
Trellis Display for Modeling Data from Designed Experiments

Montserrat Fuentes1, Bowei Xi2∗ and William S. Cleveland2

1Department of Statistics, North Carolina State University, 2311 Stinson Drive, Raleigh, NC 27695, USA

2Department of Statistics, Purdue University, 250 N. University Street, West Lafayette, IN 47907, USA

Received 21 June 2010; revised 8 November 2010; accepted 30 November 2010
DOI:10.1002/sam.10102

Published online 4 January 2011 in Wiley Online Library (wileyonlinelibrary.com).

Abstract: Visualizing data by graphing a response against certain factors, and conditioning on other factors, has arisen
independently in many contexts. One is the interaction plots used in the analysis of data from designed experiments; these plots
show conditional dependence based on the output of methods and models applied to the data. Trellis display, a framework
for the visualization of multivariable data, allows conditioning to be readily carried out in a general way. It was developed
initially in the context of data sets with a moderate or large number of observations to support the conditioning. This article
demonstrates through examples that trellis display is also a highly useful visualization framework for designed experiments with
a small number of runs. Trellis allows the visualization of conditional dependence, not only based on the output of models and
methods, but also based on the raw data directly, which greatly aids the model building process. Trellis can even succeed for
highly fractionated designs. The reason appears to be that for success, such designs require an engineering practice that keeps
error variability small, which allows interpretable patterns to emerge on conditioning displays with a limited number of plotted
points.  2011 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 4: 133–145, 2011
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1. INTRODUCTION

Trellis display is a framework for the visualization of
multivariable data [1–4]. One capability is a mechanism to
study the dependence of a response variable on predictive
factor variables. It does this through a mechanism for visu-
alizing the dependence of the response on one set of factors,
given values of other factors. The visual design allows
assessment of how the conditional dependence changes with
the given values. This can be done for both the raw data
and for the numeric and categorical output of mathemati-
cal methods and models applied to the data. The former is
particularly valuable, allowing an understanding of the pat-
terns of dependence in the data free of assumptions about
the patterns. Figure 1 is a trellis display that shows the
dependence of a response on one factor given three oth-
ers using the raw data. The data and the display will be
described in Section 2.

The success of trellis display in the visualization of
multivariable data has led to implementations in a number
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of software systems including S-Plus [5], R [6], and
Tableau [7].

Trellis display was originally developed in the context
of moderate, large, and very large data sets, and has been
widely used in this context. This article reports the results
of an investigation of the use of trellis in analyzing data
from designed experiments that result in small data sets.
While the sizes of data sets have grown dramatically in
many domains, controlled experiments with a small number
of runs are still commonplace in the many settings where a
single run is very costly [8]. It is often the case that designed
experiments are highly fractionated: values of each factor
are chosen, but the experiment is run on just a small frac-
tion of the number of possible combinations of the values
of the factors.

The question in our investigation was whether suc-
cess using trellis conditioning methods and visual methods
would be inhibited by the limited number of runs and frac-
tional experimental design. It seemed quite possible to us
that for such data the number of observations in each sub-
set resulting from a multiple conditioning would often be
too small for patterns to be seen. Our investigation, over
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a long period, has consisted of using trellis in the analysis
of data from many experiments reported in the literature,
some arising in our own work.

Displaying data by conditioning has surfaced indepen-
dently in a number of places and for many different types
of data [9–19]. The experimental design literature contains
a long history of data visualization [20–24]. Included in this
design literature is a widely used method of visualizing con-
ditional dependence by the interaction plot [13,14,25–28].
This visualization tool shows interaction effects based on
the output of methods and models applied to the data. Its
use in practice has chiefly been to show two-factor inter-
actions, but in principle, higher-order interactions can be
shown [13,14]. The trellis mechanism described here is
much broader, allowing, as described above, conditional
dependence to be studied for the raw data as well.

Results of this article are conveyed through describing
analyses of three data sets from designed experiments in
Sections 2–4. The data sets are representative of what we
have seen more generally. Section 5 is a discussion of
results.

In the course of the discussion of trellis conditioning
in Sections 2–4, another important matter for all data
visualization is investigated in the context of designed
experiments. Methods of data analysis can be divided into
two categories [29]: (i) mathematical methods and models
in which formulas are computed to produce numeric and
categorical output; (ii) visualization methods whose output
is visual displays, either of the raw data or of the output of
mathematical methods and models. The analysis of variance
(ANOVA), used pervasively in the analysis of experimen-
tal data, is a mathematical method for answering specific
questions about terms in a model for the data, and thus is
a model building tool. We discuss the relative power of
ANOVA and the trellis visual methods.

2. TRELLIS DISPLAY OF LEAD
CONCENTRATION DATA

Lead concentrations at a site next to a major roadway
in Ohio were measured and analyzed in an experiment to
determine their spatial variation [30]. The concentrations
were measured at nine positions on one side of the road-
way. There were three setback distances from the roadway:
2.8, 7.1, and 21.4 m. There were three heights: 1.1, 6.3,
and 10.5 m. The nine positions, each height combined with
each setback distance, form a 3 × 3 vertical spatial grid.
Measurements were made at the nine positions for 21 con-
secutive days. Each measurement is an accumulation of lead
over a period of 24 h. Thus the data consist of 21 daily lead
measurements at each of the nine positions; one observa-
tion is missing. For such data, we would expect the lead
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Fig. 1 Trellis display of L against H given D, W , and S.

concentrations to be affected by a host of factors: meteo-
rological conditions; traffic, which has a day-of-the-week
effect; and spatial position.

The lead data consist of five variables: (1) lead concen-
tration, L; (2) setback distance, S; (3) height, H ; (4) day-
of-the-week, D; (5) week number, W . D and W describe
time—that is, the day—but do so in a way that allows for
a day-of-the-week effect. There are 3 × 3 × 21 − 1 = 188
measurements of each of the five variables.

Figure 1 is a trellis display of L against H given D, W ,
and S. The display consists of 3 × 21 = 63 panels arranged
into 21 columns and 3 rows. Each panel has a scatter-plot of
L against H given D, W , and S. The strip labels at the top
of each panel indicate the values of the three conditioning
variables. S changes with the row; for row 1, the bottom
row, S is smallest, and then increases as we go up the rows.
As we go left to right through the columns of each row, we
go in order through the days. In a similar manner, Fig. 2 is
a trellis display of L against S given D, W , and H .

Figure 1 shows that L tends to decrease as H increases.
The decline as a function of H lessens as S increases. In
other words, there is a spatial effect with an interaction
between H and S, which is not surprising.

Statistical Analysis and Data Mining DOI:10.1002/sam
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Fig. 2 Trellis display of L against S given D, W , and H .

Figure 2 shows the spatial effect in a different way.
There is mixed behavior in the dependence of lead on S.
For the smallest value of H , L decreases with S. But for
the middle value of H , L typically first increases with
S and then decreases. For the largest H , lead occasion-
ally has the increase–decrease pattern for about 1/3 of the
days, most of them days with large concentrations, and is
relatively stable for the remaining days. This behavior is
consistent with air transport mechanisms. Lead is emitted
at ground level from automobile tail pipes. The closest of
the nine monitors, the one with the smallest values of H

and S, has the largest concentrations because it is close
to the pollution source. From the source, the lead is car-
ried laterally by the wind, spreading upward as it moves.
This plume-like behavior can cause the concentrations to
be relatively small at the higher monitors with the closest
setback.

The arrangement of the panels in Fig. 1 allows study of
three collections of patterns, one collection for each row.
This provides a comparison of the patterns of dependence
of L on H as S changes. Suppose, however, that we want to
study the three patterns for each day, and then compare the
21 collections of daily patterns. This is a more difficult task
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Fig. 3 Trellis display of L against H given S, D, and W .

in Fig. 1, because the three panels for each day are arranged
vertically in such a way that we have a reduced ability to
visually assemble the three patterns. In Fig. 3, the panels
have been rearranged to facilitate the study of the daily
patterns. Now the three panels for each day are juxtaposed
horizontally, and each row is now the data for 1 week. The
panels in the bottom row are week 1, the panels in the
middle row are week 2, and the panels in the top row are
week 3.

Figure 3 shows that the within variation of the nine
measurements for each day is much smaller than the vari-
ation across days. The cause is changing weather condi-
tions which have a substantial effect on the concentrations.
Rain and high wind speeds reduce concentrations and low
wind speeds increase concentrations; the nine measure-
ments on a given day are affected in the same way by the
weather. Weather conditions are correlated through time;
fronts move in and persist for a few days. This is visible
in the concentrations; the figure shows that collectively,
low or high concentrations persist across days. By con-
trast, D does not appear to be salient in that there does not
appear to be a systematic day-of-the-week effect in the data
whose magnitude is more than minor compared with the
weather effect. The conclusion is that there is a strong time

Statistical Analysis and Data Mining DOI:10.1002/sam
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correlation in the concentrations, across days, which is not
surprising.

Figure 3 also suggests spatial correlation, likely induced
by the weather effects interacting with spatial position; the
plume has different shapes depending on the meteorological
conditions. For each of the three setbacks on one day, there
are two differences in L with height: L for H1 minus L for
H2, and L for H2 minus L for H3. There are six such dif-
ferences for each day. The six differences appear positively
correlated. When one difference is larger than average, the
others tend to be larger as well; a similar statement holds for
smaller than average. A robust estimate of the correlation
matrix [31] of the six differences is shown in Table 1. There
are indeed high positive correlations as expected from our
observations of Fig. 3.

In the source publication for the lead concentration data
[30], ANOVA was used as a model building tool. The
author states: ‘One potential problem is that the lead con-
centration data may be serially correlated and this could
interfere with the assumption of independently identically
distributed errors. This problem was minimized by intro-
ducing the effects of day [day-of-the-week], week, and their
interaction to isolate the variations due to the effects of
time and hence serial correlation.’ Table 2 is an ANOVA
for the same effects fitted by the author. The missing
value has been estimated by maximum likelihood, but is
treated as not missing for the purposes of carrying out the
ANOVA.

The significant effects shown in Table 2 are S, H , SH ,
W , D, and DW , so these effects provide a modeling of the

Table 1. Robust estimates of correlation coefficients of
differences.

S1:1-2 S1:2-3 S2:1-2 S2:2-3 S3:1-2 S3:2-3

S1:1-2 * 0.61 0.60 0.28 0.75 0.30
S1:2-3 0.61 * 0.75 0.51 0.91 0.73
S2:1-2 0.60 0.75 * 0.16 0.89 0.34
S2:2-3 0.28 0.51 0.16 * 0.26 0.85
S3:1-2 0.75 0.91 0.89 0.26 * 0.52
S3:2-3 0.30 0.73 0.34 0.85 0.52 *

Table 2. ANOVA for lead concentration data.

Effect DF SS MS F P

S 2 0.30 0.148 5.35 0.00
H 2 2.97 1.486 53.70 0.00
D 6 16.64 2.773 100.22 0.00
W 2 19.22 9.611 347.41 0.00
S × H 4 1.00 0.251 9.06 0.00
W × D 12 38.13 3.177 114.85 0.00
S × W 4 0.07 0.018 0.65 0.63
H × W 4 0.18 0.045 1.63 0.17
Error 152 4.21 0.028
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Fig. 5 Trellis display of residual L against H given S, D, and W .

data. The model is quite simple. Let LDWSH be the lead
concentration for day-of-the-week D, week W , setback S,
and height H . Then the model is

LDWSH = µ + αDW + βSH + error,

where

7∑
D=1

3∑
W=1

αDW =
3∑

S=1

3∑
H=1

βSH = 0.

In other words, we model time effects with 21 coeffi-
cients that sum to 0, and we model spatial variation with
nine coefficients that sum to 0.
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Figure 4 is the classical interaction plot discussed in
Section 1 for the H by S interaction, the spatial effect. The
values plotted are 1 + µ̂ + β̂SH for S = 1–3 and H = 1–3,
where µ̂ and β̂SH are the least squares estimates. We see a
summarization of the effect that was observed from Fig. 2.
These are the effects in the data as seen by the ANOVA
and the resulting model. Note that the interaction effects
span a range of about 0.5 on the lead concentration scale.

The residuals from the model, R̂DWSH = LDWSH − µ̂ −
α̂DW − β̂SH are the remaining variation in LDWSH after
subtracting the least squares model fit. The R̂DWSH are the
variation not explained by the model. Figure 5 graphs the
R̂DWSH in the same way that the raw data are graphed in
Fig. 3. We can see clearly the correlation revealed in Fig. 3
and Table 1. Now, however, we can judge the magnitude
of the correlation compared with the model fit. On many
of the panels the values span 0.5 or more, very significant
compared with the range of the effect, also 0.5. This means
that the change in the spatial effect with the meteorological
conditions is quite substantial.

The trellis plots of the lead concentrations show us that
the simple ANOVA model of the data misses an important
effect with a large magnitude. Furthermore, the effect is
quite complex, an interaction between meteorological con-
ditions and the spatial pattern—a changing plume. Unfor-
tunately, the current data are not sufficient to estimate this
effect. Given the salience of the effect, we must conclude
that the experiment has not succeeded in its goal, which
is an understanding of spatial variation. Success would
require detailed information about the meteorology, or a
large enough number of days to provide a representative
sample of meteorological conditions.

3. MODELING DATA FROM A RESIST
EXPERIMENT

Computer chips are manufactured by creating them on
wafers, circular or near-circular silicon disks that are coated
and processed by hundreds of steps. Then the wafers are
cut up to produce the individual chips. One manufacturing
process is etching: coating a wafer with a resist solution,
exposing the resist to light to create the chip features, and
then placing the wafer in a developer solution to remove
the exposed areas of the resist.

In an experiment run to improve the resolution of the
features, processing of the wafers involved the following
steps [32]: (1) coat a wafer with a resist solution containing
a new photoacid generator, whose amount, or load, was
varied in the experiment; (2) use one of two solvents in
the resist solution; (3) expose the coated wafer to 248 nm
light shone through a photo mask; (4) bake the wafer at
a temperature that was varied and for a duration that

Table 3. ANOVA for resist data.

Effect DF SS MS F P

S 1 2193.36 2193.36 20.35 0.00
T 1 13323.44 13323.44 123.61 0.00
L 1 4977.83 4977.83 46.18 0.00
D 1 4054.75 4054.75 37.62 0.00
T 2 1 1091.47 1091.47 10.13 0.00
L2 1 69.90 69.90 0.65 0.43
D2 1 29.37 29.37 0.27 0.61
D × T 1 1004.99 1004.99 9.32 0.01
T × L 1 1455.48 1455.48 13.50 0.00
D × L 1 1048.62 1048.62 9.73 0.00
S × T 1 52.46 52.46 0.49 0.49
S × L 1 554.89 554.89 5.15 0.03
S × D 1 66.41 66.41 0.62 0.44
Error 22 2371.33 107.79
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Fig. 6 Conditioning intervals for D, L, and T .

was varied; (5) develop the wafer for 60 s in a developer
solution. The response in the experiment is the clearing
dose, C, measured in mJ/cm2. This is the light energy per
unit of area required to remove the resist in a cross-shaped
region 100 t imes 150 µm2. This is determined by applying
a series of light energies to determine the smallest amount
that removes the resist. The following are the factors in the
experiment: (1) T , temperature of bake cycle (◦C); (2) L,
load of the photoacid generator (% wt); (3) D, duration of
bake cycle (s); (4) S, solvent, with value 1 for solvent 1
and value 2 for solvent 2.

The experimental design consisted of 36 runs with values
of the factors in the design space chosen to optimize
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Fig. 8 C against D given L, T , and S.

estimation of a conjectured model for the response surface
for C: a full quadratic in T , L, and D; for S, a main
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Fig. 9 C against L given D, T , and S.

effect and interactions with the linear terms of the other
variables.

3.1. Analysis of Variance

Table 3 shows an ANOVA for the conjectured model.
The F -values and probabilities are those for adding each
term to a model with all other terms. The quadratic term for
T is significant but not for the other two numeric variables.
The interaction of S with the numeric variables is signifi-
cant only for L. The results are unintuitive. It is possible
the design is not sufficient to estimate the effects. If we are
to reliably estimate the effects we need more insight into
the data than that given by the ANOVA. We need some
good luck in the form of a simple model explaining the
data, and we need methods that allow us to perceive the
simpler structure if it exists.

3.2. Trellis Display of the Raw Data

We will use trellis display of the raw data to search for
insight into the dependence of the response on the factors.
Figure 6 shows intervals that will be used for conditioning
on the three numeric variables T , D, and L. Each set of
three conditioning intervals consists of low, medium, and
high values. Low values are a constant and high values
are a constant in each case. Conditioning on S is simple;
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there are two conditioning categories, solvent 1 (1) and
solvent 2 (2).

Figure 7 is a trellis display of C against T given D, L,
and S. Each panel shows the values of C and T for those
runs with D in one of its intervals and L in one of its
intervals, and on the panel S is encoded by the symbol
color and plotting symbol; solvent 1 is cyan +, and sol-
vent 2 is magenta ◦. To avoid exact overlap of some data
points, a small amount of random uniform noise has been
added to the values of T . The intervals of D are the same
for all panels in the same column; as we go from left to
right through the columns, the intervals increase. The inter-
vals of L are the same for all panels in the same row; as
we go from bottom to top through the rows, the intervals
increase. The strip label for each panel contains a graphical
portrayal of the conditioning interval. The strip has a scale
but there are no tick marks to indicate the numeric values
of the interval; the scale value at the left endpoint of a strip
label is the minimum value of the measurements of the
conditioning variable, the scale value at the right endpoint
is the maximum, and the darkened bar shows the interval.
Figure 8 is a trellis display of C against D given L, T , and
S. Figure 9 is a trellis display of C against L given D, T ,
and S.

3.3. Exploiting An Observed Regularity

The three trellis displays show patterns that suggest a
possible route to a simple model. On each display, the
panels have a nearly linear pattern with a negative slope,
but as the overall level of C decreases, the absolute value
of the slope decreases. In addition, when C is large over-
all, solvent 1 (cyan, +) has somewhat larger values than
those for solvent 2 (magenta, ◦), but for smaller values of
C overall, the two are quite close.

This diminishing of the effects of the factors as the over-
all levels of the response decrease would occur if a power
transformation of the response surface Cλ(S, L, T , D) was
linear in the four factors. In this case, we have

C(S, L, T , D) = (µ + αS + βL + γ T + δD)λ
−1

.

The derivative of C with respect to any one of the numeric
variables, say L, is

dC

dL
= βλ−1(µ + αS + βL + γ T + δD)λ

−1−1

= βλ−1C(S, L, T , D)λ
−1−1.

It is easy to see that an analogous result holds for S. So
the derivatives change with the level of C(S, L, T , D). If
the above linearity occurs for a power transformation of

λ
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Fig. 10 Normalized, maximized likelihood function for
Box–Cox transformation.

C, if λ < 0, and if α, β, γ , and δ are all positive, then the
behavior would be like that in Figs. 7–9.

The idea of using visual displays to spot removable
nonadditivity is not new and has been explored extensively
in the past. Seminal work is that of Tukey [33–35]. What
we suggest here is that trellis display is an effective
visualization mechanism for carrying this out. An important
point is that it is not simply the existence of interactions
that suggests transformation, but rather the form they take,
specifically the dependence on the level of C.

There are, in fact, other indications of the need for
transformation of C. When we fit the terms in Table 3
with p ≤ 0.03, the residuals are skewed and their variance
increases with the level of the fitted values. Both of these
can, when the structure is of a certain form, also be removed
by transformation.

We used the Box–Cox method [36] to investigate power
transformation, including the logarithm. The transformation
family is

C(λ) =
{

Cλ−1
λ

if λ �= 0,

log(C) if λ = 0.

The model is

C
(λ)
i = µ + αSi + βLi + γ Ti + δDi + εi,

where the εi are independent N(0, σ 2).
The maximum likelihood for fixed λ occurs at the least

squares estimates of Ci(λ) fitted to the values of the factors.
Let Z(λ) be the residual sum of squares of this fit, then the
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maximized likelihood at λ is

(
n

Z(λ)

)n/2 n∏
i=1

Cλ−1
i .
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Let �(λ) be this maximized likelihood divided by its
maximum across λ.

Figure 10 graphs �(λ) for values of λ from −2 to 1
in steps of 0.001. The maximum of �(λ) occurs at λ =
−0.405. However, �(−0.5) is not far from the value at the
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Table 4. ANOVA for 100/
√

Ci fitted to Ti , Li , Di , and Si .

Effect DF SS MS F P

S 1 41.70 41.70 28.46 0.00
T 1 357.89 357.89 244.21 0.00
L 1 57.88 57.88 39.50 0.00
D 1 88.58 88.58 60.45 0.00
T 2 1 0.05 0.05 0.03 0.86
L2 1 0.28 0.28 0.19 0.67
D2 1 0.05 0.05 0.03 0.85
D × T 1 3.70 3.70 2.52 0.13
T × L 1 0.37 0.37 0.25 0.62
D × L 1 4.33 4.33 2.96 0.10
S × T 1 0.38 0.38 0.26 0.61
S × L 1 1.50 1.50 1.02 0.32
S × D 1 0.10 0.10 0.07 0.79
Error 22 32.24 1.47

maximum, so we take the transformation to be the inverse
square root 1/

√
C. The unit of C is mJ/cm2, so the unit of

1/
√

C is cm/
√

mJ.
Figures 11–13 are trellis displays of 1/

√
C against each

of the three factors T , L, and D with the same format as
Figs. 7–9. The plots suggest that the dependence of 1/

√
C

on the factors is linear and additive, that is, no interactions
are present.

Table 4 shows an ANOVA for 100/
√

C, carried out in
the same manner as in Table 3. The new table also suggests
an absence of nonlinearity and interaction. Nature has been
exceedingly good to us. A simple power transformation of
C has resulted in a very simple model.

Trellis displays of the residuals on the transformed scale
suggest our additive model has no appreciable lack of fit.
One such residual display is shown in Fig. 14, a trellis graph
of the residuals against T given D, L, and S. A normal
quantile plot of the residuals shows that their distribution is
well approximated by the normal. A spread-location, or s-l,
plot [10] shows that the variance does not change with the
fitted values. The estimate of the standard deviation using
the residuals is 0.0121, a very small number, since the range
of 1/

√
C is close to 0.30; the model explains much of the

variation in the data.

3.4. Trellis Display of the Fitted Response Surface:
Higher-Order Interaction Plots

Our goal in modeling is to find a parsimonious model
that uses as few degrees of freedom as possible to estimate
parameters. Overall, this makes the process of experimental
design even more efficient. Doing this can involve, as in
this case, a transformation of the response. This can take
us to a scale of measurement for the response for which
there is less intuition. However, this need not interfere with
interpretation because we can transform back to the original
scale in viewing results. This is done next.

Trellis display is also very effective for studying mod-
els fitted to data from designed experiments, providing a
convenient and effective expansion of the interaction plot
to higher-order interactions. This is illustrated in the three
trellis displays of Fig. 15. The simple model for 1/

√
C just

fitted has been transformed back to the original scale by the
inverse square, allowing study on the scale of mJ/cm2 to
appeal to engineering intuition about clearing dose. There
is one trellis display for each numeric factor.

For example, in the left display of Fig. 15, C is graphed
against T given D, L, and S. There are 16 panels on the
display. There are four equally spaced values of D and four
equally spaced values of L, each ranging from the minimum
to the maximum value in the data. C is valued for all 16
combinations of these two factors at 50 values of T for
each of the two values of S. This results in two curves on
each panel, one for solvent 1 (cyan, dashed line) and one
for solvent 2 (magenta, solid line). The other two displays
have similar evaluations.

Figure 15 shows the nonlinearity and the strong interac-
tions among all factors revealed in our initial trellis plots
of the data, albeit far more incisively here. For example,
in the left trellis display of Fig. 15, we see clearly that as
the conditioning value of D increases for fixed L, or as
the conditioning value of L increases for fixed D, the mag-
nitudes of the three quantities—C, dC/dT , d2C/dT 2 —all
decrease. We can also see that solvent 1 (cyan, dashed line)
results in a larger C than solvent 2 (magenta, solid line).
From this display, we are able to assess the complex proper-
ties, which possess complex interactions of the factors. This
shows why modeling on the original scale of C, mJ/cm2,
is so challenging.

4. MODELING LIQUID CRYSTAL DATA

4.1. Polymer-Dispersed Liquid Crystal Displays

Reflective displays that are visible in ambient lighting
and operate without back lights reduce weight and power
requirements. Polymer-dispersed liquid crystals (PDLCs)
are promising materials for these reflective displays. Under
normal conditions, the droplets of a liquid crystal are ran-
domly oriented, and the material is white because light is
scattered. But when a voltage is applied to a section of the
liquid crystal, the droplets align, scattering is reduced, and
the section becomes transparent. If the background behind
the material is black, applying a voltage makes the section
go from white to black.

4.2. The Experiment

The switching voltage is the voltage necessary to align
the droplets. One series of experiments [37] studied the
dependence of switching voltage, V , on three factors:
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Fig. 16 Left: V against M given T and I ; Middle: V against T given M and I ; Right: V against I given M and T .

• the amount, M , of liquid crystal in the mixture,
measured in wt %;

• the intensity, I , of the light used in the processing,
measured in mW/cm2;

• the temperature, T , of the mixture during processing,
measured in ◦C.

We will describe here the modeling of the data from the
pilot experiment that began the series. In the pilot, each
triple of values of the three factors was close to one of nine
design locations—the corners and center of a cube whose
edges are parallel to the factor axes. Eight of the design
locations had two runs and one had three, so there were 19
runs in all.
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4.3. Analysis of Variance

Table 5 shows an ANOVA for an overall model that is
quadratic in the variables. If we drop the terms that are
insignificant, the residual sum of squares, 6.22 V2, remains
nearly the same and σ̂ = 0.74 V. But if in this reduced
model we drop T 2 and replace it with M2, the residual sum
of squares also remains nearly the same. Thus this ANOVA
does not yield an unambiguous model specification. We
should not take this to mean that there is an irresolvable
ambiguity in the data because, our ANOVA rests on the
unsubstantiated hypothesis that the overall quadratic model
adequately describes the structure in the data.

4.4. Trellis Displays of the Raw Data

We will use trellis display to search for insight into the
dependence of the response on the factors. Each factor in
the experiment—I , M , and T —has low values, medium
values, and high values. We will condition on each factor
using three intervals that divide its values into low, medium,
and high. The number of combinations of the three sets
of three intervals is 27. However, the design only covers
nine of them, so we can expect to see gaps in the trellis
displays.

The left trellis display of Fig. 16 graphs V against M

given T and I . The values of T go from low to medium
to high as we go from left to right through the columns.
The values of I go from low to medium to high as we go
from bottom to top through the rows. For the highest level
of T , there is a large decrease in V with M; for the lowest
level, there is a small decrease. Furthermore, for the middle
level of T , the values of V are close to what they are for
the lowest level of T . But the changes in V with M do not
appear to depend on the level of I . Thus there appears to be
a strong interaction between T and M , but no interaction
between I and M .

The middle trellis display of Fig. 16 graphs V against
T given M and I . There is more information about the T

and M interaction. For M at the lowest level, V increases

Table 5. ANOVA for liquid crystal data.

Effect DF SS MS F P

I 1 6.49 6.49 9.40 0.01
M 1 219.23 219.23 317.38 0.00
T 1 126.43 126.43 183.04 0.00
I 2 1 0.23 0.23 0.34 0.58
M2 1 0.64 0.64 0.93 0.36
T 2 1 14.49 14.49 20.98 0.00
M × T 1 126.39 126.39 182.97 0.00
I × T 1 0.02 0.02 0.03 0.87
I × M 1 0.03 0.03 0.04 0.85
Error 9 6.22 0.69
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Fig. 18 Partial residual plot graphs Vi − γ̂ Ii against Mi − α̂

− βTi .

by a large amount with T . But for M at the highest level,
there does not appear to be an effect due to T . And for M

at the middle level, V has values close to what they are
for M at the highest level. Finally, there appears to be no
appreciable interaction between I and T .

The right trellis display of Fig. 16 graphs V against I

given M and T . As I increases, V decreases. The sizes
of the decreases vary but there is no consistent pattern to
their variation and the magnitude of the variation is not
large compared with the variation of the replicated points,
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so there appears to be little or no interaction between I and
the other two factors.

4.5. Modeling the Data

The ANOVA carried out earlier was predicated on a
quadratic dependence of V on the factors: M , T , and I .
But the structure of the data revealed by the trellis displays
calls into question the appropriateness of a quadratic model.
The reason is the radical change in slope. As a function of
M and T , V is large for M at the lowest level and T at the
highest. V is much smaller and nearly flat elsewhere.

Let us describe the structure we observed in the trellis
displays in terms of Fig. 17, a scatter-plot of the measure-
ments of M and I with a small amount of uniform random
noise added to break up the overlap of plotting symbols.
(The line on the plot will be explained later.) At the points
in the lower right corner, V is high and much lower every-
where else. In going from the points in the upper left to
the lower left, there is a small increase in V . In going from
the upper left to the upper right, V is constant. At the two
center points, V is between where it is for the upper points
(left and right) and where it is in the lower left.

A simple model explains the structure revealed by the
trellis displays: (1) linear in I ; (2) a continuous piecewise
linear spline in T and M consisting of two half planes that
join along a line in the T and M space that, in Fig. 17, is
close to the center points and the points in the lower left
and upper right; (3) the half plane covering the upper left
in Fig. 17 has zero slope. Thus the model is

Vi = µ + γ Ii + δ(Mi − α − βTi)
− + εi,

where x− is x if x < 0 and is 0 otherwise. The join line is

M − α − βT = 0.

We will begin with an assumption that the εi are
independent and normally distributed with mean 0 and
constant variance σ 2. Thus the parameters will be estimated
by nonlinear least squares. The residual sum of squares is
4.8 V2, and σ̂ = 0.55 V, better than the quadratic models.
Residual plots suggest there is no significant lack of fit and
that the above assumptions about the error terms εi are
reasonable.

The line drawn in Fig. 17 is the estimated join line,

M − α̂ − β̂T = 0.

Figure 18 is a partial residual plot that shows the spline
fit. Vi − γ̂ Ii is graphed against Mi − α̂ − βTi . The fitted
function tracks the data. The spline fit explains the subtle
behavior in the trellis displays of the data in Fig. 16.

5. DISCUSSION

We investigated the use of the conditioning methods of
trellis display for experimental data with a small number
of runs including highly fractionated designs. Such experi-
ments arise in settings where each run is very expensive,
or as in some computer experiments, each run takes a long
time. The investigations, which covered a large number of
data sets over time, have led to several conclusions.

Trellis display is almost always quite useful for modeling
data from these experiments, and commonly produces
major changes in the analysis, modeling, and results due to
the discovery of patterns in the data not suspected before
the data were collected. The finding is true even for highly
fractionated experiments. The pattern discovery is a result
of the scope of the trellis conditioning methods. They are
applicable not just to fitted models, but also to the raw data.
This allows incisive assessments of patterns in the data that
can lead to substantial improvements to models initially
entertained, or to a conclusion that an experiment failed.
Both were demonstrated in the examples described here.

We also found that ANOVA, used pervasively in the anal-
ysis of experimental data, is a powerful tool for answering
specific questions about models for data, but a poor tool
for guiding the overall modeling process.

One might find it remarkable that conditioning methods
can often succeed for highly fractionated experiments.
Conditioning for such designs often results in just a few
points on the panel of a trellis display, potentially making
it hard to assess dependence because of variability in the
error term. However, we found patterns often did emerge
as demonstrated in our examples. The reason appears to
be that for success, highly fractionated designs require an
engineering practice that keeps error variability small. Such
designs, by their very nature, cannot succeed in cases with
large error variability that require a large aggregation of
runs to see a signal. The very practices that make such
experiments succeed allow trellis methods to succeed.
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