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Abstract

We provide a comprehensive overview of adversarial machine learning focusing on two
application domains, i.e., cybersecurity and computer vision. Research in adversarial
machine learning addresses a significant threat to the wide application of machine learning
techniques – they are vulnerable to carefully crafted attacks from malicious adversaries.
For example, deep neural networks fail to correctly classify adversarial images, which are
generated by adding imperceptible perturbations to clean images. We first discuss three
main categories of attacks against machine learning techniques – poisoning attacks, evasion
attacks, and privacy attacks. Then the corresponding defense approaches are introduced
along with the weakness and limitations of the existing defense approaches. We notice
adversarial samples in cybersecurity and computer vision are fundamentally different.
While adversarial samples in cybersecurity often have different properties/distributions
compared with training data, adversarial images in computer vision are created with minor
input perturbations. This further complicates the development of robust learning
techniques, because a robust learning technique must withstand different types of attacks.
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1 INTRODUCTION

There are two main branches of adversarial machine learning research. One branch actively

designs new attacks to defeat existing machine learning algorithms and machine learning

based systems. At the same time, the other branch aims to significantly improve the capa-

bilities of machine learning techniques facing attacks.

Attacks against machine learning based systems were observed first in cybersecurity,

e.g., (Joseph, Laskov, Roli, Tygar, & Nelson, 2013). One example of adversarial attacks

is network intrusion. Attackers actively scan the systems to discover new vulnerabilities in

network devices, and to compromise vulnerable hosts/systems. Machine learning techniques

were applied to identify the discriminant features of malicious network traffic, e.g., (Sung

& Mukkamala, 2003), and classify legitimate network traffic from malicious traffic, e.g.,

(W. Lee, Stolfo, et al., 1998; Ryan, Lin, & Miikkulainen, 1998; Mukkamala, Janoski, &

Sung, 2002; Tsai, Hsu, Lin, & Lin, 2009). As noted early on, e.g., (Householder, Houle, &

Dougherty, 2002), attack tools are updated frequently to avoid detection. Hence it is not

a trivial task to identify the malicious traffic since the signatures of the malicious traffic

I’ve been waiting for your reply

Tristan <xxx@verizon.net>

To:xxx@yahoo.com

Feb 6 at 6:41 PM

Hey Alice,

I have been trying to get in touch with you

I am inviting you on board to the system I got going a few weeks ago.

The first participants have seen a reasonable amount of success.

Your invite is attached, the password is 815452

! Attachments cannot be downloaded.

Learn More

Figure 1: A spam email sent on Feb. 06 2019, and received in Yahoo Spam folder
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Figure 2: Two adversarial samples. Left: A handwritten 4 is misclassified as 9; Right: A

handwritten 9 is misclassified as 4.

change suddenly. Another example is spam. Spam filters on email servers serve as classifiers

that identify spam emails. Spam filters either directly block the spam emails or place them

in a separate spam folder. Although people have been combating spam emails for over 20

years, e.g., (Cranor & LaMacchia, 1998), spam emails are still a nuisance today. Spammers

frequently change how spam emails are composed to avoid detection. Spammers in early

2000s mis-spelled the words that could easily be identified, such as writing “Pharmaceutical”

as “Phaxrrmaceutical”, and inserted good words, i.e., words often observed in legitimate

emails, into spam emails (Lowd & Meek, 2005). Figure 1 shows a spam email received in

Yahoo Spam folder in Feb, 2019. The entire content of this recent spam email is similar to

legitimate emails.

Recently adversarial samples are designed in computer vision to break deep neural net-

works (DNN). Although DNNs are capable of performing complex tasks, they are shown to be

vulnerable to attacks. Adversarial images created with minor perturbations are misclassified

by DNN, as illustrated in Figure 2.

Adversarial attacks against DNN draw significant attention due to the wide use of DNN

in critical tasks, such as autonomous driving systems and partly automated vehicles. For

example, Tesla has a on-board computer that “runs the new Tesla-developed neural net
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for vision, sonar and radar processing software ... ... Built on a deep neural network,

Tesla Vision deconstructs the car’s environment at greater levels of reliability than those

achievable with classical vision processing techniques.” 1 On the other hand, in one Tesla

fatal crash, “The car veered off the road due to limitations of the Tesla Autopilot vision

systems processing software to accurately maintain the appropriate lane of travel.” 2 Such

high profile failure of the hugely popular deep learning technique shows the importance of

adversarial machine learning area. Researchers must fully understand the vulnerabilities of

the learning techniques and consequently robustify the existing learning techniques for them

to be used reliably in real life tasks.

There are different types of adversarial samples. Adversarial images are samples with

minor perturbations added to the clean images, whereas adversarial samples in cybersecurity

have very different properties/distributions compared with the training samples. Further-

more, adversaries seek to learn information about the training data points with sensitive

information through a learning model, causing a privacy leakage.

Hence machine learning techniques need to significantly improve their generalization ca-

pability to properly handle the adversarial samples created with only minor perturbations,

as observed in computer vision. Learning techniques also need new capabilities to identify

adversarial samples that change quickly and have very different properties, as observed in

cybersecurity. Meanwhile, learning models with complex structure, such as DNNs, may still

suffer privacy leakage. It is an urgent and important task to develop secure and robust ma-

chine learning techniques that can withstand different types of malicious attacks. Currently

there are different approaches. We observe ideas are converging from different communities,

such as cybersecurity, computer vision, theoretical machine learning, and artificial intelli-

gence, to achieve this goal.

In this review article, we introduce different types of malicious attacks, the existing

strategies to robustify and secure machine learning techniques, and the challenges faced in

adversarial machine learning area. The rest of the paper is organized as follows. Section 2

1https://www.tesla.com/autopilot (last verified on 03/01/2020)
2https://www.washingtonpost.com/local/trafficandcommuting/deadly-tesla-crash-tied-to-technology-

and-human-failures-ntsb-says/2020/02/25/86b710bc-574d-11ea-9b35-def5a027d470 story.html (last verified

on 03/01/2020)
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training data
contaminate

Training Data Test Data
Learning

Model

Adversaries

infer sensitive information
of the training data points

generate adversarial
samples at test time

Figure 3: Illustration of poisoning attack, evasion attack, and privacy attack

discusses the adversarial attacks; Section 3 introduces the current defense approaches; Sec-

tion 4 discusses the challenges that remain to be addressed and concludes this article.

2 Adversarial Attacks

Machine learning techniques are widely used in different applications. We observe many

exciting developments of new techniques, such as the success of DNN in computer vision

tasks. Unfortunately there are a growing number of vicious attacks against learning models

too. In this section we introduce three common forms of attacks. As illustrated in Figure 3,

adversaries can contaminate the training data to make a classifier ineffective (poisoning

attack), create adversarial samples at test time to evade detection (evasion attack), and infer

sensitive information about the training data through a learning model (privacy attack).

2.1 Poisoning Attack

Poisoning attacks aim to contaminate the training dataset and cause a learning model to

make costly mistakes at the test time. Poisoning attacks, as well as evasion attacks, can
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be either targeted or non-targeted. A targeted attack causes a learning model to make a

specific mistake, e.g., misclassifying a certain type of legitimate emails. A non-targeted

attack reduces the overall accuracy of a learning model. Earliest examples of poisoning

attacks are those against a spam filter (Nelson et al., 2008; Barreno, Nelson, Joseph, & Tygar,

2010; Huang, Joseph, Nelson, Rubinstein, & Tygar, 2011), against an anomaly detection

algorithm (Laskov & Kloft, 2009; Kloft & Laskov, 2010), and against intrusion detection

systems (Corona, Giacinto, & Roli, 2013).

• (Nelson et al., 2008; Barreno et al., 2010; Huang et al., 2011) considered a scenario

where a spam filter were periodically retrained, and spammers sent emails containing

words frequently observed in legitimate emails. Although the emails from spammers

were labeled correctly as spam, by including them in the retraining process, they caused

a spam filter to misclassify legitimate emails.

• (Laskov & Kloft, 2009; Kloft & Laskov, 2010) provided a quantitative strategy to de-

sign and analyze the effectiveness of poisoning attacks against centroid based anomaly

detection algorithm, which used the distance from the mean of the training data to

define anomalies. The effectiveness of a poisoning attack was measured by the relative

distance of how much the center was moved by injecting new attack data points into

the training dataset. Upper bounds were established under partial control and full

control of the training data.

• Adversarial attacks in cybersecurity are generated with a good understanding of the

computer systems and their security policies. Poisoning attack is one of the six attack

categories against intrusion detection systems, as discussed in (Corona et al., 2013).

Meanwhile we also witness poisoning attacks against specific learning models, including

support vector machine (SVM), LASSO and DNN.

• (Biggio, Nelson, & Laskov, 2012) introduced an algorithm to generate a poisoning

attack sample x∗ against SVM in a two class scenario. Starting from a randomly

selected sample with flipped label, the algorithm computed the gradient of the hinge
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loss function ∂L(x∗)
∂w

and iteratively searched for a poisoning attack sample to maximize

SVM’s validation error.

• (Xiao et al., 2015) introduced poisoning attack against penalized regression models, in-

cluding LASSO and elastic net. The algorithm generated a poisoning attack sample x∗

through maximizing the objective function, maxx∗

(

1
n
||Ŷ − Ŵ ′X − b̂||22 + λ× p(W )

)

,

where p(W ) is the corresponding penalty term for LASSO or elastic net. The gener-

ated attack samples rendered the associated feature selection process unstable. (Xiao

et al., 2015) showed LASSO selected nearly random variables when less than 5% of

generated poisoning attack samples were added to the training data.

• (Gu, Dolan-Gavitt, & Garg, 2017) discussed the danger of having a “backdoor” in

a DNN, a.k.a. Trojan attack. A DNN trained by a malicious adversary behaved

normally for most of the samples, and produced an error only when a backdoor trigger

was present. For example, a sticker posted on a stop sign caused it to be misclassified.

2.2 Evasion Attack

Evasion attacks are the most popular form of attacks. Often malicious adversaries do not

have access to the training process. They generate adversarial samples to cause misclassifi-

cation by a classifier or to evade detection by a learning algorithm at the test time. Spam

emails, malwares, and network intrusion traffic observed at the test time, e.g., (Šrndic &

Laskov, 2013; Grosse, Papernot, Manoharan, Backes, & McDaniel, 2017), are examples of

evasion attacks in cybersecurity.

More recently, in computer vision, many evasion attack algorithms are developed to

generate adversarial samples that lead to misclassification by DNNs, starting with the first

paper published in 2014 (Szegedy et al., 2014). Attacks against DNN can be either digital

or physical. A digital attack directly add minor perturbation to the input to a DNN, i.e.,

an image, whereas a physical attack creates minor perturbation on a physical object which

leads to DNN’s failure to properly recognize the physical object. There are few physical

attacks compared with a large number of digital attacks. We focus on digital attacks in this

section and discuss physical attacks in Section ??.
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Several survey articles are published providing the detailed timeline of adversarial attacks

against DNNs, e.g., (Yuan, He, Zhu, & Li, 2019; Akhtar & Mian, 2018; Biggio & Roli,

2018). In 2017, a NIPS competition organized by Google Brain attracted many researchers

to develop new adversarial attack algorithms and effective defenses against attacks. The

winning teams’ results are documented in (Kurakin et al., 2018). Due to the limited space,

here we provide a summary list of digital evasion attacks against DNNs 3.

Attacks can be categorized based on attacker’s knowledge of the learning model. White

box attack refers to attacker having a complete knowledge about the DNN under attack,

including the model structure and all the parameter values. Black box attack means at-

tacker does not have access to a DNN’s internal structure. Often in black box attack, an

attacker sends queries to probe the target DNN. The attacker then uses the queries labeled

by the target DNN to train a substitute model and generates adversarial samples against

the substitute model. Majority of the digital attacks against DNN are white box attacks.

Below we introduce the most notable white box attacks and black box attacks.

• First we introduce the white box attacks.

– L-BFGS: Vulnerability of DNN was first reported in (Szegedy et al., 2014):

Adding certain non-random imperceptible perturbation δ to an image x can cause

a DNN C to misclassify the adversarial image xa = x+δ. The paper also observed

the transferbility of adversarial images – the specific perturbation δ can cause a

different DNN C∗ to misclassify the same adversarial image xa. For a given image

x and a target class label t, δ was obtained by solving a box constraint optimiza-

tion problem as follows.

min ||δ||2, s.t. C(x+ δ) = t, x+ δ ∈ [0, 1]m

The L-BFGS method was used to find an approximate solution.

– Fast Gradient Sign Method (FGSM) and its variations: Let J(x, y) be the

cross-entropy cost function and y be the true label of a clean image x. Using the

3Code for many attack algorithms and some defenses can be found on GitHub, e.g., (IBM Adversarial

Robustness Toolbox (ART v0.8.0), n.d.; Cleverhans adversarial examples library , n.d.).
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sign of the gradient of the cost function, (I. J. Goodfellow, Shlens, & Szegedy,

2015) generated adversarial image xa as

xa = x+ ǫ sign(∇xJ(x, y)).

Compared with L-BFGS, FGSM lowered computation cost to generate an ad-

versarial image. FGSM is a one-step attack. There are variations of FGSM,

including improved one-step attacks or iterative attacks. For example, (Rozsa,

Rudd, & Boult, 2016) produced more diverse adversarial images by using the

scaled gradient instead of the sign of the gradient. (Tramèr et al., 2018) pro-

posed a small random perturbation in the one step attack. (Kurakin, Goodfellow,

& Bengio, 2017b) suggested adversarial images can be generated using the pre-

dicted labels in FGSM instead of the true labels. Instead of a simpler one step

attack, adversarial samples can be generated by iteratively following the direction

of the gradient while clipping the generated image to stay inside the ǫ ball of the

clean image x, i.e., the Basic Iterative Method (BIM) in (Kurakin, Goodfellow,

& Bengio, 2017a). Projected Gradient Descent (PGD) attack (Madry, Makelov,

Schmidt, Tsipras, & Vladu, 2018) showed that BIM with random starting points

in the ǫ ball yielded stronger adversarial samples. (Dong et al., 2018) further used

momentum in iterative FGSM to increase attack strength and maintain transfer-

bility of adversarial images. The update with momentum is the following.

ht+1 = αht +
∇xJ(xt, y)

||∇xJ(xt, y)||1
, xt+1 = xt + ǫ sign(ht+1).

To attack an ensemble of DNNs, (Dong et al., 2018) computed the cross-entropy

J(x, y) by averaging the logits of DNNs (i.e., output from the layer before softmax)

in the ensemble, then followed the direction of the gradient with a momentum to

attack the ensemble.

– Carlini and Wagner (C&W): C&W attack (Carlini & Wagner, 2017b) modi-

fied the objective function and used a different optimizer compared with L-BFGS

attack. Their L2 attack is sufficiently strong to bypass a number of detection and

defense methods. They solved the following box constraint optimization problem
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to find an adversarial perturbation δ.

minδ ( ||δ||2 + c max( maxl 6=o(Z(x+ δ)l)− Z(x+ δ)o,−k ) ) , s.t. x+δ ∈ [0, 1]m,

where Z(x)o is the output of the softmax for class o. After a change of variable,

δ = 1
2
(tanh(w) + 1) − x, Adam optimizer was used to search for w. Following

the line of C&W attack, Elastic-net attacks to DNNs (EAD) in (P.-Y. Chen,

Sharma, Zhang, Yi, & Hsieh, 2018) added an elastic net type of penalty term

in the optimization problem to search for adversarial perturbations. EAD’s L1

attack achieved comparable performance as the C&W L2 attack.

– Jacobian-based Saliency Map Attack (JSMA): JSMA computed the Ja-

cobian of either the logits as in (Papernot, McDaniel, Jha, et al., 2016) or the

outputs of the softmax as in (Papernot, McDaniel, Wu, Jha, & Swami, 2016) for

a clean image x, and built a saliency map. Based on the saliency map, JSMA

iteratively chose a pixel to change in each step to increase the likelihood of the

target class for an adversarial image.

– DeepFool: (Moosavi-Dezfooli, Fawzi, & Frossard, 2016) introduced an iterative

attack algorithm to efficiently search for adversarial samples. At each iteration, a

classifier C(xt) was linearized at the current point xt and an update was computed

as the scaled gradient with respect to the linearized classifier. (Moosavi-Dezfooli,

Fawzi, Fawzi, & Frossard, 2017) leveraged the DeepFool attack to find universal

adversarial perturbations for almost all the clean images to fool a classifier.

– Adversarial Transformation Networks (ATN): (Baluja & Fischer, 2018)

trained a neural network that modified a clean image into an adversarial sample to

fool a target network or an ensemble of networks. ATN was trained by minimizing

a loss function which balanced the loss on the input image x and the output of

the target network. ATN can be used for both white box and black box attack.

• Next we introduce several black box attacks.

– Zeroth Order Optimization (ZOO): ZOO (P.-Y. Chen, Zhang, Sharma, Yi,
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& Hsieh, 2017) changed the loss function in C&W attack to

max( maxl 6=o(logF (x)l − logF (x)o,−k ),

where F (x) is the output of a DNN. ZOO avoided directly computing the gradient.

Instead ZOO approximated the gradient using the symmetric difference quotient

method, with an increased computation cost. The knowledge of a DNN’s network

structure was not required to approximate the gradient.

– OnePixel: OnePixel attack (Su, Vargas, & Sakurai, 2019) changed the value of

only one pixel of a clean image to fool a DNN with differential evolution using

only the predicted outputs from a DNN without knowing its network structure.

OnePixel showed DNN is even vulnerable to very low dimension attack with

limited information.

– (Papernot et al., 2017) used the probing approach to train and generate adver-

sarial images against a local substitute model. With 800 queries sent to Amazon

Web Services and Google Cloud Prediction, most of the adversarial samples were

misclassified by the target models hosted by Amazon and Google. (Y. Liu, Chen,

Liu, & Song, 2017) generated a targeted attack against k networks in the white

box fashion, and showed the adversarial images can transfer to an additional black

box network. (Ilyas, Engstrom, Athalye, & Lin, 2018) further developed a black

box attack under limited queries and partial output knowing only the top k class

probabilities. Unlike previous attacks against image level classifier, (X. Liu et al.,

2019) developed a black box attack against state-of-the-art object detectors.

2.3 Privacy Attack

Protecting data confidentiality has long been an important research area. The research on

privacy leakage and privacy preserving techniques preceded adversarial machine learning.

Mostly it remains a separate research area. This review article includes privacy attack as

a third attack because the very recent privacy attacks targeting DNNs, which points to a

different type of DNN vulnerability. Recently there are two notable privacy attacks – model
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inversion attacks and membership inference attacks – designed to obtain sensitive training

data information based on the outputs from complex learning models such as DNNs. Similar

to evasion attacks, privacy attacks can be either white box or black box, i.e., with or without

access to the internal structure and the parameters of the target learning model. A brief

review of different privacy preserving approaches as well as the recent attempts to defend

DNNs from privacy attacks are in Section 3.2.

• Model Inversion Attacks: (Fredrikson, Jha, & Ristenpart, 2015) designed two

model inversion attacks against face recognition systems. The first attack can recon-

struct a face image based on the person’s unique label produced by a face recognition

system. The second attack can obtain a clean image from a blurred image through

attacking a system, thus obtaining the identity of the victim. (X. Wu, Fredrikson, Jha,

& Naughton, 2016) provided a formal description of model inversion attacks in black

box scenario and white box scenario. It also suggested model invertibility was related

to the influence/stable influence of Boolean functions.

• Membership Inference Attacks: A basic membership inference attack discovers

whether a data point belongs to a learning model’s training data, given only black box

access to the model (Shokri, Stronati, Song, & Shmatikov, 2017). They used several

shadow models trained on synthetic or noisy data to determine whether a data point

belonged to the training data or not. They successfully designed membership inference

attacks against Google Prediction API and Amazon ML. (Melis, Song, De Cristofaro, &

Shmatikov, 2019) showed that when several trained models periodically shared updates,

the process can be exploited to infer whether a data point was used in training. They

also suggested DNN’s complex structure made it vulnerable to membership inference

attacks under collaborative learning setting.

3 Robust and Secure Learning Strategies

The concept of malicious noise and robustness of learning algorithms including neural net-

works were studied as early as 1985. (Valiant, 1985) introduced a distribution free model, i.e.,
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the probably approximately correct (PAC) model, which can tolerate a low rate of malicious

noise. (Kearns & Li, 1993) established that the upper bound of malicious error rate which

can be tolerated by a learning algorithm A with accuracy 1− ǫ is ǫ
1+ǫ

. (Kearns & Li, 1993)

further constructed perceptron based PAC algorithms with malicious noise tolerance. Then

(Servedio, 2001) built perceptron based PAC algorithms with much higher level of malicious

noise tolerance. (Teo, Globerson, Roweis, & Smola, 2008) developed learning algorithms

that incorporated invariant transformations as a form of robust learning procedure.

Meanwhile researchers hope to understand the baffling phenomenon of adversarial per-

turbations that cause DNN to make mistakes. (Szegedy et al., 2014) suggested the highly

non-linear nature of DNN made it vulnerable, whereas (I. J. Goodfellow et al., 2015) men-

tioned it was the locally linear structure which made DNN vulnerable. It is generally agreed

that DNNs with larger capacity in terms of number of parameters are more robust, e.g.,

(Kurakin et al., 2017b; Madry et al., 2018).

In addition, recently researchers proposed various metrics to evaluate DNN’s robustness

and predictive uncertainty. (Biggio, Fumera, & Roli, 2014) developed an algorithm to em-

pirically evaluate a classifier’s performance under simulated attacks. (Weng et al., 2018)

proposed a robustness metric for DNN based on extreme value theory, i.e., Cross Lipschitz

Extreme Value for nEtwork Robustness (CLEVER). (Moosavi-Dezfooli et al., 2016) used the

estimated minimum amount of perturbations needed for an attack to fool a DNN as a mea-

sure of DNN’s robustness. (Shafahi, Huang, Studer, Feizi, & Goldstein, 2019) investigated

the relationship between dimensionality and the robustness of a classifier.

(Lakshminarayanan, Pritzel, & Blundell, 2017) used deep ensembles based on random

initializations and adversarial training to obtain predictive uncertainty estimates. (Gal &

Ghahramani, 2016) used Monte Carlo dropout on test samples to estimate predictive un-

certainty. (Malinin & Gales, 2018) used a Bayesian approach to evaluate DNN uncertainty

caused by distribution shift between training and test samples.

It is an ongoing effort to secure machine learning models. Here we introduce several

approaches to improve the performance of learning techniques in adversarial environment.
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Figure 4: A standard classification boundary (dashed line) vs. a conservative boundary

(solid line)

3.1 Game Theoretic Approaches

Game theory provides a useful tool to model and understand the interaction between the

defender and the adversaries. Facing adversarial attacks, one strategy is to explore the ro-

bustness and accuracy trade-off when building learning algorithms. An equilibrium solution

can be utilized to construct robust learning algorithms, which make conservative decisions

for the current data but have persistent good performance against potential future attacks.

The learning algorithm’s decision boundary depends on the game that is used to model

the interaction between defense and attacks. The minimax solution in a zero-sum game

leads to a conservative strategy when the adversarial samples’ property changes abruptly,

whereas a mixed equilibrium strategy suggests a randomized defense against minor adversar-

ial perturbations. Figure 4 is a conceptual plot illustrating a conservative decision boundary.

Sometimes a minimax solution can be too conservative. Instead, a Stackelberg game offers

a less conservative equilibrium solution. To search for an equilibrium is often computation-

ally expensive. However, game theory offers important insights towards resilient algorithms

against malicious adversaries. Next we discuss zero-sum game and Stackelberg game based
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robust learning solutions.

• A two player zero-sum game where players take simultaneous actions is formulated

as follows. Let D be the defender and A be the adversary. Let UD and UA be their

corresponding utilities. Let (d, a) be a pair of strategies, for the players D and A

respectively. In a zero-sum game, UA(d, a) = −UD(d, a) = U(d, a). For example, d can

be a classifier built by defender D and a can be a transformation of malicious objects

by the adversary A. The Nash equilibrium is the optimal solution in a game where

no player has the incentive to unilaterally change its strategy. The minimax solution

(de, ae) is a Nash equilibrium in a two player non-cooperative game, defined as follows.

U(de, ae) = mind maxa U(d, a).

Hence at the equilibrium the defender D wants to minimize its worst case loss.

– (Dalvi, Domingos, Mausam, Sanghai, & Verma, 2004) applied a game theoretic

approach to spam detection with Naive Bayes as the underlying classifier. The

framework allowed a classifier to automatically adjust its classification rule facing

evolving manipulations from an adversary.

– (Lanckriet, Ghaoui, Bhattacharyya, & I., 2002) studied the binary classification

problem. For a class, an ellipsoid shaped region was defined using the mean and

the variance-covariance matrix. They assumed arbitrary sets of data points can

be drawn from their respective ellipsoids. A robust linear classifier was proposed

based on a minimax solution given this bounded data uncertainty.

– (Globerson & Roweis, 2006) studied a two player game where the adversary

deleted features that led to the maximum drop of a classifier accuracy and the

defender built a robust classifier against malicious feature removal. The minimax

solution was proposed with SVM as the underlying classifier. In (Dekel, Shamir,

& Xiao, 2010), missing or corrupted features caused by an adversary can vary

from one instance to another.

• A Stackelberg game where two players SL and SF take sequential actions is formulated

as follows. Let SL be the leader with utility UL. Let SF be the follower with utility
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UF . The leader SL chooses a strategy l first. After observing the leader’s action, the

follower SF chooses its strategy f . The game’s subgame perfect equilibrium (le, f e)

can be written as follows.

fl = argmaxf SF (l, f), (le, f e) = argmaxl SL(l, fl).

Compared with zero-sum game and minimax solution, a Stackelberg game allows each

player to maximize its own utility and offers a less conservative solution.

– (Kantarcıoğlu, Xi, & Clifton, 2011) modeled adversarial classification as a Stack-

elberg game where the defender was the follower in the game. The adversary first

transformed the objects under its control knowing the action reduced the utilities

of the malicious objects. Then the defender built a classifier minimizing the over-

all misclassification cost. For continuous variables, an approximate equilibrium

solution was found by discretizing the variables and using a linear programming

approach. A classifier’s equilibrium performance was examined which indicated

its long term success or failure facing a malicious adversary.

– (W. Liu & Chawla, 2010) modeled the interaction between the defender and the

adversary as a constant-sum Stackelberg game with convex loss. The equilibrium

was the solution of a maxmin problem, solved via trust region methods. The

game was repeated with the adversary using different data transformations and

the defender adjusting the classification rule.

– (Brückner & Scheffer, 2011) let the defender be the leader in a Stackelberg pre-

diction game. The equilibrium was the solution of a bilevel optimization problem,

which can be solved by sequential quadratic programming. (Brückner & Schef-

fer, 2011) showed that the Stackelberg game with the worst case loss given the

defender chose a hinge loss led to a SVM for invariances, and a Stackelberg game

with linear loss led to a regular SVM. On the other hand, a Stackelberg game

with logistic loss was the most robust against attacks.

– (Zhou & Kantarcioglu, 2016) studied a single-leader-multiple-follower nested Stack-

elberg game with one defender and different types of adversaries. The game was

16



formulated as multiple lower level Stackelberg games and one upper level Bayesian

Stackelberg game. The defender played a mixed equilibrium strategy, which can

be found by solving multiple single-leader-single-follower games with probabilities

determined by the Bayesian Stackelberg game. Comparable to a mixed equilib-

rium strategy, (Bulò, Biggio, Pillai, Pelillo, & Roli, 2017) studied randomized

defense strategy based on a game-theoretic formulation.

3.2 Privacy Preserving Machine Learning

Privacy preserving mechanisms are developed to prevent privacy leakage directly from a

database or through a learning model. There are two main privacy preserving mechanisms,

k−anonymity (Samarati & Sweeney, 1998; Samarati, 2001; Sweeney, 2002) and differential

privacy (Dwork & Smith, 2010a; Dwork, Kenthapadi, McSherry, Mironov, & Naor, 2006;

Dwork, McSherry, Nissim, & Smith, 2006). k−anonymity directly perturbs the individual

data points, whereas differential privacy injects noises to query results from a database.

Two privacy preserving mechanisms can be considered as complimentary to each other,

as suggested in (Clifton & Tassa, 2013). (Aggarwal & Philip, 2008) provided a survey of

k−anonymity and distributed privacy preserving techniques and their application to data

mining tasks. (Fung, Wang, Chen, & Yu, 2010) focused on various privacy models for

publishing privacy protected data records, not the results from data mining or machine

learning algorithms. Both k−anonymity and differential privacy were discussed among other

approaches. Furthermore (Dwork & Smith, 2010b) focused on applying differential privacy

to statistics, such as statistical inference and robust statistics. Below is a brief summary of

k−anonymity and differential privacy.

• A database satisfies k−anonymity if every unique tuple for every combination of the

variables appears at least k times.

• Differential privacy is a more sophisticated mechanism. LetQ be a randomized function

used to release information from a database. Q satisfies ǫ− differential privacy if for
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two databases D and D′ differing by one record,

Pr(Q(D) ∈ H)

Pr(Q(D′) ∈ H)
≤ eǫ, ∀ H ∈ range(Q).

The Laplace mechanism adds a Laplace noise to a query function q to generate the

randomized query result satisfying ǫ− differential privacy. An important concept to

determine the size of the Laplace noise is the sensitivity of the query function q. q’s

sensitivity equals to the maximum change of q values over two databases differing by

one record, D and D′. For Laplace mechanism, the Laplace noise added query output

is

q(D) + Laplace

(

sensitivity

ǫ

)

,

where ǫ is a pre-determined parameter (and hence the name ǫ− differential privacy).

The recommended values for ǫ vary in a big interval, from as small as 0.01 and 0.1 to

as big as 7, e.g., (J. Lee & Clifton, 2011).

Differential privacy has been used to provide privacy guarantee to machine learning mod-

els. For example, (Friedman & Schuster, 2010; Jagannathan, Pillaipakkamnatt, & Wright,

2009) produced privacy preserving decision trees; (Rubinstein, Bartlett, Huang, & Taft,

2012) produced privacy preserving SVM; (Abadi et al., 2016; Shokri & Shmatikov, 2015)

introduced privacy guarantee to deep learning. However, a recent membership inference

attack against differentially private deep learning model (Rahman, Rahman, Laganiere, Mo-

hammed, &Wang, 2018) suggested more research needs to be done to prevent privacy leakage

from complex learning models such as DNNs. There are several efforts along this line. (Nasr,

Shokri, & Houmansadr, 2018) developed a min-max game and an adversarial training proce-

dure to protect DNNs from membership inference attacks. Similarly (Hayes & Ohrimenko,

2018) also developed an adversarial training procedure to defend against membership in-

ference attacks when multiple parties shared their data. (Veale, Binns, & Edwards, 2018)

mentioned the possibility of extending data protection law to machine learning models by

considering them as personal data in legal terms, which pointed to an ultimate solution

through regulation process.
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3.3 Defense Against Poisoning Attacks

To remove poisonous attack instances from the training data is a difficult task. Here we

discuss all the existing approaches proposed to defend against poisoning attacks. We need

more systematic approaches to evaluate the impact of poisoning attacks and mitigate the

threat on learning techniques.

• (Nelson et al., 2008) proposed Reject On Negative Impact (RONI) defense and dynamic

threshold defense. The idea behind RONI was similar to that for outlier detection in

linear regression. The impact of every training email was measured as the difference in

performance by including and excluding it in the training process. The training emails

with large negative impact were removed from the training data. However RONI did

not perform well in targeted poisoning attacks. Meanwhile, dynamic threshold defense

recommended dynamically adjusting threshold values in SpamBayes. Although this

approach increased accuracy with legitimate emails, it had difficulty to correctly label

spam emails.

• Facing poisoning attacks against principal component analysis (PCA) subspace anomaly

detection method in backbone network, (Rubinstein et al., 2009) proposed a robust

PCA based defense approach. It maximized Median Absolute Deviation (MAD) in-

stead of variance to compute principal components, and used a robust threshold value

based on Laplace distribution instead of Gaussian. (Madani & Vlajic, 2018) built an

autoencoder based intrusion detection system, assuming malicious poisoning attack

instances were under 2%. It demonstrated that the autoencoder was more robust

compared with a PCA based one.

• (Cretu, Stavrou, Locasto, Stolfo, & Keromytis, 2008) proposed a training data san-

itization scheme. The training data was broken into several subsets, where subsets

that belonged to different networks or domains yielded good results in the sanitization

process. Each subset was used to train a model. These models were used to label every

training data point. A voting scheme was used to determine whether a training data

point was an attack instance or not. Potential attack instances were then removed

from training data.
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• (Biggio, Corona, Fumera, Giacinto, & Roli, 2011) argued poisoning attack instances

can be viewed as a special type of outliers. Because bagging can reduce the impact

of outliers in training, bagging ensembles constructed for spam filtering and intrusion

detection offered promising results.

• (Steinhardt, Koh, & Liang, 2017) analyzed the upper bounds on the loss caused by

poisoning attacks against SVM. Outliers were defined as points far from cluster cen-

troids, which were computed with or without the poisonous points. An empirical online

learning algorithm was developed to compute the upper bound on the worst case loss

for any given dataset.

• (B. Chen et al., 2019) proposed activation clustering method to detect the backdoor

trigger in the training data. The method examined activation of the last hidden layer

in a DNN, where the poisonous samples containing the backdoor trigger appeared in

a separate cluster.

3.4 Robust DNN

Unfortunately robustifying DNN proves to be a much more difficult task compared to finding

more effective adversarial samples. Defense strategies were quickly found to be vulnerable

to newer and stronger attacks. Here we discuss the main defense strategies proposed in the

literature.

• Adversarial Training: The main idea behind adversarial training is to further regu-

larize a DNN and improve its robustness. The procedure includes adversarial samples

in training, and continuously generating new adversarial samples at every step of train-

ing (Szegedy et al., 2014; I. J. Goodfellow et al., 2015; Kurakin et al., 2017b; Tramèr

et al., 2018). (Kurakin et al., 2017b) reported “label leaking” for the adversarially

trained network – it is more accurate with the adversarial images generated using the

same attack algorithm than the clean images. An improved procedure, ensemble ad-

versarial training, used adversarial samples generated against other pre-trained models

to decouple the attack algorithm and the model under attack. (Zantedeschi, Nicolae,

20



& Rawat, 2017) proposed to enlarge the training data by adding Gaussian noise to

clean images, which is computationally less expensive than using adversarial samples.

• Distillation: (Papernot, McDaniel, Wu, et al., 2016) proposed defensive distillation

using two networks. The first network was trained on the original training data. The

second network was trained on data with the soft labels produced from the first network

instead of the original labels. Meanwhile, (Wang et al., 2018) showed experimentally

Bayesian neural networks (BNN) and distilled BNN accurately detected adversarial

samples if adversarial perturbations were generated with respect to only one posterior

sample of the network weights.

• Gradient Masking: Gradient masking is another popular approach to defend against

adversarial samples, e.g., (Lyu, Huang, & Liang, 2015; Shaham, Yamada, & Negah-

ban, 2018; Nguyen, Wang, & Sinha, 2018; Ross & Doshi-Velez, 2018; Li & Li, 2017).

There are three main gradient masking approaches: 1) A defense can cause gradient

shattering, where gradients do no exist or pointing to the wrong direction, to render

gradient based attacks ineffective; 2) A randomized defense can cause the gradients

to be randomized as well, and reduce the effectiveness of attacks; 3) A defense can

cause vanishing or exploding gradients when it involves several iterations of network

computations.

• Pre-processing: Carefully designed pre-processing procedures were also proposed to

mitigate the effect of adversarial perturbations. (Xu, Evans, & Qi, 2018) proposed

feature squeezing via spatial smoothing or reducing pixel color bit depth. (Guo, Rana,

Cisse, & van der Maaten, 2018) discovered image transformations, such as total vari-

ance minimization and image quilting, helped to eliminate adversarial perturbations.

(Samangouei, Kabkab, & Chellappa, 2018) proposed to use a GAN to denoise adversar-

ial samples before feeding them into a classifier. Meanwhile, several winning teams in

the 2017 NIPS competition (Kurakin et al., 2018) applied image denoising techniques

to remove adversarial perturbations.
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• Detection: There are many detection approaches proposed. For example, (Met-

zen, Genewein, Fischer, & Bischoff, 2017) proposed using a subnetwork as a detector.

(K. Lee, Lee, Lee, & Shin, 2018) computed a confidence score to detect both adver-

sarial samples and out of class samples. (Song, Kim, Nowozin, Ermon, & Kushman,

2018) used statistical hypothesis tests to detect adversarial samples that were different

from the clean image distributions.

At the same time, many of these approaches were showed to be ineffective. (Carlini &

Wagner, 2017b) developed the C&W attack specifically to break distillation defense. (Carlini

& Wagner, 2017a) showed 10 detection methods failed the C&W attack soon after they were

published. (Athalye, Carlini, & Wagner, 2018) showed gradient masking was still vulnerable

to attacks. (I. J. Goodfellow et al., 2015) had an experiment to demonstrate that an ensemble

was not more robust against adversarial perturbations. (Tramèr et al., 2018) mentioned

adversarial training was vulnerable to black box attacks. Since a robust learning model

must withstand different types of attacks, to build a robust DNN remains a major challenge

as of today.

4 CONCLUSIONS

Generative Adversarial Networks (GAN) (e.g., (I. Goodfellow et al., 2014; Zhao, Mathieu,

& LeCun, 2017; Arjovsky, Chintala, & Bottou, 2017)) is sometimes mentioned together with

adversarial machine learning. GAN is a system deploying two competing neural networks,

i.e., a generator and a discriminator, to produce ultra-high dimensional samples such as

images. GAN is used also for image super-resolution (e.g., (Ledig et al., 2017)), for generating

3D objects (J. Wu, Zhang, Xue, Freeman, & Tenenbaum, 2016), for generating new molecules

(Zhavoronkov et al., 2019) etc. GAN is essentially a generative model. It is an important

research topic but follows a different direction compared with adversarial machine learning,

which focuses on learning model vulnerabilities and robustness. For the interested readers,

a GitHub site 4 has a list of GAN papers.

4https://github.com/nightrome/really-awesome-gan (last verified on 03/01/2020)
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Most of the existing research in adversarial machine learning focuses on supervised learn-

ing. On the other hand, providing labels for a large amount of data points or samples from

the newest attacks may require expensive human expertise and becomes a significant bottle-

neck. How to identify adversarial samples in unsupervised and weakly supervised scenarios

needs to receive more attention. Clustering techniques and active learning techniques also

need to be robustified facing adversaries, e.g., (Bayer, Comparetti, Hlauschek, Kruegel, &

Kirda, 2009; Lin, Ke, & Tsai, 2015; Pi, Lu, Sagduyu, & Chen, 2016; Miller, Hu, Qiu, &

Kesidis, 2017; Zhou, Kantarcioglu, & Xi, 2019). Meanwhile, it is important to quantify the

robustness and accuracy trade-off for machine learning algorithms facing adversarial attacks.

Although recent works started to propose certain robustness or uncertainty measures, a more

in-depth study on the trade-off is needed to build resilient learning algorithms.

Compared with a large number of digital attacks, there are only a handful of physical

attacks, e.g., (Sharif, Bhagavatula, Bauer, & Reiter, 2016; Eykholt et al., 2018; Athalye,

Engstrom, Ilyas, & Kwok, 2018; Kurakin et al., 2017a; Zhang et al., 2017; Xi, Chen, Fei,

Tu, & Deng, 2020). They pose a more dangerous threat for learning techniques. Physical

attacks either design physical objects that cannot be recognized by learning models (Eykholt

et al., 2018; Athalye, Engstrom, et al., 2018; Kurakin et al., 2017a), or they create malicious

data targeting a particular vulnerability in a hardware device (Zhang et al., 2017). (Xi et

al., 2020) designed a moving physical object to make an object detection system “blind”

because of the motion of the object. A successful defense against physical attacks may

require multiple sensor systems to work together with robust learning techniques and more

secure hardware designs.

We cannot stop adversaries from launching unexpected new attacks. However our ef-

forts on secure and robust machine learning techniques can mitigate the damages caused by

adversarial objects and slow down the arms race between adversaries and defenders.
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