneously
to all receiver nodes, the observed outcome for the mth probe
packet consists of Zr(m) for all r ∈R.

Define hypothetical random variables Xi(m) associated with
all of the links in the network as the outcome of the probe
sent to node i from its parent f (i), with Xi(m) = 1 if the
packet traverses link i ∈ E successfully and 0 otherwise. We
analyze the data under the following independence model,
which also has been commonly used in the literature (Caceres,
Duffield, Horowitz, and Towsley 1999). We assume through-
out that the Xi(m)’s are independent across i and m. Let
αi(m) = P(Xi(m) = 1). We also assume temporal homogene-
ity, that is, αi(m) ≡ αi for all probes m. Then P(Zr(m) = 1) =∏

s∈P(0,r) αs. Further, P(Xj(m) = 1 ∀ j ∈ D(i)) = ∏
s∈P(0,i) αs ×∏

j∈D(i) αj.

These assumptions have also been used in the network en-
gineering literature (Caceres et al. 1999; Castro et al. 2004;
Coates et al. 2002). The temporal homogeneity assumption is
not critical, because the time frame for the probing experiment
is on the order of minutes, but the effect of spatial dependence
merits further study. Extensions to situations with spatiotempo-
ral dependence will be considered in future work. We do, how-
ever, consider a limited assessment of the assumptions using the
ns simulator in Section 6.

Work has been done on the estimation of link-level parame-
ters from active probing schemes. Caceres et al. (1999) con-
sidered multicast experiments (omnicast experiments in our
terminology here) and developed estimation methods that are
asymptotically equivalent to the maximum likelihood estimator
(MLE) for loss rates. Unfortunately, this method does not ex-
tend to the flexible experiments considered herein. Moreover,
these estimators can fall outside the range of (0,1) in finite
samples (see Sec. 4.2). Coates and Nowak (2000) considered
maximum likelihood estimation using the EM algorithm for
link losses but under back-to-back unicast probing. The prob-
lem of estimating link-level delay distributions has also been
studied (see, e.g., Lo Presti, Duffield, Horowitz, and Towsley
2002; Liang and Yu 2003; Tsang, Coates, and Nowak 2003).

3. A CLASS OF FLEXIBLE PROBING EXPERIMENTS

Although the omnicast experiment is conceptually simple, it
has several drawbacks. First, the number of possible outcomes
in the experiment increases exponentially with the number of
layers in the tree topology. For example, consider a symmet-
ric binary tree with L layers with R = 2L−1 receiver nodes.
The omnicast scheme corresponds to a multinomial experiment
of dimension R, so there are 2R = 22L−1

possible outcomes.
Thus data complexity will be a major problem with large net-
works. More importantly, network service providers rarely want
to probe the entire network with the same degree of intensity. It
is more common to allocate different levels of probing effort to
different regions of the network at different times. In network
monitoring, for example, the goal is to monitor the network reg-
ularly and study regions of the network in which problems oc-
cur. This calls for a more flexible class of probing experiments
that allows for studying different regions of the network with
varying intensities. Such experiments raise interesting ques-
tions about how to design them, when the experiments will lead
to identifiability of all of the link-level parameters, how to com-
bine the data to estimate all of the parameters, and so on.

3.1 Flexible Experiments

We begin with a description of a k-cast scheme. A k-cast
scheme sends a probe simultaneously to a given subset k of the
receivers in R and is completely specified by the k-tuple of re-
ceiver nodes, 〈r1, r2, . . . , rk〉, rj ∈ R, j = 1, . . . , k. For example,
two possible four-cast schemes for the general tree topology in
Figure 2(a) are 〈12,13,14,15〉 and 〈2,3,6,12〉.

The class of flexible probing experiments, denoted generi-
cally as C, is given by a collection of independent schemes
{Ch,Nh}, where Ch is a kh-cast scheme for 1 < kh < R, with R
the total number of receiver nodes, Nh the number of probes al-
located to Ch, and h = 1, . . . ,H the number of kh-cast schemes
used. In practice, kh can (and often will) be different for dif-
ferent Ch. Throughout, let N = ∑

h Nh denote the total number
of probes for the experiment. This class of experiments allows
us to allocate different numbers of probes Nh to schemes Ch.
Thus different parts of the network can be probed with different
intensities and possibly at different times. We can combine the
end-to-end measurements from all of the schemes to estimate
the link-level parameters as well as continuously update the es-
timates of the QoS parameters based on the data over time.

If k = 1 for all Ch, then C is composed of a collection of
unicast schemes. If k = R, then C corresponds to a single om-
nicast experiment (Caceres et al. 1999). As we discuss later, an
efficient experiment from a computational standpoint is a “min-
imal” experiment based on a collection of bicast (k = 2) and
unicast (k = 1) probing schemes.

Note that a probe packet for a k-cast scheme has 2k possible
outcomes, each of dimension k. These correspond to whether
the outcome for the receiver node is 1 or 0 (whether or not the
node receives the transmission). For example, for the four-cast
scheme 〈12,13,14,15〉 in Figure 2, there are 16 possible out-
comes, with the outcome (Z12 = 0,Z13 = 1,Z14 = 0,Z15 = 1)

indicating that the packet was successfully received by receivers
13 and 15 but not by receivers 12 and 14. If we send Nh probes
using this k-cast scheme, then, under the posited stochastic
model, it leads to a multinomial experiment with 2k outcomes.
The “success” probability for each outcome is a complex func-
tion of the underlying link success rates α’s. For example, the
probability of the event (Z12 = 0,Z13 = 1,Z14 = 0,Z15 = 1) is
given by a sum of products of αi’s and (1 − αi)’s. We discuss
this in more detail in Section 5.1.

The experiment C is then just a collection of these indepen-
dent multinomial experiments. The data complexity of the ex-
periment C is dictated by that of the largest kh-cast scheme Ch
in C. Typically, this will be much smaller than that of the omni-
cast experiment corresponding to the entire network (kh = R).

3.2 Identifiability

A natural question now is whether for a given experiment C
all of the internal link-level parameters can be identified. We
already know that the answer is negative for the collection of
unicast experiments. In this section we characterize necessary
and sufficient conditions for identifiability of all of the link-
level parameters.

We need the notion of a splitting node. First consider a two-
cast (or bicast) scheme with receiver nodes 〈r1, r2〉. Then the
internal node s is a splitting node if P(0, s) is the longest com-
mon path that {r1, r2} share on the tree. For a k-cast scheme, the
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splitting nodes can be defined in terms of the splitting nodes of
pairs of receiver nodes. Consider the k-cast scheme with re-
ceiver nodes 〈r1, r2, . . . , rk〉, and let {ri, rj} be any subset of
them. Then the internal node s ≡ s(ri, rj) is a splitting node for
this particular pair if P(0, s) is the longest common path that
{ri, rj} share on the tree.

Note that the number of splitting nodes for a k-cast scheme
can range from 1 to (k − 1). For example, for the four-cast
scheme 〈12,13,14,15〉 in Figure 2(a), there is only one split-
ting node, 7. But there are three splitting nodes (1, 4, and 7)
for the scheme 〈2,3,6,12〉. We are interested mainly in k casts
with a single split.

Proposition 1. We assume that αj > 0 for all links in the
logical topology. Let C be a probing experiment comprising a
collection of schemes {Ch,Nh} with Nh ≥ 1. The experiment
C identifies the parameters 
α if and only if the following condi-
tions are satisfied: (I) every internal node s in the tree topology
corresponds to a splitting node for some scheme Ch ∈ C with
kh ≥ 2, and (II) all of the receiver nodes in the tree are covered
by C.

The proof is deferred to the Appendix. It proceeds by map-
ping any given experiment to an equivalent one involving a col-
lection of bicast and unicast schemes and proving the result for
this case.

To understand the implications of Proposition 1, consider the
tree topology in Figure 2(a). Suppose that we use the exper-
iment C comprising the schemes C1 = 〈2,3〉,C2 = 〈6〉,C3 =
〈12,13,14,15〉, and C4 = 〈8,9,10,11〉 with Nh ≥ 1 for all
Ch. The internal nodes 1, 7, and 5 are splitting nodes for
〈2,3〉, 〈12,13,14,15〉, and 〈8,9,10,11〉; however, 4 is not a
splitting node, and so this experiment will not identify all of
the parameters. In particular, the unicast experiment C2 = 〈6〉
can estimate the entire path parameter π(0,6) but cannot sep-
arate the individual link parameters α4 and α6. The problem
can be rectified by replacing, for example, C2 and C3 with
C′

2 = 〈6,12〉 and C′
3 = 〈13,14,15〉. Of course, there are many

ways of modifying this to identify all of the parameters.
This example also illustrates the advantage of this class

of schemes. We can probe the different subnetworks C1, C2,
C′

3, and C′
4 separately with different intensities, even at differ-

ent times, and combine the results to characterize the overall
network behavior. The subnetworks are much smaller and can
be studied more easily. Note, however, that the individual sub-
networks by themselves do not allow for estimation of all of
the internal link-level parameters within each, so this cannot be
viewed as four separate problems.

An experiment comprising collection bicast and unicast
schemes has the least data complexity, because the complexity
is no more than that of a bicast scheme that yields a multinomial
experiment with four possible outcomes. For such a collection,
minimal experiments (i.e., smallest collections) can be found
that lead to identifiability of all of the internal link parameters
as follows:

1. For each internal node s, use exactly one bicast pair b,
whose splitting node is s.

2. Choose these bicast pairs to maximize the number of
receiver nodes covered.

3. Choose unicast schemes to cover the remaining receiver
nodes, r ∈R not covered by the bicast pairs.

As an illustration, consider the binary tree in Figure 2(b).
A minimal experiment consists of the bicast pairs C1 =
〈4,5〉,C2 = 〈6,7〉, and C3 = 〈5,6〉. This is not unique, how-
ever, because we could replace C3 with C′

3 = 〈4,7〉.
Note that Proposition 1 provides a simple and elegant charac-

terization of the identifiability condition. It can also be used to
construct an experiment C that satisfies the identifiability condi-
tion by formulating it as a set-covering problem (Chvatal 1979).

Finally, the identifiability result in Proposition 1 is also use-
ful for the back-to-back unicast transmission protocols used in
the literature (Nowak and Caotes 2001; Castro et al. 2004). (The
use of back-to-back unicast schemes in the literature has been
limited to pairs of receiver nodes, because this is the most rea-
sonable scenario. Back-to-back transmissions to many receivers
at a time is unlikely to mimic the multicast protocol well, be-
cause the probes may not see the same environment on the com-
mon links due to the time delay between many probes.) There
is no discussion in the literature on the design of back-to-back
unicast experiments. Questions of interest include whether they
should be sent to all possible pairs and whether there is a sub-
set of the pairs that will be sufficient to ensure identifiability
of all the internal link parameters and, if so, how these should
be chosen. Proposition 1 and the ensuing discussion about min-
imal bicast/unicast experiments answer all of these questions.
In particular, we see that send back-to-back probes need to be
sent to only subset of all possible pairs to cover all of the in-
ternal nodes, and any remaining nodes can be covered by just
unicasts. Thus the results in this section are also useful for de-
signing back-to-back unicast experiments.

4. MAXIMUM LIKELIHOOD ESTIMATION

4.1 The Likelihood Function

As noted earlier, the experiment C = {Ch,Nh} comprises
a collection of independent schemes Ch with number of
probes Nh. In the remainder, we assume that C satisfies the
identifiability condition of Proposition 1. Recall that a k-cast
scheme can be viewed as a k-dimensional multinomial exper-
iment with parameters that depend on the link transmission
rates, αi. To see this more clearly, denote the probability of
a successful transmission of a packet over the path P(s,u) by
π(s,u); therefore,

π(s,u) =
∏

�∈P(s,u)

α�. (1)

Consider the simple case of bicast probes, and suppose that
a bicast probe b is sent to the pair of receiver nodes 〈ib, jb〉,
ib, jb ∈ R, with splitting node sb. The observed outcome can
take one of the following four values: (Zib(t),Zjb(t)) = (0,0),
(0,1), (1,0), or (1,1), depending on whether the packet was
received by none, one, or both of the intended receivers. Let
γij denote the corresponding probability of any of these events.
Then

γ11 = π(0, sb)π(sb, ib)π(sb, jb), (2)

γ10 = π(0, sb)[1 − π(sb, ib)]π(sb, jb), (3)

γ01 = π(0, sb)π(sb, ib)[1 − π(sb, jb)], (4)
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and

γ00 = [1 − π(0, sb)]
+ π(0, sb)[1 − π(sb, ib)][1 − π(sb, jb)]. (5)

The corresponding bicast experiment has 22 = 4 possible out-
comes, N1,1, N1,0, N0,1, and N0,0, with probabilities given by
the foregoing corresponding γ ’s. Because γ1,1 + γ1,0 + γ0,1 +
γ0,0 = 1, there are only three free probabilities in the bicast
scheme b. Also note that π(0, ib) = γ1,1 + γ1,0 and π(0, jb) =
γ1,1 + γ0,1. Analogous expressions can be derived for k-cast
schemes.

For a general scheme Ch with k receiver nodes 〈r1,h,

. . . , rk,h〉, let N(i1,...,ik),h denote the number of outcomes cor-
responding to the event {i1, . . . , ik}, where ij = 1 means that
receiver rj,h received the packet and 0 means that it did not. Let
γ(i1,...,ik),h denote the corresponding probability of this event.
Then the overall log-likelihood of the experiment C is just the
sum of the individual likelihoods of the Ch’s and is given (up to
additive constants) by

log(�(N|
α)) =
∑

Ch∈C

∑

i1,...,ikh

N(i1,...,ikh ),h log
(
γ(i1,...,ikh ),h

)
. (6)

The parameters γ(i1,...,ikh ),h are complicated functions of the un-
derlying α’s. To understand the complexity, consider the score
functions for a k-cast scheme Ch with a single split. As before,
let Ch = 〈r1,h, . . . , rk,h〉, with sh as the splitting node. There are
two cases to consider.

Case 1. Links in the path above the split. For node k ∈
P(0, sh),

∂ log�h

∂αk
= 1

αk

[

(Nh − N(0,...,0),h + N(0,...0),h
γ(0,...,0)h − 1

γ(0,...,0)h

]

.

Case 2. Links in the path above the split. For node k ∈
P(sh, rj),

∂ log�h

∂αk

= 1

αk

[

N1+,rj,h − N0,rj,h
π(sh, rj)

1 − π(sh, rj)

− N0···0
π(0, sh)

∏
i �=j(1 − π(sh, ri))π(sh, rj)

γ0···0

]

,

where N1+,rj,h is the sum of all outcomes where rj has a 1 and
N0,rj,h is the sum of all outcomes where rj has a 0 and at least
one of the remaining receivers has a 1.

We see that the likelihood equations are involved and cannot
be solved analytically to get explicit expressions for the MLE
in general. We resort to iterative optimization methods for max-
imizing the likelihood. The EM algorithm has been found to be
useful in the literature (Coates and Nowak 2000; Coates et al.
2002; Castro el al. 2004; Liang and Yu 2003), because this falls
naturally into the class of missing-data problems.

4.2 The EM Algorithm

According to the posited model, we have Zr(m) =∏
i∈P(0,r) Xi(m), with αi = P(Xi(m) = 1) for all m. The end-

to-end measurements, Zr(m), are observed, but the internal
link-level data Xi(m) are not. Thus the collection {Xi(m);
i ∈ T ,m = 1,2, . . . } can be treated as the unobserved complete
data, and the EM algorithm (Dempster, Laird, and Rubin 1977)
can be used to compute the MLEs.

Let Vi = ∑N
m=1 Xi(m), the total number of “successes” at

node i under the hypothetical experiment. Then the complete-
data likelihood is given by

�(
α|V1, . . . ,VE) ∝
∏

i∈V
α

Vi
i (1 − αi)

N−Vi . (7)

This complete-data likelihood function is based on multinomial
experiments that involve the αi’s directly. It can be maximized
easily to obtain the MLEs. It belongs to the exponential family,
so the E-step involves computing the conditional expectation
of the Vi’s, the complete data-sufficient statistics, given the ob-
served data and current values of the parameters. The general
expression for (t + 1)st iteration of the algorithm is given as
follows:

E-step. For every scheme Ch ∈ C and node i ∈ Vh, com-
pute the conditional expectations given the observed
end-to-end data Nh,

V(t+1)
i,h = E
α(t)

(∑

m

I{Xi,h(m) = 1}
∣
∣
∣Nh

)

= Nh − E
α(t)

(∑

m

I{Xi,h(m) = 0}
∣
∣
∣Nh

)

.

M-step.

α
(t+1)
i =

∑
Ch∈C V(t+1)

i,h∑
Ch∈C Nh

.

It clearly would be useful to obtain explicit expressions for
the E- and M-steps. We develop these here for the important
special case where the k-cast schemes have a single splitting
node (which is the most interesting case for our flexible exper-
iments). The situation is conceptually analogous for schemes
with multiple splitting nodes, but the notation becomes messy
because the form of the E-step depends on the exact form of the
tree topology.

Let sh be the splitting node for scheme Ch = 〈r1,h, r2,h, . . . ,

rk,h〉. The k + 1 path probabilities for this scheme, π(0, sh),
π(sh, r1,h), . . . , π(sh, rk,h), can be obtained from (1). Further,
let N(0,...,0),h denote the number of probes corresponding to the
outcome of 0 for all of the receiver nodes r1,h, r2,h, . . . , rk,h,
and let γ(0,0,...,0),h be the corresponding probability. Finally, let
N0,rj,h denote the number of probes corresponding to the event
that 0 is observed at receiver node rj,h and at least one of the
remaining receiver nodes receives a 1. Starting with an initial
value 
α(0), let 
α(t) be the value after the tst iteration. Then we
can write the (t + 1)st iteration of the E-steps as follows.

For each scheme Ch ∈ C, proceed as follows:

1. Use 
α(t) and (1) to get the updated path probabilities.
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2. Compute V(t+1)
�,h ≡ E
α(t) [V�|Nh] as follows:

For link � ∈P(0, sh),

V(t+1)
�,h = Nh − N(0,...,0),h

1 − α
(t)
�

γ
(t)
(0,...,0),h

.

For link � ∈P(sh, rj,h),

V(t+1)
�,h = Nh − N0,rj,h

1 − α
(t)
�

1 − π(t)(sh, rj,h)

− N(0,...,0),h

×
(

(
1 − α

(t)
�

)
[

1 − π(t)(0, sh)

+ π(t)(0, sh)
∏

{i : i �=j}

(
1 − π(t)(sh, ri,h)

)
])

× (
γ

(t)
(0,...,0),h

)−1
.

In a bicast scheme b = 〈ib, jb〉, if the path P(0, sb) consists of
only the single link � under consideration, then α� = π(0, sb).
The same holds for P(sb, ib) and P(sb, jb). In these cases, some
of the foregoing calculations will simplify. For example, con-
sider the binary symmetric three-layer tree given in Figure 2(b)
together with a minimal bicast experiment consisting of the
three pairs 〈4,5〉, 〈6,7〉, and 〈5,6〉. Then, V(t+1)

4,〈4,5〉 simplifies to

V(t+1)
4,〈4,5〉 = N4,5 − N4,5

0,1 − N(00),〈4,5〉
(1 − α

(t)
4 )(1 − π(t)(0,5))

γ
(t)
(00),〈4,5〉

and

γ
(t)
(00),〈4,5〉 = [

1 − α
(t)
1 α

(t)
2

] + α
(t)
1 α

(t)
2

(
1 − α

(t)
4

)(
1 − α

(t)
5

)
.

Further,

α
(t+1)
4 = V(t+1)

4,〈4,5〉
N〈4,5〉

,

because this is the only pair in the minimal bicast that includes
node 4.

Caceres et al. (1999) developed a clever algorithm for
computing approximate MLEs for loss rates for an omnicast
experiment. The basic idea is to reduce the data to sufficient sta-
tistics and obtain explicit expressions for solving the likelihood
equations. If a node has k children, then the equation involves
solving a polynomial of order (k − 1). For symmetric binary
trees, this reduces to linear equations. These estimates solve the
likelihood equations and hence are asymptotically equivalent to
the MLEs.

It does not appear that this algorithm can be generalized
to the class of flexible experiments considered in this article.
Moreover, there are situations in which the approximate esti-
mator can behave poorly, leading to estimates outside the range
of (0,1). This seems to occur when there is considerable vari-
ability in the link loss rates, with some loss rates being very
small. This point was already noted by Caceres et al. (1999).
To see this, consider a three-layer tree with α1 = α2 = α4 =
α5 = .8, α3 = .05, and α6 = α7 = .2. The first two rows of Ta-
ble 1 shows the results from an omnicast experiment with 400

Table 1. Comparison of Omnicast and Bicast MLEs

α1 α2 α3 α4 α5 α6 α7

Omnicast 
̂αapprox MLE 1.3250 .5223 .0226 .8056 .7803 .2500 .3333
Omnicast 
̂αMLE 1.0000 .6921 .0300 .8056 .7803 .2500 .3333
Bicast 
̂αMLE .8310 .7576 .0521 .7796 .7727 .2142 .2266

probes. The first row shows the approximate MLEs obtained
using the algorithm of Caceres et al. (1999). In this case the
approximate MLE does a poor job of estimating α1 and α2.
The second row shows the omnicast MLEs obtained through
the EM algorithm. This was computationally expensive, taking
more than 1,200 iterations to compute these MLEs. Although
the MLE for α1 lies inside the range (0,1), it also does poorly
in estimating α1 and α2. Recall that the true value is .8.

The third row gives the results from an experiment with four
bicasts: 〈4,5〉, 〈6,7〉, 〈5,6〉, and 〈4,7〉. This experiment allo-
cated more probes to links in which the loss rate is high, to es-
timate them more precisely. Specifically, 600 probes were sent
to pair 〈6,7〉, 160 probes were sent each to pair 〈5,6〉 and pair
〈4,7〉, and only 40 probes were sent to pair 〈4,5〉. The expected
amount of total traffic under this scheme is 1,212, only slightly
larger than that under the omnicast experiment. The bicast ex-
periment did a much better job estimating the link loss rates.
This situation provides another example of the flexibility and
advantages of the experiments proposed in this article.

4.3 Convergence and Computational Complexity
of the Algorithm

General convergence properties of the EM algorithm are well
known (see, e.g., Tanner 1996; Wu 1983). It does not appear
that the log-likelihood is strictly concave in our case, and so the
uniqueness of the MLE is not easy to establish. However, we
have studied this problem numerically for many datasets and
encountered no problems with multiple maxima. Proposition 2
shows that the Fisher information matrix is positive definite.
This establishes that, with probability tending to 1, there will
be a unique maximum at least in local neighborhoods around
the true value 
α0.

Denote by IN(C, 
α0) the Fisher information matrix at the true
value 
α0. The following result is proved in the Appendix.

Proposition 2. IN(C, 
α0) is a finite and positive-definite ma-
trix.

Let τh = Nh/N, the proportion of probe size allocated to
the scheme Ch. Then we can write IN(C, 
α0) = N

∑
Ch∈C τh ×

I(Ch, 
α0), where I(Ch, 
α0) is the (normalized) information for
the scheme Ch (i.e., corresponding to a probe of size Nh = 1).
The individual elements of I(Ch, 
α0) can be computed as the
variance–covariance matrix of the score functions (given in
Sec. 4.1) or the expectation of the negative second derivatives
of the observed data log-likelihood. A scheme Ch will typically
involve only a few of the link-level parameters, so many of the
entries in I(Ch, 
α0) will be 0, leading to a sparse matrix.

Figure 3 shows the number of iterations needed for conver-
gence of the likelihood function and convergence of selected
α̂’s for a symmetric binary three-layer tree with all elements of

α > .6. About 50 iterations are needed for a convergence crite-
rion of 10−4 for the log-likelihood. Using a reasonable initial
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(a) (b)

Figure 3. Convergence of the Log-Likelihood Function (a) and of Se-
lected α̂’s (b) for a Three-Layer Tree.

estimate of 
α significantly reduces the number of iterations, es-
pecially for fairly small values of α’s. As we show in the next
section, the variability of α̂i increases as αi gets smaller. This
affects the number of iterations, which increases as the loss rate
(1 − αi) increases (Fig. 4).

The computational complexity of the algorithm depends in
general on the structure of the individual schemes and the un-
derlying tree topology and hence is difficult to assess. However,
in the special case of a minimal experiment comprising bicast
and unicast schemes, we can establish a lower bound for any
given tree topology T .

Let L = |L|, denote the number of layers and let E =
|E | denote the number of links in T . Note that most of the
computations stem from the E-step. Consider the complexity
of one iteration of the EM algorithm for an arbitrary bicast
pair b = 〈ib, jb〉 with splitting node sb. The path probabili-

Figure 4. Number of EM Iterations for a Three-Layer Tree as a Func-
tion of the Success Probability.

ties given in (1)–(5) need to be computed at the beginning
of the kth iteration. This involves O(Qb) multiplications and
a fixed number of additions/subtractions, where Qb denotes
the maximum length of paths P(0, ib) and P(0, jb), that is,
Qb = max{|P(0, ib)|, |P(0, jb)|}. Note that Qb < L for any bi-
cast scheme. At the second stage, the updates of V�,b need to be
computed, which involves a large but constant number of op-
erations. Therefore, O(L) operations are required in the E-step
for the bicast schemes. For an arbitrary unicast scheme with
receiver node u, only the path probability π(k)(0,u) needs to
be calculated; this also requires at most O(L) operations. The
second stage of updating V(k+1)

�,u involves a constant number of
operations. Finally, the M-step involves a single division for
each αi for the whole experiment.

Therefore, the complexity of the minimal experiment is
given by O([|B| + |U |]L). Minimal experiments require |I| bi-
cast pairs, whereas the number of unicast schemes is bounded
by |R|. Therefore, the lowest possible complexity is O(E × L).
The relationship between E and L depends on the structure of
the topologies. For the special case of symmetric binary trees,
L = log(E).

4.4 Behavior of the Variances

This section studies how the behavior of the variance of the
MLEs varies with the true loss rates and the layer of the links
in the tree. We consider just the three-layer symmetric binary
tree Figure 2(b) with equal loss rates for all links, that is, α1 =
· · · = α7. Figure 5 shows the variances of the MLEs for a bicast
experiment with an equal allocation of 25% to the four bicasts:
C1 = 〈4,5〉, C2 = 〈6,7〉, C3 = 〈5,6〉, and C4 = 〈4,7〉.

Unlike a binomial experiment in which the variance is pro-
portional to α(1 − α), the variance here increases as α gets
smaller. Thus there is a higher level of uncertainty when a link
has high loss rate (small α). Further, the variance of the MLE at
the first layer or link 1 [Fig. 5(a)] is uniformly lower than that
at the second layer corresponding to nodes 2 and 3 [Fig. 5(b)].
This is due to the larger number of probes that go through the
nodes at higher layers of the tree. Similarly, the variance at
nodes 2 and 3 [Fig. 5(b)] is lower than that of the receiver nodes
[Fig. 5(c)], although the differences now are much smaller. This
is because there is much more information about the receiver
nodes from bicast pairs that split at the lowest layer (e.g., 〈4,5〉
and 〈6,7〉). This offsets the loss due to the fewer number of
probes. Our investigations suggest that similar conclusions hold
for four-layer and larger binary trees.

4.5 Large-Sample Properties

Recall that N = ∑
h Nh, the total number of probes in the ex-

periment. Let 
̂αMLE denote the MLE. Further, let I(C, 
α0) be the
normalized information matrix given by

∑
Ch∈C τhI(Ch, 
α0),

where I(Ch, 
α0) is the per-unit information for the scheme Ch.

Proposition 3. Assume that limN→∞ Nh/N = τh, with 0 <

τh < 1. Then (a) 
̂αMLE → 
α0 a.s., and (b)
√

N( 
̂αMLE − 
α0)
L�⇒

MVN(0,�), where �−1(
α) = I(C, 
α0), the normalized infor-
mation matrix and MVN stands for multivariate normal.

Proof. Because the end-to-end data N(i1,...,ik),h have asymp-
totic normal distributions, the results follow in a straightfor-
ward manner if we can establish that the mapping N(i1,...,ik),h →
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(a) (b) (c)

Figure 5. Variances of the MLEs for Selected Links in a Three-Layer Tree With Equal Loss Rates (=P).


̂αMLE is a continuously differentiable function. It can be shown
that this is in fact true in local neighborhoods of the true values
of the parameters, using the positive-definiteness of the Fisher
information matrix and an argument based on the implicit func-
tion theorem. The details are omitted here.

We can use the asymptotic normality to construct confidence
regions and hypothesis tests. We can also use likelihood-ratio
methods for inference. These require computating the Hessian
and using the observed information matrix to estimate the as-
ymptotic variance–covariance matrix. Also note that the addi-
tive structure of the log-likelihood function over the individual
schemes Ch simplifies the calculations considerably. The struc-
ture for k-cast scheme with a single split simplifies things, with
the computations depending only on whether the node of inter-
est is above or below the splitting node.

5. OPTIMAL DESIGN ISSUES RELATED TO
PROBE ALLOCATION

There are two design issues associated with the flexible ex-
periments C = {Ch,Nh}: selection of appropriate schemes Ch,
and allocation of the total number of probes to specific schemes
Nh. We have already discussed the first problem. Here we con-
sider the second problem, optimal allocation {Nh} of a fixed
budget of N probes to a given set of schemes {Ch}. Our goal

here is to develop a general formulation of the optimal alloca-
tion problem and to investigate the results for special cases to
gain some insight.

The problem can be formulated as an optimal design of ex-
periments problem. Given total probe size N, let τh denote
the proportion of probes to be allocated to Ch. The optimal
design problem is to choose {τh} to minimize an appropri-
ate measure of variance of the MLEs of the link-level loss
rates. The two most common criteria used in the optimal de-
sign literature are D-optimality and A-optimality (Pukelsheim
1993). D-optimality minimizes the determinant of the variance–
covariance matrix (or maximizes that of the Fisher information
matrix), whereas A-optimality minimizes the trace, that is, the
sum of the variances. D-optimal designs are more common, be-
cause A-optimality ignores the covariances; thus we restrict our
attention to the former criterion.

Let the experiment be denoted by {Ch, τh}, with fixed total
probe size N. The Fisher information matrix I(N, α) can be
written as a weighted sum N

∑
h τhI(Ch, α), where I(Ch, α)

is the normalized information matrix corresponding to the
scheme Ch. The D-optimal allocations of the τ ’s are those that
maximize the determinant of the Fisher information matrix. We
see that det(

∑
h τhI(Ch, α)) can be expressed as a polynomial

in 
τ . The optimal value of 
τ that maximizes this must be de-
termined numerically. The more difficult issue is that the opti-
mal allocations depend on the unknown values of the link-level
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parameters. This issue, called local optimality in the literature
(Chernoff 1953; Pukelsheim 1993); is a common problem in
most nonlinear (and nonnormal) design situations.

There are several ways to address this problem in prac-
tice. The first, most common approach is to use any available
preliminary information about the loss rates to determine the
optimal allocations and assess their sensitivity to the inputs
(sometimes called planning values). In our setup, the prelim-
inary information can come from historical data, specifica-
tions for service-level agreements, and so on. If the results
are very sensitive to the planning information, then one typi-
cally will decide against using optimal allocations. (See, e.g.,
Meeker and Escobar 1998 for a detailed discussion of this
approach in the context of accelerated test planning.) A sec-
ond approach that provides a formal framework for incorpo-
rating prior information is Bayesian-optimal design theory (see
Chaloner and Verdinelli 1995 for an excellent review). Let p(
α)

be the prior distribution on the link probabilities. Then we can
get the Bayes-optimal allocations for our problem by minimiz-
ing the criterion φ(τ) = ∫

log(det[N ∑
h τhI(Ch, α)])p(
α)d
α

[Chaloner and Verdinelli 1995, p. 286, eq. (15)]. A third, non-
Bayesian, alternative is to use a two-stage approach in which
initial estimates are obtained from a first-stage experiment and
the estimates are used to decide on the (approximately) opti-
mal allocation in the second stage. We discuss the application
of these approaches for a specific example.

First, we investigate the behavior of the optimal allocations
(assuming that the true α’s are known) for some special cases
to develop insights. Again, for simplicity we restrict attention to
three- and four-layer symmetric binary trees with bicast experi-
ments. We have conducted extensive investigations, but here we
provide only selected results due to space limitations.

Figures 7–9 show the results for symmetric three-layer and
four-layer (Fig. 6) trees. For the three-layer case, we used a bi-
cast experiment with four schemes: C1 = 〈4,5〉, C2 = 〈6,7〉,
C3 = 〈5,6〉, and C4 = 〈4,7〉. This includes one more bicast
pair than a minimal experiment, so that all of the receiver nodes
are treated symmetrically. For the four-layer tree, we used a bi-
cast experiment with eight pairs: C1 = 〈8,9〉, C2 = 〈10,11〉,
C3 = 〈12,13〉, C4 = 〈14,15〉, C5 = 〈9,10〉, C6 = 〈11,12〉,
C7 = 〈13,14〉, and C8 = 〈8,15〉.

Figure 7(a) shows τ , the total D-optimal allocation for the
two pairs that split at the second layer (C1 = 〈4,5〉 and C2 =
〈6,7〉). This is for the three-layer tree with equal α’s for all of
the links. We see that τ varies in a small range around 2/3, so
each bicast gets around 1/3 of the allocation and the remaining
two pairs C3 = 〈5,6〉 and C4 = 〈4,7〉 each get about 1/6. Note
that the schemes that split at the lower level get more probes,
and that the optimal allocations are remarkably stable across a
broad range, α ∈ (.5, .99).

Figure 7(b) shows the corresponding results for the four-layer
tree with equal α’s. The total D-optimal allocation for the four
pairs that split at the lowest layer, τ1, is around .60. Recall that
the total was 2/3 in the three-layer case. The total allocation
for three pairs that split at the middle layer, τ2, is around .24,
and that for the single pair that splits at the top is .14. These
values are again remarkably stable for α in the range (.5, .99).
It is also interesting that the schemes that split at the lowest and
highest levels receive greater allocation than those that split at

Figure 6. A Four-Layer Symmetric Binary Tree.

the middle. This is due to a combination of factors. Schemes
that split near the top provide less information about links near
the bottom, implying a need to increase the allocation. On the
other hand, more probes traverse the links near the top than at
the bottom, suggesting a need to increase the allocation to lower
links. For example, all probes will traverse the 0–1 link. These
effects trade off against one another to yield higher allocations
for the top and bottom links and lower allocations for links in
the middle.

Consider now the optimal allocations when the loss rates are
unequal, that is, rates for links in the top and bottom layers are
equal to P1 and those in the middle layer(s) are equal to P2. Fig-
ure 8 deals with the three-layer tree. The y-axis shows the total
allocation τ for the pairs that split at the second layer of the
topology (〈4,5〉, 〈6,7〉) for three cases: P1 = .8, .9, and .99.
The x-axis corresponds to values of P2 ∈ (.5, .99). We see
that τ again varies in a small range, from .68 to .73, and is
only slightly higher than the value of 2/3 obtained previously.
Figure 9 shows the results for the four-layer tree, with again
τ1 represent the total allocation for the four pairs that split
at the lowest layer, τ2 representing that for the middle layer,
and τ3 representing that for the top layer. Again, τ1 varies in a
small range around .6–.65 (close to the values for the case with
equal α’s); τ2 and τ3 display similar behavior.

We have also investigated other bicast experiments for the
three- and four-layer trees. It can be shown analytically, us-
ing symmetry arguments, that for the three-layer tree and the
foregoing choice of α’s, the experiment with all possible bi-
cast pairs (six pairs) has exactly the same optimal allocations
as the one that we considered earlier. For the four-layer tree,
on the other hand, the case with all possible bicasts (28 pairs)
exhibits slightly different behavior. We found only very small
differences in the optimal allocations very small, however.
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(a) (b)

Figure 7. D-Optimal Allocations When the True Link-Loss Rates Are All Equal to P. Optimal allocations for (a) a three-layer symmetric binary
tree and (b) a four-layer symmetric binary tree.

Let us now return to the practical problem where the loss
rates are unknown. First, we see from Figures 7–9 that the op-
timal allocations are fairly stable for the region of interest, that
is, the interval (.90, .99). Specifically, Figure 7(b) shows that
the allocations are remarkably constant for the four-layer tree
with equal loss rates, suggesting that the results are robust to
misspecification of the prior information. A similar conclusion
holds for Figure 9, which shows the results for a four-layer tree
with unequal loss rates. For the three-layer tree (Figs. 7 and 8),
there is some change in the allocations as the probabilities get
close to 1, but this is still very small [.665–.685 in Fig. 7(a)].
Thus we can conclude that in these cases, the optimal alloca-
tions are reasonably robust to uncertainty in the preliminary
information. Because of this stability, the Bayesian D-optimal
allocations will also be close to the locally optimal ones.

Figure 8. D-Optimal Allocations for the Three-Layer Tree With Un-
equal Loss Rates. Loss rates are equal to P1 for links at the top and
bottom layers and equal to P2 for links at middle layer.

We also investigated the usefulness of the two-stage approach
(discussed earlier) on a symmetric three-layer tree using a col-
lection of four bicast schemes: 〈4,5〉, 〈6,7〉, 〈5,6〉, and 〈4,7〉.
Given a total budget of N = 1,000 probes, a proportion q was
allocated equally to all four bicast schemes in stage I. The
data from the initial sample were used to estimate the success
probabilities α. Based on the estimates α̂, the remainder of the
(1 − q)N probes were allocated using the optimal allocation
scheme. The final estimate of α is a weighted combination of
stage I and stage II estimates given by qα̂1 + (1 − q)α̂2. This
procedure was repeated for M = 1,000 simulations. A number
of scenarios were considered for the true values of α and val-
ues of q, but only selected results are reported here. For equal
loss rates of α = .99 and q = .3, the optimal allocations using
the two-stage approach ranged from about .65 to .75 with about
70% in the interval .66–.72. Note from Figure 7(b) that the lo-
cally optimal allocation is around .67.

6. NETWORK SIMULATION STUDIES

So far we have studied the behavior of the estimators un-
der the assumption of spatial and temporal stationarity. In this
section we do a small simulation using the network simula-
tor (ns) package to study the performance in a more realis-
tic environment. Details about the ns simulator are available at
http://www.isi.edu/nsnam/ns.

For simplicity, we consider a three-layer binary symmetric
tree [see Fig. 2(b)]. In the simulation, all links had 1.5 Mb/sec
of bandwidth and 10 ms of propagation delay and were served
by a FIFO queue with a finite buffer of size 10. Thus a packet
arriving at a node will be dropped if it encounters 10 pack-
ets already queued up. We considered two different scenar-
ios: constant-bit-rate (CBR) (see Walrand and Varaiya 1999)
traffic traversing the network and background traffic consist-
ing of TCP background traffic and CBR probing traffic. The
reason for investigating these two scenarios is that CBR traffic
would lead to a stationary environment, as the posited model

http://www.isi.edu/nsnam/ns
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(a) (b) (c)

Figure 9. D-Optimal Allocation for the Four-Layer Tree With Unequal Loss Rates: =P1 for the Top and Bottom Links and =P2 for the Middle
Links. (a) P1 = .80; (b) P1 = .90; (c) P1 = .99.

requires. In contrast the TCP protocol, which is the predomi-
nant protocol in real networks, is a bursty packet source due to
its “linear increase–exponential backoff” rate of transmission
nature (Walrand and Varaiya 1999).

For the all CBR traffic scenario, the root link and the receiver
links carried a single flow, whereas the middle links (1–2 and
1–3) had two flows. The background traffic was generated by
infinite data sources that sent 500-byte packets with a uniform
interpacket distribution in (1,3) ms. The probing experiment
for the three-layer tree consisted of the three bicast schemes:
〈4,5〉, 〈6,7〉, and 〈5,6〉. Forty-byte packets were transmitted
with a uniform interpacket distribution in (2.5,7.5) ms. Hence,
probing traffic was a small fraction (<5%) of the total traffic in
the network.

Figure 10 shows the inferred and the actual (tracked by
the ns simulator) loss rates on selected links over 5,000 ob-
servations. Although we are dealing with a highly congested
network, we see that the estimates track the actual loss rates
extremely well. In the second simulation scenario there were
52 TCP connections on the various links, resulting in about
seven or eight flows per link. The TCP connections sent
1,000-byte packets, and the FIFO queue buffer was 4 pack-
ets. The characteristics of the probing traffic were the same as

before. Figure 11 shows the actual and inferred loss rates for
selected links. Note the higher loss rate in the 3–7 link due
to the presence of eight connections compared with the seven
present in the 2–4 link. Although the tracking of the actual link
losses is very consistent, there exists a small systematic bias in
the estimates (a fact also observed in Caceres et al. 1999). This
is likely due to nonstationarity caused by persistent losses on
neighboring links. This issue merits further study.

7. APPLICATION TO NETWORK MONITORING

A major goal in network engineering is to monitor the net-
work over time for anomalous behavior and to diagnose where
the problems occur, that is, identify the affected nodes or sub-
networks. In this section we demonstrate the usefulness of the
results for network monitoring in an idealized setting. A com-
prehensive methodology for the monitoring problem is the sub-
ject of ongoing work. This will involve taking into account the
considerable variation in network parameters due to diurnal,
day-of-week, and other effects. These can be ignored in getting
(local-in-time) estimates of the QoS parameters, because the
probing experiments are conducted within a span of minutes.
But they become important in the context of monitoring done
over a longer period. In ongoing work, we are studying methods
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Figure 10. Tracking the Actual Loss Rates ( · · · · · ·) by Inferred Loss Rates ( ——) in a CBR Simulation for Selected Links of a Three-Layer Tree
Topology.

for estimating the systematic effects and removing them to de-
tect changes in the presence of nonstationarity. Our goal in this
section is more limited: to demonstrate the potential usefulness
of the methods developed in the article for network monitoring.
The flexibility of the new class of schemes makes it particularly
well suited for the monitoring application.

We consider the following idealized framework for monitor-
ing and detecting changes: 
α = 
α0 for all times t ≤ T and some
of the αj’s change to α1j < α0j at some random point in time
T > 0. Our goal is to detect the change as quickly as possible
and to identify the link or collection of links where the problem
has occurred.

We first estimate the individual link-level loss rates to estab-
lish baselines as follows. Time is divided in 
 > 0 time inter-
vals, and within every 
 interval a number of N
 probes are
used for the probing experiment. (The total number of probes
N
 is appropriately allocated among the k-cast schemes used in
the probing experiment.) That is, t = k
, k = 0,1,2, . . . . Using
the data obtained from the N
 probes, an estimate of 
̂α(t) us-
ing the EM algorithm is obtained. There are various ways to
monitor for changes in the values of 
α(t). One method that is
suitable for detecting both small and medium changes is the
exponentially weighted moving average procedure (EWMA)
(Basseville and Benvensite 1986). The EWMA statistic can be

expressed as

Zj(t) = λα̂j(t) + (1 − λ)Zj(t − 1),

where α̂j(t) is the local estimate of αj at time t, Zj(1) = α̂j(1),
λ is an appropriate weight, and Zj(t) is obtained iteratively from
the foregoing.

We illustrate the methods on the four-layer binary symmet-
ric tree in Figure 6 as the logical topology of the network be-
ing monitored. We consider two different scenarios to capture
different types of changes. In the first scenario, αi = .99, i =
1, . . . ,5; that is, the network is in its normal state for the first
five time periods. Then there is small increase in the loss rate
for link 1–3 from .99 to .95; all other links remain the same.
Figure 12 shows the EWMA chart, which gives the EWMA
statistic and the lower and upper control limits for the links in
the path 0–15, that is, α1, α3, α7, and α15. The control limits
were calculated using the “null” values of the success proba-
bilities, that is, taking the mean level equal to .99. The prob-
ing experiment consisted of 8 bicast schemes with 250 probe
packets allocated to each bicast pair. A value of λ = .6 was
used, a common choice in the process control literature (see,
e.g., Basseville and Benvensite 1986). We see from Figure 12
that the change in α3 was clearly detected, even though it was
relatively small. The EWMA statistic for the other links in the
path are within the control limits, except for α7, which had just
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Figure 11. Tracking the Actual Loss Rates ( · · · · · ·) by Inferred Loss Rates ( ——) in a TCP Simulation for Selected Links of a Three-Layer Tree
Topology.

one point outside the control limits. The figure also shows the
variability of the moving average process because of the rather
small number of probing packets used. This variability can, of
course, be reduced by increasing the probe size. The design of
monitoring schemes, including the choice of monitoring statis-
tic, probe sizes, and average run lengths, are being studied in
ongoing work.

To understand how well the procedure works, one must study
the run-length distribution of the monitoring procedure. Here
run length (RL) is defined as the number of periods before a
change is detected; that is, the statistic falls outside the control
limits (Basseville and Benvensite 1986). Although one can in-
vestigate the RL distribution in general, it is common to focus
on the expected or average RL (ARL). It is desirable to have
a large ARL under the null hypothesis of no change (ARL0)
and a small ARL when there is a change (ARL1). The RL can
be viewed as the first-passage time of the underlying process
across the control limits (one- or two-sided boundaries). The
most common method for computing ARLs (aside from simu-
lation) uses a Markov chain approximation (Brook and Evans
1972; Ringer and Prabhu 1996) by discretizing the state space.
Crowder (1987) developed a better, integral-equation approach
for EWMA-based statistics. Numerical routines are available in
SAS for computing the ARLs when the underlying process is
normal. We used these routines for our problem, using a normal

approximation for α̂j(t)s. The normal approximation is reason-
able when the probe size n ≥ 100 but is not as good for n = 50.
We did some simulations to calibrate the numerical results in
this small-sample case and found that the ARL values from
simulation were slightly smaller than those reported in Tables
2 and 3. Our setup is also a bit more complicated than the usual
normal case in which the mean shift is not related to the vari-
ance. We used the integral equation with control limits under
the null but the variance of the process under the alternative.

Table 2 gives the ARLs for the situation of interest:
α3 changes from .99 to .95 and all other αk’s remain unchanged
at .99. ARL values for different probe sizes n and different val-
ues of the weights λ are given. The value of L refers to the
width of the control limits (±Lσ ) and was chosen so that the
in-control ARL is about 250 in all cases. The ARL values dis-
played in the table are the expected number of time intervals
before a change is detected. We see that even with a small sam-
ple of 50 probes, the change is detected within three time peri-
ods; this reduces to about two periods with probe size of 100.
For n = 250, there is almost immediate detection (one time pe-
riod). The optimal weighting parameter (corresponding to the
smallest ARL in each row) changes with changing sample size
(because a larger sample size implies a larger shift size in terms
of the noncentrality parameter).
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Figure 12. Link Success Probabilities Monitoring of a Sudden Change in a Single Link Using an EWMA Chart.

To put these numbers into perspective, note that probes can
be sent approximately 15–20 milliseconds apart without inter-
fering with the operation of the network. Therefore, one (mon-
itoring) period ranges from about 1 second (for 50 probes)
to 5 seconds (250 probes). So we see that a small-magnitude
change can be safely detected in 3–5 seconds.

The second scenario is similar to the first scenario but now
involves deterioration in two links, α3 and α7, along the path
P(1,8); that is, α7 also changes from 0.99 to .95 for t =
6, . . . ,10. Once again, 250 probes per bicast pair were used.
The results, shown in Figure 13, indicate that changes in both
links can be successfully detected while having no false alarms
on the remaining two links on the path (0,15).

Table 3 gives the ARLs for α7. The ARLs for α3 were qual-
itatively very similar to those in Table 2 under Scenario 1 and
thus are omitted due to space limitations. The conclusions from
Table 3 are very similar to those under Scenario 1 with the
single-link change problem.

As noted earlier, in practice, network monitoring is done
over a period during which the QoS parameters will vary. We
will have to accommodate for systematic variation due to time-
of-day, day-of-the-week, and other effects. Furthermore, in the

Table 2. ARLs for Scenario 1 and Link 3

L = 2.439 2.532 2.582 2.611 2.629 2.646
Probe size n λ = .2 .3 .4 .5 .6 .8

n = 50 4.59 4.50 4.62 4.90 5.34 6.81
n = 100 3.02 2.82 2.74 2.73 2.79 3.13
n = 250 1.91 1.73 1.61 1.52 1.46 1.41

foregoing illustration, we were solving the inverse problem to
estimate the α’s at each time point. However, for the purpose
of detection, we can just monitor the end-to-end path estimates
π̂(0, rh) for all of the receiver nodes. Once a change in perfor-
mance is detected, we can solve the inverse problem to estimate
the α’s and identify the regions in which performance has de-
graded. A comparison of this alternative approach to the one
that we illustrated earlier merits further study. Finally, network
monitoring and intrusion detection is a very important area, and
network engineers use a wide array of tools and data sources to
address this problem. The results from active tomography must
be effectively combined with other sources of information and
tools for effective monitoring.

8. CONCLUDING REMARKS

There are a number of interesting directions for further work
in the context of computer and communication networks. These
include design issues for multisource topologies, incorporation
of temporal and spatial dependence, and the network monitor-
ing problems discussed in the preceding section.

We have formulated and presented the results in terms of the
application to network tomography, because this is an interest-

Table 3. ARLs for Scenario 2 and Link 7

L = 2.439 2.532 2.582 2.611 2.629 2.646
Probe size n λ = .2 .3 .4 .5 .6 .8

n = 50 3.32 3.13 3.08 3.11 3.23 3.74
n = 100 2.31 2.10 1.99 1.92 1.88 1.91
n = 250 1.54 1.37 1.26 1.18 1.14 1.09
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Figure 13. Link Success Probabilities Monitoring of a Sudden Change Along a Path Using an EWMA Chart.

ing class of inverse problems. However, the results can be also
viewed more generally as inference for tree-structured graphs.
There are other applications, such as manufacturing assembly
processes and distribution networks, where these results can
also be applied with appropriate modification.

APPENDIX: PROOFS

A.1 Proof of Proposition 1

If every internal node s in T is a splitting node for some scheme Ch,
then it is automatically a splitting node for a two-cast subset of the
k-cast scheme. Thus we can study an equivalent problem involving an
experiment C̃ comprising bicast and unicast schemes with the follow-
ing characteristics: (I) for each internal node s in T , there is at least
one bicast pair b ∈ B whose splitting node is s, and (II) the unicast
schemes in U are chosen to cover the remaining receiver nodes r ∈ R
that are not covered by the bicast pairs in B.

It suffices to establish the existence of a bijection between 
α and the
parameters  ∪ 
, where  and 
 are defined as follows. Define B to
denote the collection of all bicast pairs used in the experiment and let
U denote the collection of unicast schemes. Let b = {γ b

1,1, γ b
1,0, γ b

0,1}
denote the set of free probabilities from a pair of receiver nodes b =
〈i, j〉 and let  = {b : b ∈ B} denote the probabilities generated by all
bicast pairs in B. Let 
u = {δu

1, δu
0} denote the probabilities of the two

outcomes for unicast scheme u and let 
 = {
u : u ∈ U}.
Sufficiency. It is easy to see that  = {b;b ∈ B} and 
 =

{
u;u ∈ U} are uniquely determined by 
α. We next show that the ele-
ments of 
α are also uniquely determined by  ∪ 
.

Recall that a node i ∈ V −{0} belongs to the kth layer Lk of T if its
shortest path from the root node has k links. We need to consider the
following three cases: (1) the splitting node for bicast pair b is node 1,

that is, belongs to first layer L1; (2) the splitting node is any internal
node, that is, s ∈ I; and (3) the case of receiver nodes r ∈R.

Case 1. For bicast pair b0 = 〈ib, jb〉 with splitting node 1, we have

α1 = πb0(0,1) = (γ
b0
11 + γ

b0
10 )(γ

b0
11 + γ

b0
01 )

γ
b0
11

.

Therefore, it is determined by the elements of .

Case 2. We proceed by induction. Suppose that for all internal
nodes s such that s ∈ L1 ∪ L2 ∪ · · · ∪ Lk−1, the αs’s are determined
by . We need to show that αt, t ∈Lk is also determined by . Because
t is an internal node, there exists a bicast scheme b0 ∈ C with splitting
node corresponding to t. We have that πb0(0, t) = πb0 (0, f (t))αt , with
all members of πb0(0, f (t)) already determined. As before, we have

that πb0(0, t) = (γ
b0
11 + γ

b0
10 )(γ

b0
11 + γ

b0
01 )/γ

b0
11 , which, combined with

the previous observation, establishes the identifiability of αt from the
elements of .

Case 3. We now deal with the receiver nodes r ∈ R. Note that
due to the induction hypothesis in the previous step, all αs’s, with
s ∈ I , have been identified. A receiver node can be covered by ei-
ther a unicast scheme or a bicast scheme. For the unicast case,
πu0 (0, r) = πu0(0, f (r))αr , with all elements of πu0(0, f (r)) already
identified by the induction. We also have that δ

u0
1 = πu0(0, r), which,

combined with the previous observation, establishes the identifiabil-
ity of αr from elements of 
. For the bicast scheme b0 = 〈ib0 , jb0 〉
with splitting node sb0 , we have that π(sb0 , ib0 ) = γ

b0
11 /(γ

b0
11 + γ

b0
01 )

and π(sb0 , jb0 ) = γ
b0
11 /(γ

b0
11 + γ

b0
10 ). But πb0(sb0 , r) = πb0 (0, f (r))αr ,

with r being either ib0 or jb0 , and the result follows as before.

This establishes that there is a bijection between 
α and  ∪ 
.
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Figure A.1. Demonstration of (A.1) and (A.2).

Necessity. We argue by contradiction. Suppose that there is a com-
bination of bicast schemes that includes all possible pairs, except the
collection of pairs B0 = {b ∈ C : splitting node is sb0 ∈ I} that have as
their splitting node sb0 an internal node of T . We show that this fails
to identify all of the elements of 
α.

Let f (sb0) and d(sb0) denote the parent and any child node of node
sb0 (see Fig. A.1). From the previous derivations, it is easy to see that
the following relationships hold:

πb(
0,d

(
sb0

)) = πb(
0, f

(
sb0

)) × αsb0
× αd(sb0 ) (A.1)

and

πb(
f
(
sb0

)
, �

) = αsb0
× αd(sb0 ) × πb(

d
(
sb0

)
, �

)
, (A.2)

for any b ∈ C, where � corresponds to some receiver node for pair b.
Note that, as argued in the sufficiency part of the proof, only these π ’s
are uniquely determined by their b’s. Further note, that both (A.1)
and (A.2) correspond to two actual equations, because node sb0 has
two children nodes for bicast schemes in B0. A straightforward calcu-
lation shows that only the values of the products αsb0

× αd(sb0 ) can
be calculated uniquely from the elements of  by taking the appropri-
ate ratios, but the individual parameters cannot be disentangled. Hence
C fails to identify all of the elements of 
α. This completes the proof of
the proposition.

A.2 Proof of Proposition 2

In this section we denote the information matrix by �. Suppose that
there exists a vector 
c ∈ RE such that 
c′�
c = 0. We show that every
element of 
c must be 0, which establishes the result.

Suppose that var(
c′S(
α)) = 
c′�
c = 0 and E(
c′S(
α)) = 0. We must
have that 
c′S(
α) = 0, a.s. Equivalently,

E∑

e=1

ce
∂ log�(
α|N)

∂αe
= 0 (A.3)

for all possible elements of N.
We demonstrate the result for a collection of schemes Ch compris-

ing bicast and unicast transmissions, and then indicate how it general-
izes for an arbitrary collection. Recall from our construction of min-
imal experiments that unicast schemes may uniquely cover receiver
links only, whereas all links between internal nodes are covered by
bicast schemes. We show that 
c = 0.

We next examine the three cases.

Case 1. Consider an arbitrary bicast scheme, b = 〈i, j〉, that cov-
ers receivers i and j with splitting node s. Without loss of generality,
assume that every bicast and unicast scheme used in the collection C
receives a single probe packet. Furthermore, because the result must
be true for all N, assume that in all of the other bicast schemes in the
collection C, the observed outcomes are also (1,1), and in all of the
unicast schemes, the observed outcome is 1.

If the observed outcome is also (1,1) for the bicast pair b, then we
have

log�(
α|N)

=
∑

�∈P(0,s)

log(α�) +
∑

�∈P(s,i)

log(α�) +
∑

�∈P(s,j)

log(α�)

+
∑

b∈C,b�=b

log(γ b
1,1) +

∑

u∈C
log(δu

1), (A.4)

which implies that (A.3) becomes
∑

�∈P(0,s)

c�

α�
+

∑

�∈P(s,i)

c�

α�
+

∑

�∈P(s,j)

c�

α�
+ g(
c) = 0, (A.5)

with g(
c) capturing the terms in the sum over all bicast and unicast
schemes, but bicast pair b.

Suppose now that the observed outcome for pair b is (1,0) whereas
for at all the other bicast schemes in C were still (1,1) and at all unicast
schemes 1; then, (A.3) becomes

∑

�∈P(0,s)

c�

α�
+

∑

�∈P(s,i)

c�

α�

+
∑

�∈P(s,j)

c� × π(s, j)

α� × (π(s, j) − 1)
+ g(
c) = 0. (A.6)

Furthermore, assume that the observed outcome at pair b is (0,1),
whereas that for all of the other bicast schemes in C is still (1,1); then
(A.3) becomes

∑

�∈P(0,s)

c�

α�
+

∑

�∈P(s,i)

c� × π(s, i)

α� × (π(s, i) − 1)

+
∑

�∈P(s,j)

c�

α�
+ g(
c) = 0. (A.7)

Finally, assume that the observed outcome for pair b is (0,0), whereas
that for all of the other bicast schemes in C is still (1,1) and that for
the unicast schemes is 1; then (A.3) becomes

∑

�∈P(0,s)

c�

α�

[
π(0, s)[(1 − π(s, i)) × (1 − π(s, j)) − 1]

γ b
00

]

+
∑

�∈P(s,i)

c�

α�

[
π(s, i)π(0, s)(π(s, j) − 1)

γ b
00

]

+
∑

�∈P(s,j)

c�

α�

[
π(s, j)π(0, s)(π(s, i) − 1)

γ b
00

]

+ g(
c)

= 0. (A.8)

Subtracting (A.6) from (A.5) gives
∑

�∈P(s,j)

c�

α�
−

∑

�∈P(s,j)

c� × π(s, j)

α� × (π(s, j) − 1)
= 0

�⇒
∑

�∈P(s,j)

c�

α�
× −1

(π(s, j) − 1)
= 0

�⇒
∑

�∈P(s,j)

c�

α�
= 0. (A.9)
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Subtracting (A.7) from (A.5) and going through similar steps gives that

∑

�∈P(s,i)

c�

α�
= 0. (A.10)

From (A.8), and using the results from (A.9) and (A.10), we get

∑

�∈P(0,s)

c�

α�

[
π(0, s)[(1 − π(s, i)) × (1 − π(s, j)) − 1]

γ b
00

]

+ g(
c) = 0.

(A.11)

From (A.5), together with the results obtained in (A.9) and (A.10), we
get

∑

�∈P(0,s)

c�

α�
+ g(
c) = 0. (A.12)

Subtracting (A.11) from (A.12), and after some algebra, we finally get

∑

�∈P(0,s)

c�

α�
= 0. (A.13)

Furthermore, by adding (A.10) to (A.13), we have

∑

�∈P(0,i)

c�

α�
= 0, (A.14)

with node i a receiver.

Case 2. Now consider an arbitrary unicast u that covers receiver r.
Suppose that for all bicast schemes in C, the observed outcome is
(1,1), whereas for all unicast schemes, the observed outcome is 1.
Then (A.3) becomes

∑

�∈P(0,r)

c�

α�
+ g′(
c) = 0. (A.15)

Assume now that the observed outcome for unicast scheme u is 0 in-
stead, whereas all of the observed outcomes for all other unicast and
bicast schemes in C remain as before. Then, (A.3) becomes

∑

�∈P(0,r)

c�

α�

[ −π(0, r)

1 − π(0, r)

]

+ g′(
c) = 0. (A.16)

Subtracting (A.16) from (A.15), after some algebra, we get

∑

�∈P(0,r)

c�

α�
= 0. (A.17)

Due to the construction of the collection C, every internal node
must be a splitting node for one bicast scheme, which in turn implies
that (A.13) holds for all internal nodes s. Furthermore, because collec-
tion C covers all links, (A.17) holds for all receiver nodes r. Therefore,
by taking successive differences along every path P(0, j), j ∈ V − {0},
of the form

∑

�∈P(0,j)

c�

α�
−

∑

�∈P(0,f ( j))

c�

α�
= c( f ( j),j)

α( f ( j),j)
= 0,

we can easily establish that c� = 0, ∀� ∈ E . Therefore, 
c = 0, and
hence the Fisher information matrix IN(C, 
α) is positive definite in
the interior of (0,1)E .

For a general collection of flexicast schemes C, we can proceed
along similar lines as follows. Consider the hth k-cast scheme with
splitting nodes denoted by sh1, sh

2, . . . , sh
d . A similar strategy of using

all of the possible 2k outcomes for the hth scheme and assuming that
for all remaining schemes in the collection, only 1’s are observed, we

can establish the following relationships:
∑

�∈P(0,sh
j )

c�

α�
= 0,

∑

�∈P(sh
j ,s

h
j′ )

c�

α�
= 0, j = 1, . . . ,d − 1, and

∑

�∈P(sh
j ,r)

c�

α�
= 0.

Then, taking differences as before, we establish the result that c� = 0
for all � ∈ E , which in turn proves the nonsingularity of the Fisher
information matrix.

[Received July 2003. Revised December 2005.]
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