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 Assessing and monitoring the performance of computer and communications networks is an important
 problem for network engineers. A considerable amount of work has been done on tools and techniques
 for data collection, modeling, and analysis within the network research community. This article presents

 an overview of the engineering problems and statistical issues, describes recent research developments,
 and summarizes ongoing work and areas for further research. Although there are many interesting issues
 related to network analysis, our focus here is on estimating and monitoring network quality-of-service
 parameters. We discuss methods for estimating edge-level parameters from end-to-end path-level mea
 surements, an important engineering problem that raises interesting statistical modeling issues. Other
 topics include network monitoring, network visualization, and discovery of network topology. Data from
 a corporate network are used to illustrate the problems and techniques. As in any overview, the discussion
 is likely to be slanted toward the authors' own research interests.

 KEY WORDS: Internet telephony; Network monitoring; Network tomography; Network visualization;
 Probe packet; Traceroute data; Voice-over-IP.

 1. INTRODUCTION

 Modern computer and communications networks are com
 plex, dynamic systems with millions of users and a broad range
 of applications. Business customers as well as individual users
 expect consistently high levels of quality, especially when they
 are running complex applications, such as telephony and video.
 Thus one must continuously collect, model, and analyze rele
 vant data to assess and monitor network performance. There are
 many interesting statistical issues and challenges involved in
 doing this. The present article provides background on the en
 gineering problems and an overview of the statistical issues, re
 cent developments, and ongoing research. The article includes
 a review of existing results and a discussion of some new re
 sults. Predictably, however, the discussion emphasizes our own
 interests.

 Internet protocol (IP) telephony (also known as voice-over
 internet protocol, or VoIP) is an important application and pro
 vides a basis for much of our discussion in this article. IP tele

 phony typically involves a pair of IP phones that send streams of
 packets carrying voice traffic. At the sending phone, the packets
 are sent with regularity (e.g., every 20 msec), and each packet
 contains a segment of voice. At the receiving phone, the packets
 do not arrive with the same regularity because of unpredictable
 events in the network. The packets can be dropped by network
 routers when queues are full, they can be delayed due to com
 peting traffic, or they can arrive out of order. Packet loss and
 a lack of regularity in the packet stream at the receiving phone
 can result in poor sound quality.

 Data that relate to the performance of IP telephony on the net
 work in Figure 1 is used to illustrate various concepts through
 out the article. (See also Bearden, Denby, Karacali, Meloche,

 and Stott 2002a,b and Karacali, Denby, and Meloche 2004 for
 other studies based on data collected from this network.) This

 figure shows parts of the Avaya corporate network, including
 37 special communication endpoints that are labeled in the fig
 ure. (The network also includes thousands of regular endpoints
 [e.g., users] that connect and disconnect at different nodes that
 are not shown here.) The circles represent network routers, and
 the triangles represent the special communication endpoints.
 The three agglomerations correspond to the Asia Pacific region,
 the Europe/Middle East region, and the Americas. Note that one
 of the edges (close to Dubai) is shaded in black; we return to this
 when we discuss network monitoring techniques in Section 4.2.

 Network engineers designing and running networks [either
 within corporate and campus environments or for internet ser
 vice providers (ISPs)] need data collection and analysis tools to
 assess quality-of-service (QoS) measures, such as packet loss
 rates, delays, and jitter, and for doing network bandwidth cal
 culations. This information is needed for several important rea
 sons, including monitoring network performance and utiliza
 tion over time, drilling into problems and finding their causes,
 detecting congestion, planning capacity and network provision
 ing, and ensuring compliance with service-level agreements.
 The needs are especially critical with real-time applications that
 require very high and sustained levels of quality, such as VoIP,
 video streaming, video conferencing, and online games.

 ? 2007 American Statistical Association and
 the American Society for Quality
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 Korea

 Figure 1. The Avaya corporate network.

 This is a challenging problem for several reasons. First, the
 size of the network (often much larger than the one shown in
 Fig. 1) can limit the type of analyses that can be performed in
 practice. Second, networks are evolving entities, and QoS char
 acteristics can change rapidly, for example, as a result of load
 or an automatic process that is attempting to circumvent some
 local network problem. Finally, network engineers often do not
 have access to all of the relevant components in the network,
 for example, a node that belongs to a different administrative
 domain or an edge that belongs to an ISP.

 Traditional approaches to network analysis have relied on de
 tailed queueing models at the individual router level. But such
 "local" modeling will not adequately capture the complexities
 and dynamic behavior of modern networks, including the fact
 that end-to-end results can be affected by interactions between
 nonadjacent network components. Expanding such local mod
 els to adequately incorporate the behavior of even a moderately
 sized network would be impractical.

 There have been considerable efforts in recent years to iden
 tify appropriate sources of data and develop methods of data
 collection, analysis tools, and techniques to address these prob
 lems. This has led to the emergence of network tomography, a
 term first introduced by Vardi (1996) in the context of estimat
 ing the origin-destination (O-D) traffic matrix. Here we are in
 terested in estimating the intensities of traffic flowing between
 the O-D pairs in the network. This information is important
 in network management, capacity planning, and provisioning.
 The challenge arises from the fact that only aggregate data on
 traffic counts at individual nodes (e.g., the number of packets

 going through a router) are available. The inverse problem is
 to recover distributions of traffic between all O-D pairs from
 the aggregate counts. Castro, Coates, Liang, Nowak, and Yu
 (2004a) has provided a review of this literature and an overview
 of developments in network tomography.

 The focus in this article is on estimating and monitoring
 the QoS of the network by actively injecting test packets, or
 probes, into the network from nodes located on the periph
 ery and collecting performance measurements on the injected
 probes. A primary goal is to estimate edge-level QoS charac
 teristics from the end-to-end measurements. This inverse prob
 lem sometimes has been called active network tomography. Our
 overall purpose is to discuss a number of interesting statistical
 issues that arise in this area, including data collection, data qual
 ity, inference for the inverse problems, network monitoring, and
 the analysis of large-scale networks (graphs).

 The article is organized as follows. Section 2 gives back
 ground on data networks, protocols, and network utilities that
 can be used for our purposes to provide measurements. Sec
 tion 3 deals with estimation of the edge-level parameters from
 end-to-end path-level measurements, a very interesting inverse
 problem with many facets. It introduces a novel approach for
 edge-level estimation from end-to-end statistics based on a pe
 nalized likelihood that combines both traceroute and real-time

 transport protocol (RTP) data. Section 4 discusses several re
 lated topics, including methods for monitoring network per
 formance over time and using the information to diagnose the
 edges or subnetworks where problems occur, and using visu
 alizations to assess network performance. Section 5 briefly de
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 scribes several issues involved in discovery, analysis, and visu
 alization of network topology. Throughout the article, relevant
 literature and references are cited.

 2. BACKGROUND AND DATA SOURCES

 2.1 Network Preliminaries

 A network can be represented by a directed graph G =
 (V,E), where V is the set of nodes (routers) and E is the set
 of edges. Even though data networks can be specified at sev
 eral different layers, this article concentrates on the IP layer or
 layer 3, in which a path consists of the source and destination
 nodes and the intervening IP routers. (For a detailed exposition
 on network layers and protocols, see Peterson and Davie 2003.)

 Figure 2(a) is an example; it shows part of the University
 of North Carolina, Chapel Hill (UNC) network with 19 end
 points and 4 internal nodes. When data are sent from one loca
 tion to another in a packet-switched network, the file's content
 is first broken into pieces, called packets. Additional informa
 tion, such as origin-destination (O-D) information, reassembly
 instructions (such as sequence numbers), and error-correcting
 features, are added to the packet. The O-D information is used
 by the network routers and switches to deliver the packets to the
 intended recipient through the use of some network protocol.
 Figure 2(b) shows the paths from the Sitterson node (node 0) to
 all of the other endpoints on this UNC network. The paths are
 nothing more than a series of ordered edges that indicate the
 transmission route from a sender A to a receiver B.

 Several different protocols control data transfer between
 communication endpoints, with each protocol fulfilling a partic
 ular need. For example, the transmission control protocol (TCP)
 guarantees reliable and in-order delivery of data from sender
 to receiver. On the other hand, the lightweight user datagram
 protocol (UDP) does not provide such guarantees. The internet
 control message protocol (ICMP) is used primarily to report
 error messages through the network. The ICMP defines sev
 eral types of packets, including the echo request and echo reply
 messages commonly used by the ping utility and the "time-to
 live exceeded" and "port unreachable" messages that are critical
 parts of the traceroute utility (see Sec. 2.2.1). The protocols can

 also rely on one another. For example, the well-known hyper
 text transfer protocol (HTTP) is built on top of the TCP proto
 col, which is built on top of the IP. The RTP for delivering audio
 (such as VoIP) and video over the internet is built on top of the

 UDP protocol because for these applications, it is not necessary
 to resend a packet that was dropped.
 Many data communications and protocols involve roundtrip

 communications. This can be asymmetric; that is, the list of de
 vices from point A to point B might not consist simply of the
 reversed list of devices from point B to point A. Even when net
 work engineers intend to create a network that has symmetric
 paths (for various reasons that include simplicity), the routing
 protocols can create temporary asymmetries. Furthermore, even
 if the routing is symmetric, there are still two paths to consider,

 and the performance on these two paths can be quite different.
 Packets arriving at a router or node are queued, awaiting their

 transmission to the next router according to the packet's proto
 col as handled by the router. Physically, a queue consists of a
 block of computer memory that temporarily stores the packets.
 If the queue (memory) is full when a packet arrives, then it is
 discarded; otherwise, it waits until it reaches the front of the
 queue and is forwarded to the next router on the way to its des

 tination. This queueing mechanism is responsible for observed
 packet losses and, to a large extent, packet delays.

 One of the challenges in analyzing network performance
 arises from the fact that the topologies can change over time.
 Network paths are determined by cooperating routers on the
 network, and the routers use more or less standard routing
 protocols. Network engineers also can manually impose static
 routes as desired, although such interventions are not common.
 The routing protocols work by exchanging messages that can
 result in changes to the paths on the network; these changes can
 occur within seconds or minutes, depending on the configura
 tions of the routing protocols.

 2.2 Data

 2.2.7 Ping and Traceroute Data. Several existing data
 collection utilities can be used to collect data on the perfor
 mance of network connections and remote computers. Here we
 discuss the ping and traceroute utilities and their usefulness.

 (a) (b)
 Ct SLttonnn (camp set) ^
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 Figure 2. Schematic of the UNC network (a) and topology of the UNC network for the VoIP study (b).
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 Figure 3. Traceroute session.

 The ping utility is used by system administrators to check
 whether a remote computer is operating and to determine net
 work connectivity. The source computer sends an ICMP packet
 to the remote computer's IP address. If the destination computer
 is up and the network connections are fine, then the source com
 puter receives a return ICMP packet. Ping can be used to mea
 sure the amount of time it takes for a packet to make the com

 plete trip. Thus data can be collected on roundtrip times and
 delays.

 The traceroute utility is commonly used to identify network
 topology (see Sec. 5). Traceroute sends UDP packets from the
 source, and it exploits the time-to-live (TTL) field of a packet
 to determine the route that the packet takes to its destination
 (Fig. 3). Every IP packet has a TTL field that takes a value be
 tween 0 and 255. When a router receives an IP packet, it decre

 ments this TTL field and forwards the packet to its destination
 according to its routing table. But if the TTL field was already
 0, then the router sends an ICMP packet, indicating that TTL
 is exceeded, back to the source. Traceroute packets are sent at
 increasing values of TTL, starting with 1, until the destination
 is actually reached.

 The source actually sends the traceroute packets to some in
 valid port at the destination. When the destination receives a
 packet destined for an invalid port, an ICMP packet indicating
 "port unreachable" is sent back to the source to indicate the er
 ror. The source then knows that the destination was reached. All

 of the previous packets failed to reach the destination because
 the TTL was too small, and the source received a "TTL ex
 ceeded" message from each of the intervening routers between
 the source and the destination, in the order in which they ap
 peared. Figure 3 illustrates a traceroute session.

 Many things can go wrong with traceroute and ping. Some
 routers are configured to not send or to not forward any ICMP

 messages. In addition, traceroute can produce false paths in the
 presence of per-packet load balancing, which sends each suc
 cessive packet on a different path. Traceroute does not directly
 identify the routers, but identifies only the IP addresses. Routers
 have many IP addresses, one for each of their interfaces. When
 multiple paths are collected with traceroute, a given router may
 appear under different IP addresses in different paths. Thus the
 traceroute and ping data can provide incomplete or inaccurate
 information.

 The biggest drawback with these data, however, is that their
 protocols are different from the applications of interest, and
 thus the network routers may treat these packets differently.

 Consequently, their performance is not necessarily a good sur
 rogate for the applications under study, such as VoIP.

 2.2.2 Injected Probe Data. A direct approach for applica
 tion-sensitive monitoring is to actively inject "probe" packets
 that mimic the particular application (e.g., VoIP, FTP) into the
 network and measure various characteristics of end-to-end per
 formance. The idea of injecting probe packets originated in
 the Multicast-based Inference of Network-internal Characteris

 tics (MINC) project (Caceres, Duffield, Horowitz, and Towsley
 1999). (For more information on transmission mechanisms, see

 Peterson and Davie 2003.)
 Figure 2(b) shows the topology that was used to collect data

 on the UNC campus network for VoIP readiness (Lawrence,
 Michailidis, and Nair 2006a). In this case the packets were sent
 from a single source node (Sitterson) to all the other endpoints
 on the periphery of the network. Other schemes are also com
 mon, such as sending packets from each node on the periphery
 to every other node (as in the Avaya network example discussed
 later).

 The characteristics of interest include loss rates and delays
 of the probe packets. These can be one-way (node A to B) or
 roundtrip measurements (node A to B and back to A). The mea
 surement of one-way delays is difficult because it involves syn
 chronization of clocks at the sender and receiver. This is an im

 portant problem that we do not discuss here due to space limita
 tions. Adhikari, Denby, Mallows, and Meloche (2003), Paxson
 (1998), Moon, Skelly, and Towsley (1999), Zhang, Liu, and Xia
 (2002), Jeske and Sampath (2003), and Jeske and Chakravartty
 (2006) have provided relevant algorithms.

 There are many advantages to actively injecting probe pack
 ets to study network performance. First, probes can be sent
 proactively to monitor the network over time and detect devel
 oping problems before any adverse effect is experienced. Sec
 ond, these probes measure QoS metrics on end-to-end perfor
 mance for the applications of interest. These measures often
 depend on long-range interactions (in terms of network topol
 ogy) on the network. An attempt at direct evaluation of all such
 interactions would be prohibitively expensive and quite unnec
 essary, because only a specific set of interactions is of relevance
 to any given application.

 The key issue here is that the packets mimic the application
 of interest. In particular, the fields of the IP headers of the in
 jected packets should be indistinguishable from those used by
 the actual application. In the presence of devices that perform
 deep-packet inspection, the IP payload also may need to be
 carefully crafted. To illustrate this, consider Figure 4, which
 shows roundtrip times for 100 UDP packets, and 100 ping
 (ICMP) packets sent during the same period to compare their
 performance. The solid circles represent ICMP packets, and the
 X's indicate UDP packets, both in milliseconds. All 100 UDP
 packets made the roundtrip, whereas only 73 of the ping pack
 ets completed it. The lost ICMP packets are indicated as verti
 cal segments at the top of the figure. The UDP roundtrip times
 did not exceed 200 ms, whereas 27 of the ping roundtrip times
 were >400 ms. [In this case, there was a traffic shaper on the
 path between the source and the destination that occasionally
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 Figure 4. ICMP and UDP roundtrip times.

 withheld some echo request packets (ICMP) for a multiple of
 .42 second delays.] The lesson to be drawn from these findings
 is that easily obtained measurements such as ping or traceroute
 are not necessarily adequate surrogates for the performance of
 other types of traffic.

 Traceroute data are useful in identifying paths (i.e., con
 nected edges over which the packets are transmitted from a
 source to a destination) and discovering network topology. The
 problem of topology discovery is discussed in Section 5. The
 use of traceroute data as auxiliary information for estimating
 edge-level QoS parameters is explored in Section 3.5.

 In this article we restrict our attention to performance as
 sessment based on injected packets. However, if we had ac
 cess to network elements, such as routers, then we could ad
 dress these problems by directly sampling packets. Estimation
 of network flow characteristics based on sampled data has been
 studied recently (see Claffy, Polyzos, and Braun 1993; Duffield
 2004; Duffield, Lund, and Thorup 2005; Yang and Michailidis
 2006).

 2.2.3 Avaya Network: Data Collection and Summary.
 This section describes a study of the network in Figure 1 and
 summarizes the data. The network had 37 communication end

 points, for N = 37 x 36 = 1,332 end-to-end pairs. For each pair,
 we sent an RTP stream of 100 packets from the source node to
 the destination. These packets were simply bounced back to the
 sender, leading to roundtrip delays and losses. The performance
 associated with these packets provided data on end-to-end net
 work delay, jitter, and loss. Delay is caused primarily by the
 queues (congestion) at the routers. We can keep track of the
 delays for each packet, but in this study, we recorded only the
 median delay for the 100 packets. Jitter is a measure of vari
 ability that is given here by the interquartile range of the packet
 roundtrip times. Losses occur when the buffer is full and the
 packets are dropped. We computed loss as the percentage of
 packets (of the 100 packets sent) that did not make it back to
 the source within 5 seconds. (The worst network roundtrip time
 observed in the study was a bit under 1 second.) Finally, es
 timated mean opinion score, (eMOS; ITU P.800.1 2006) is a
 common qualitative measure of overall voice telephony perfor

 mance. It is derived as a function of delay, loss, and jitter, and
 the values range from 1 to 5, with 5 being best.

 The data for the 1,332 pairs were collected in 74 rounds of
 18 pairs at a time in a random order over an 8-minute period.

 An endpoint was used in at most one pair in each round. To

 o

 o o

 ? - s -

 8 ML JliifL-..
 0 10 20 30 40 0 200 400 600 800

 percent packet loss delay (millisecond)
 o

 00 n [
 o

 8" 8 CO
 o
 o -

 1-1 8- J
 o J 1 I I rh-i. o J ... r, ? r~, ^^^^rmTTlltllTlTlllin

 0 20 40 60 80 120 1.5 2.0 2.5 3.0 3.5 4.0 4.5
 jitter (millisecond) estimated M0S

 Figure 5. Summary of end-to-end performance data.

 explore the temporal aspects of our problem, we collected data
 over a period of 2 weeks. Figure 5 shows the distribution of
 responses for the 1,332 pairs for one time slice and gives an
 overall picture of the quality of the network for this time period.

 The data for each end-to-end pair over time (for the entire 2
 weeks) also can be analyzed to study temporal variation, time
 of-day-effect, and so on. Such end-to-end data are very useful
 for monitoring network performance.

 In addition to network performance, we are also interested
 in various features of the network itself, how they change over

 time, and other aspects. For example, Figure 6(a) shows the dis

 tribution of the path lengths (number of edges) for the 1,332
 endpoint pairs for the first time slice. The lengths varied from
 1 to 15 edges with average path length of 8. Figure 6(b) shows
 how the edges were distributed over the paths, that is, the num

 ber of source-destination paths to which each edge belongs. The

 median of this distribution is 12. About 20.6% of the edges be
 longed to a single path, whereas 3 edges belonged to more than

 100 paths, indicating that the performance of these edges is crit
 ical for the network.

 (a) (b)
 0.2- I I |-1

 o.2- r~]
 ~~1 0.15

 0.15- ~~|

 I r ?-1 - I 0.1- -I - cr
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 ^jf" ^ oJl I 1 1 1 I PL
 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 1 2 4 8 16 32 64 128 256
 1 3 5 7 9 11 13 15 number of end-to-end paths

 length of source-destination paths to which each edge belongs

 Figure 6. Path length distribution for the first routing matrix (a) and
 edge distribution for the first routing matrix (b).
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 3. ESTIMATING EDGE PARAMETERS FROM
 END-TO-END DATA: ACTIVE
 NETWORK TOMOGRAPHY

 This section considers the problem of partitioning the end-to
 end measurements to estimate loss rates and delay distributions
 of the edges. We use a combination of artificial and real situa
 tions and data collected on the Avaya network to illustrate the
 problems and discuss the modeling and analysis results.

 3.1 Problem Formulation

 For simplicity, we start with the delay estimation problem for
 the toy network in Figure 7(a). First, consider the case with a
 single source node 0 that sends probes to the two receiver nodes
 2 and 3. Let X\, X2, and X3 be the one-way delays associated
 with the edges as shown in the figure. For the moment, assume
 that the delays are fixed numbers. Let K<o,2) and K(o,3) denote
 the end-to-end delays associated with the paths (0, 2) and (0,3).
 Then F(o,2) = X\ + X2 and 7(0,3) =X\ + X3. Letting y and x be
 the corresponding vectors, we can write y = Rx, where

 -(: 0 ?)
 Here R is the routing matrix with Ry = 1 if the /th path contains
 the 7th edge and 0 otherwise.

 Now the delays are not fixed and will vary from probe to
 probe. We assume a stochastic model where they are stationary
 and spatially independent; that is, the X/s are independent. (We
 revisit these assumptions later in the section.) Suppose that we
 send M probes from 0 to each receiver node 2 and 3, for a total
 of 2M probes. Let /xy be the mean delay and emj = Xmj ? jjlj,
 where Xmj is the delay at edge j experienced by the rath probe.
 Letting y be the 2M x 1 vector of end-to-end delays, we can
 write y = R/x + e. Now the routing matrix R is 2M x 3, with
 each row in (1) repeated M times. In our analyses we have re
 placed the 100 individual packet delays by a single summary
 measure, the sample median. The goal then is to estimate the
 edge-level delays /xi, /X2, and 1x3 from the end-to-end delay
 data. Clearly, we cannot estimate all three edge parameters in
 this situation. We return to this estimability problem and related
 issues later.

 We can use a different probing scheme that sends probes
 from each endpoint to all other endpoints, as shown in Fig
 ure 7(a). We now have six link-level parameters corresponding

 to the two directions of the edges. There are also six end-to-end

 delays, F(0,2), ^<o,3>, F<2,o>, ^(2,3), F(3,0), and F(3,2). The routing
 matrix R is now given by

 /l 1 0 0 0 0\
 1 0 1 0 0 0 I
 0 0 0 10 1

 K~ 0 0 1 1 0 0 r K }
 0 0 0 0 1 1 I

 \0 1 0 0 1 0/

 Again, we have a linear model of the form y = R/tt + e.
 The same formulation works in general for other networks.

 For the UNC VoIP study, the probes were sent from a single
 source node (Sitterson) to all of the other end-nodes using the
 topology in Figure 2(b). For the Avaya network shown in Fig
 ure 1, probes were sent from each of the 37 communication
 endpoints to all other 36 endpoints, for a total of 1,332 end
 to-end pairs. There were 525 edges, so the dimension of the
 routing matrix was 1,332 x 525.

 In general, we have a linear inverse problem of the form
 y = Rfi + e where the goal is to estimate the mean link-level de
 lays from the end-to-end data. (See Castro, Tsang, and Nowak
 2004b and references therein for a review on linear inverse

 problems in network tomography.) If the routing matrix R is
 of full rank, then this is straightforward and can be solved using
 least squares, subject to the constraint that the /x's must be non
 negative. We also could use weighted least squares, which in
 corporates the variance-covariance structure of the error terms
 to get more efficient estimators.

 In most cases, however, the routing matrix is not of full rank.

 For example, the rank of R in (1) is 2, and we have three edge
 parameters; in (2), the rank is 5, and we have six edges. For
 the network in Figure 1, the rank of R is 331, and there are 525
 edges. Part of the degeneracy arises from a "chaining" phenom
 enon in which some edges are completely confounded with oth
 ers (where an edge has only one child and the parent and child
 cannot be separated). If we remove such degeneracies, then R
 has 454 columns (edges), but its rank is still 331. Thus only a
 subspace spanned by the edge parameters is estimable. In the
 next few sections, we discuss alternative probing schemes and
 the use of auxiliary data to address the estimability problem.
 Whereas estimation of mean delays is a linear inverse prob

 lem, inference for delay distributions is not. Specifically, let Fj
 be the distribution of Xj in the toy example in Figure 7(a). We

 (a) (b)

 t? T ?

 2 3 8 9 10 11 12 13 14 15

 Figure 7. A two-layer binary tree (a) and a four-layer symmetric binary tree (b).
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 want to estimate FjJ = 1,..., 6, from the end-to-end data. This
 is a nonlinear deconvolution problem that is embedded within a
 graph.

 The loss estimation problem can be transformed (approxi
 mately) into a linear problem. Consider again Figure 7(a). The
 X/s are now binary with Xj = 1 if the packet is not lost on that
 edge and Xj ? 0 if it is. The end-to-end data are 7(0,2) = X1X2
 and 7(o,3) = X1X3, which are also binary. Let otj = E(Xj), the
 probability of a successful transmission through edge j. Then
 ?(7(o,2)) = <x\&2 and 2s(7(o,3>) = 011013. Suppose that we send
 M probes each from node 0 to nodes 2 and 3, and let Z(o,2)
 be the proportion of the M probes that successfully reach node

 2; Z(o,3) is defined similarly. Let 7 = log(Z) and Pj ? log (ay).
 Then we can write an approximate linear model y = R/? + ,
 where R is the same routing matrix as before. (This is approx
 imate, because the mean of the error terms is not identically 0
 but tends to 0 as the number of probes M ? 00.) Estimability
 issues for the loss rates are thus similar to those for estimating

 mean delays.
 As mentioned in Section 2, there are other QoS measures of

 interest such as jitter and eMOS, but we do not consider them
 here.

 The estimation methods discussed later assume, as is com

 monly done in the literature, that the losses and delays at the
 edges are temporally stationary and spatially independent. Tem
 poral stationarity is reasonable because the probes are sent
 within an order of seconds, so the parameters will not vary
 much locally in time. By repeating the experiments over a spec
 ified period, we can estimate the QoS parameters as a function
 of time. A more troublesome assumption is that performance at
 different edges are independent of each other. This is unlikely
 to hold, because the subnetwork being studied can be part of
 a larger network with cross traffic that might influence behav
 ior at several nodes simultaneously. There have been attempts
 to study this aspect through the use of network simulators (see
 Caceres et al. 1999); however, the nature of the dependence is
 specific to the network being studied, and it appears difficult to
 obtain results that are generally applicable.

 The rest of this section deals with several important and inter
 esting statistical problems that arise in the context of estimating
 the loss rates and delays at the edge level. These include ques
 tions of estimability, design of probing experiments, inference

 methods for loss rates and delay distributions, and the use of
 traceroute data as auxiliary information for estimating edge pa
 rameters. We describe theoretical issues, previous research in
 the literature, and some new ideas applied to the probe experi

 ments using the Avaya corporate network.

 3.2 Estimability

 The probing schemes that we have discussed so far send
 packets from a source node to a set of receiver nodes by trans
 mitting the packets to one receiver at a time. This is called a
 unicast scheme. As we have seen, this leads to a routing matrix
 that is not of full rank, so we cannot estimate all the edge pa
 rameters. There is an alternative, called the multicast scheme,

 that gets around this problem by sending the packets simulta
 neously to a specified set of receiver nodes. Suppose that we
 want to send a packet from node 0 to receiver nodes 2 and 3

 simultaneously for the network in Figure 7(a). The source node
 0 sends a packet to node 1 where it is duplicated and forwarded
 to both nodes 2 and 3.

 Consider again the loss problem, and suppose that we use
 the multicast scheme to transmit N packets from node 0 to
 nodes 2 and 3 simultaneously. The resulting sufficient statistics
 can be expressed as a 4-tuple, Nn,N\o,Noi, and Nqo, which
 are the number of transmissions that reached both nodes 2

 and 3, 2 but not 3, 3 but not 2, and no nodes. This 4-tuple
 has a multinomial distribution with parameters (jri, 7T2,7T3, 7T4)
 where tt\ = cl\ol2<x?>, ^2 = oi\a2(l ? 0:3), ^3 =ot\(l ? ot2)(*3,
 and 7T4 = 1 ? a\ + ori(1 ? a?2)(l ? #3). It can be seen that
 we now can estimate all three edge-level parameters from
 this scheme. The higher-order information from the multicast
 scheme (in the form of the shared experience of the top edge) is
 critical for estimability.

 Even under this multicast transmission, mean delays or delay
 distributions are in general not estimable. To see this, consider
 again the toy example in Figure 7(a). Let the distribution of de

 lay Xj be N(/ij, 1), for j = 1, 2, 3. Suppose, as before, that we
 send packets from node 0 to receiver nodes 2 and 3 simultane
 ously. Then the observed end-to-end delays are bivariate nor
 mal; the mean vector has elements fi\ + P2 and p\ + /X3, and

 the variance-covariance matrix has diagonal elements equal to
 2 and off-diagonal elements equal to 1. Clearly, we cannot esti

 mate all the /x/s from these bivariate normal data. Similar prob
 lems also exist if we send packets from all end points to one
 another in this toy example or if we have larger networks.

 Chen, Cao, and Bu (2007) showed that in general, all mo
 ments except the first of the delay distributions can be esti
 mated using multicast data. More information or constraints
 are needed to estimate the first moment. One such case is

 when the higher moments are a function of the first moment,
 leading to additional estimating equations. To see this, sup
 pose that the delay distributions Fj(x) satisfy the property that
 var(Zy) = ijl2(Xj). Then, for the two-layer tree in Figure 7(a),
 cov(F(o,2), F<o,3>) = var(Xi) = p2(X\), giving an estimating
 equation for p\, the mean delay of the first edge. Another situ
 ation in which we can estimate the delay distributions is when
 the edge delays have point mass at 0; that is, the delays can be
 0 with positive probability. Consider again Figure 7(a) and the
 subset of end-to-end measurements 7(0,2) = 0 and ^(0,3) = x
 for some positive value x. This implies that the delay at edges
 1 and 2 are both 0, and thus 7(0,3} = X3. We can use these ob
 servations (for the various values of jc) to estimate the delay
 distribution of edge 3. Similarly, we can use the subset of data

 with F(o,2) = x and 7(0,3} = 0 for various values of x to estimate
 distribution at edge 2. Thus all three edge-level distributions are
 estimable.

 A major practical problem with using multicast schemes is
 that multicast support is not mandatory under IPv4, so many
 networks do not have multicast enabled by default (see de
 Goyan 1998). There have been proposals in the literature for
 using back-to-back unicast schemes, where packets are sent
 within nanoseconds of each other to two or more receivers

 to mimic multicast transmissions (Tsang, Coates, and Nowak
 2003).
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 3.3 Design of Probing Experiments

 Injecting probe packets into the network can add a significant
 amount of traffic, so we must carefully design probing experi
 ments in terms of how much data to inject, when, for which
 pairs of endpoints, and so on. A full multicast scheme sending
 packets from many endpoints to many other endpoints in the
 network can generate more traffic than is desirable or neces
 sary. We also may want to inject traffic in different parts of the
 network with different intensities over time.

 We noted earlier that the higher-order information about the
 shared edges in multicast schemes is critical for estimating the
 internal edges. It turns out that second-order information (pairs
 of receiver nodes at a time or bicast schemes) is sufficient for
 this purpose. To understand this, consider Figure 7(b) and re
 strict attention to the three-layer tree with receiver nodes 4, 5,
 6, and 7. A full multicast involves sending the packets from
 node 0 to all four receiver nodes simultaneously. This results in
 a (24 ? 1 = 15)-dimensional multinomial experiment. Instead,
 it suffices to send packets to the pairs (4, 5), (6, 7), and (5, 6), as

 we discuss later. Note that each of these bicast schemes results

 in only a four-dimensional multinomial experiment. In general,
 we can use a combination of unicast and bicast schemes to

 estimate all the edge-level parameters. This is particularly ap
 pealing if we are using back-to-back unicast schemes to mimic
 multicast schemes. Back-to-back schemes are most effective for

 pairs of receiver nodes and are less likely to mimic a multicast
 scheme as the number of receiver nodes increases.

 A general class of flexible probing experiments (called flex
 icast) aimed at addressing the foregoing problem was intro
 duced by Xi, Michailidis, and Nair (2006) and Lawrence et al.
 (2006a,b). It consists of a combination of &-cast schemes for
 different values of k, with each &-cast scheme aimed at studying
 a subnetwork. Each of the &-cast schemes by itself will not nec
 essarily allow us to estimate the edge-level parameters of that
 subnetwork. The data must to be combined across the various

 &-cast schemes to allow estimating of the edge-level parame
 ters. This class of experiments must satisfy some simple con
 ditions for all of the edge-level parameters to be estimable. Xi
 et al. (2006) studied this problem for single-source tree topolo
 gies and showed that the following conditions are necessary and
 sufficient for identifiability of loss rates: (a) All receiver nodes
 are covered, and (b) for each internal node in the tree, there is
 a &-cast scheme that splits at that internal node. Lawrence et al.
 (2006a,b, 2007) showed that these conditions are also necessary
 and sufficient provided that the delay distribution is discrete or
 the higher-order moments are a function of the first moment.

 As an example, again consider the three-layer binary tree.
 Suppose that we used an experiment with the two bicast
 schemes (4, 5) and (6, 7). We have covered all receiver nodes,
 and the first splits at node 2 and the second splits at node 3.
 However, there is no split at node 1, indicating that not all of
 the internal nodes are estimable. The following experiment with
 three bicasts, (4, 5), (6, 7), and (5, 6), satisfy the identifiability
 conditions as the third pair splits at node 1. Note that we can
 replace the third pair (5,6) with another pair, such as (4,7),
 which also splits at node 1, indicating that the schemes satisfy
 ing the conditions are not unique.
 A related question is how to allocate the total probe budget

 of, say, Af probes among the various &-cast schemes. This can

 be formulated as an optimization problem using criteria in the
 optimal design literature. (See Xi et al. 2006 for discussion in
 the context of loss rates and single-source topologies.) It turns
 out that the optimal allocations depend on the unknown edge
 level parameters.

 A more interesting question relates to estimability with mul
 tisource topologies as in the Avaya network. For example, how
 should we supplement the unicast data (all end-to-end pairs)
 with a minimal number of bicast schemes (or back-to-back
 schemes) to estimate all of the internal edge parameters? In
 other words, given a routing matrix that is degenerate, can we
 characterize explicitly what probing experiments are needed to
 resolve the degeneracy? This is part of a more general question
 on studying the estimability problem with multisource topolo
 gies.

 3.4 Inference Using Injected Probe Data

 We assume that the probing schemes satisfy the identifiabil
 ity conditions so that all of the edges are estimable. By treat
 ing the unobservable edge-level data as missing data, we can
 use the EM algorithm to compute the maximum likelihood es
 timators (MLEs) in both cases. This has been done extensively
 in network tomography applications (see Coates et al. 2002;

 Duffield, Horowitz, Lo Presti, and Towsley 2002). A different
 approach for estimating loss rates was introduced by Caceres et
 al. (1999), where the sufficient statistics of the data are calcu
 lated and then a solution to the likelihood function is obtained

 by solving a set of polynomial equations. It can be shown that
 this approach leads to asymptotic MLEs, but their performance
 in finite samples can be inferior.

 3.4.1 Delay Distributions. To keep things simple, we
 consider only situations with a single source, but the same ideas
 apply to mulitsource situations as well. Let Xk denote the (un
 observable) delay on edge k, let pr be the path from node 0

 to receiver node r, and let Yr = ^^ep ^ me cumulative de
 lay accumulated along this path. We observe end-to-end delays
 consisting of Yr for all of the receiver nodes.

 Lawrence et al. (2007) examined inference for mean de
 lays pj = E(Xj) under the model where var(X7) oc /Xy for some
 0 > 0. ML estimation is still intractable even for simple para
 metric models, so they proposed and studied the properties
 of moment-based methods. For example, the covariance terms
 cov(Kr, Ys) provide additional estimating equations for estimat
 ing the edge-level mean delays.

 The more general case of estimating delay distributions has
 been studied in network applications assuming a discrete distri
 bution. A simple and fast algorithm was developed by Lo Presti,
 Duffield, Horowitz, and Towsley (2002), but this is quite inef
 ficient. Liang and Yu (2003) proposed a pseudolikelihood esti
 mation method with multicast data. This involves using only
 the one- and two-dimensional data and ignoring the higher
 order information for computational simplicity. Lawrence et al.
 (2006a,b) studied ML estimation and the behavior of the EM
 algorithm for general flexicast schemes. Again, the EM algo
 rithm is a reasonable technique for computing the MLEs. How
 ever, the complexity of the EM algorithm (particularly when
 computing conditional expectations of the internal edge delays
 for each bin) is prohibitive for all but fairly small networks. To
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 deal with larger networks, Lawrence et al. (2006a,b) developed
 a grafting method that fits "local" EMs to the subtrees defined

 by the /r-cast schemes and then combines the estimates through
 a fixed-point algorithm. This hybrid algorithm is fast and has
 reasonable statistical efficiency compared with full ML estima
 tion. (See Chen et al. 2007 for delay estimation using Fourier

 methods and Tsang et al. 2003 and Shih and Hero 2003 for in
 ference under other models.)

 3.4.2 Loss Rates. The structure of the EM algorithm for
 loss estimation was studied by Xi et al. (2006). It works well for

 small to moderate-sized topologies but becomes computation
 ally infeasible as the number of edges gets large. Here describe
 a new, scalable algorithm based on least squares that leads to
 fast estimation of loss rates (Michailidis, Nair, and Xi 2007).

 For concreteness, consider the three-layer symmetric binary
 tree [Fig. 7(b) with just three layers and receiver nodes 4, 5, 6,
 and 7], and suppose that we use a full multicast experiment to
 all of the receivers (4, 5, 6, 7). There are 16 possible outcomes,

 (1,1,1,1),(1, 1,1,0), (1,1,0,0),..., (0,0,0,0).

 Denote the corresponding number of events for each outcome
 by N(i,i,i,i),#(i,i,i,o)? and so on. We can ignore the last
 one, because there are only 15 linearly independent results.
 Consider the one-to-one transformation of these 15 events to

 the following: (1,1,1,1), (1,1,1, +), (1,1, +,+),..., where
 + indicates either a 1 or a 0. The new outcomes are ob

 tained by replacing all of the 0's with +. Let Myjxt) de
 note the number of these outcomes. Now if N denotes the to

 tal number of probes for the experiment, then we can write

 E(Mij,kj) as N times the product of appropriate link-level a's;
 for instance, ?(M(M,i,+)) = iVy(i,i,i,+), where y(i,i,i,+) =
 aic^o^c^^c^. Similarlv> ?(^(i,+,+,i)) =#7(i,+,+,D? where
 7(i5+_i_j) = a\a2Ct30t4(xi. The expectations for the other Af's
 can be written similarly as a product of a suitable subset of the
 o^'s. This naturally suggests fitting a log-linear model to the
 estimated probabilities 7(/1,...t/it) =\og(M(ilt,?jk)/N).

 Formally, suppose that we have single-source topology with
 P edges and Af receiver nodes and that we send probes from
 the source to all of the receiver nodes using a multicast scheme.
 Then there are 2M ? 1 outcomes. Let 7 be the 2M ? 1 column

 vector containing the logarithms of the estimated probabilities,
 let R be the (2M ? 1) x P routing binary matrix, let P be a P
 column vector of regression coefficients with Pj = log(ay), and
 let be a column vector of "error" terms with E(eef) = V. We
 then have the (approximate) linear model y = Rp + , similar
 to the formulation in Section 3.1. Now we are also using the
 higher-dimensional outcomes, resulting in a full-rank routing
 matrix R. [Castro et al. (2004a,b) also mentioned a linear model
 in terms of conditional probabilities, but the present formulation
 is more efficient.]
 We can then estimate the parameters in the linear model us

 ing least squares methods. The ordinary least squares estimate
 P is given by

 p0 = (RfR)-lR'y.

 However, the error terms have unequal variances and are cor
 related, so it is more efficient to use generalized least squares.

 The form of V, the variance-covariance matrix of y, can be ob
 tained in terms of the probabilities X(i,i,i,+), y(i,+,+,i), and so
 on, for example,

 vWv \ 7(1,U,+)(1 -7(1,1,1,+)) Var(7(1,u,+)) =-?2
 iV7(i,i,i,+)

 and

 r (v v \ 7(1,1,1,1) -7(U,i,+)7(i,+,+,1) Cov(7(1,M,+), 7(i,+,+,i)) =-?-. ^7(i,i,l,+)7(i,+,+,i)
 A simple, noniterative generalized least squares estimator can
 be obtained as

 )8G = (R/V-1R)-1R/V-1y,

 where V is obtained using the method-of-moments estimates
 of y. However, this simple plug-in estimate of V can perform
 poorly in small samples. A more efficient alternative is the iter
 atively reweighted least squares (IRWLS) estimator

 ig/ = (R/V-1R)-1R/V-1y,

 where V is based on the estimated values of a from the past iter
 ation. Recall that the y 's are products of appropriate subsets of
 the a's. We found the IRWLS estimators to be numerically very
 close to the ML estimators even in relatively small samples.

 Least squares (LS) estimation with multicast experiments
 can be computationally expensive for large networks as the
 number of rows in the routing matrix R increases exponen
 tially with the size of the network. The flexicast experiments
 discussed earlier are more attractive in this case. If we use a

 minimal number of bicasts that satisfy the identifiability condi
 tion discussed in the last section, then the number of rows of the

 entire routing matrix R in a flexicast experiment is linear in the
 size of the receiver set, as opposed to exponential for multicast
 experiments.

 The LS estimation approach extends readily to flexicast
 schemes and multisource topologies. Specifically, for each k
 cast scheme h, write the corresponding loglinear model y7* =
 RhP + h. By stacking together the data and the routing ma
 trices for all of the &-cast schemes in the flexicast experiment,
 we get a combined linear model y = Up + e. Because the dif
 ferent &-cast schemes are independent, the variance-covariance
 matrix of the error term given by

 -V1 0 . 0 "
 v= ? yl . ?

 _0 o . VH.
 Another advantage of these LS-based schemes is that there is
 an explicit expression for the (asymptotic) variance-covariance
 matrix of the estimators, leading to easy construction of stan
 dard errors and hypothesis tests. The LS algorithms also lend
 themselves to easy updating as additional data become avail
 able.
 We now describe some properties of these LS estimators

 (see Michailidis et al. 2007 for more details). The generalized
 least squares (GLS) and IRWLS estimates are consistent, as
 ymptotically normal, and fully efficient, that is, (R'V^R)-1 =
 I~l(P), where I~l(P) denotes the inverse of the Fisher infor
 mation matrix of p. However, in small samples, the GLS esti
 mators do not perform as well as the IRWLS estimators.
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 Figure 8. Relative efficiency of the LS estimators versus IRWLS.

 Figure 8 shows the asymptotic relative efficiencies of the IR
 WLS estimators compared with the LS estimators for selected
 edges for a four-layer tree [see Fig. 7(b)]. The y-axis in Fig
 ure 8 are the relative efficiencies (ratio of asymptotic variances
 of the LS estimators and the IRWLS estimators) for four edges
 (1, 3, 7, and 15) as a function of the probability of successful
 transmission that varies from .75 to .99. The computations were
 done under a multicast scheme and assuming the probabilities
 for all of the edges are the same. We see that the LS estimators
 can be quite inefficient, and so the use of iterative schemes can
 have big payoff.
 One issue that we have not discussed is the large number of

 parameters (loss or delay) to be estimated in a typical network
 and the fact that these parameters vary over time. Thus some
 type of regularization on shrinkage is warranted. This should
 take into account the network topology and other relevant in
 formation. Regularization has been used in network tomogra
 phy, although in a different context. Zhang, Roughan, Lund,
 and Donoho (2003) used a gravity model in the O-D estimation
 problem to get around the estimability issues. (See Liang, Taft,
 and Yu (2006) for a variation of this approach.)

 3.5 Combining RTP Probing With Traceroute Data

 Because VoIP and other real-time applications are sent using
 RTP, an important need is to understand how RTP streams are
 handled by the network. For this purpose, we want the probes
 to be RTP streams or to be able to predict the behavior of RTP
 streams. Moreover, in corporate or large networks, the estima
 bility problems are often severe, and multicast probing gener
 ally is not available. Thus we consider an alternative method
 for estimating the edge parameters based on combining unicast
 end-to-end RTP tests with additional data arising from trace
 route tests. The ideas are also applicable to combining other
 types of testing data. In this section we restrict attention to mean
 delays and focus on roundtrip times; similar discussion holds
 for one-way delays and loss data.
 The idea is that on the one hand, RTP data are available for

 end-to-end pairs but not directly for all edges. On the other
 hand, traceroute data are available for all edges but, for reasons
 discussed in Section 2.2.2, might not reliably mimic the behav
 ior of RTP traffic at all times on all edges. We discuss various

 ways to combine the two sources of information to estimate the

 edge parameters relevant for VoIP.
 To be concrete, consider again the simple two-layer network
 shown in Figure 7(a). Recall that the traceroute involves a se
 quence of probes with roundtrip times to successive routers
 along each path. So for the path (0, 2), we get the traceroute

 data Z, = X'[m + X%m and Z2 = X'{n + X'{n + X* + X?n for
 packets m and n. For path (0, 3), we get Z3 = X[r + XfL and

 Z4 = X[rr + X? + X? + X%r for packets p and r. A similar set
 of data is observed for the other end-to-end pairs (2, 0), (2, 3),

 (3, 0), and (3, 2). Letting E(Xjr) = p}J, we can write a linear
 model for the traceroute delay data as before as z = Rrrx + S.
 The routing matrix is now given by

 /l 0 0 0 0 1\
 110 10 1
 10 0 0 0 1
 10 10 11
 0 10 10 0

 Rtr= 110 10 1 0 10 10 0' K J
 0 11110
 0 0 10 10
 10 10 11
 0 0 10 10
 \0 1111 0/

 This matrix has full rank (=6), so we can estimate all six
 mean delay parameters for traceroute performance, /x-r's, di
 rectly. The parameters must be estimated under the nonnegativ
 ity constraint that /x-r > 0. The constrained least squares algo
 rithm (NNLS) is an option, but it can be time-consuming with
 large networks. The pool-adjacent violators algorithm (Barlow,
 Bartholomew, Bremner, and Brunk 1972) is a faster alternative;

 we denote it as ?pava. This method pools adjacent points that
 violate the monotonicity constraint, averages them, and iterates
 until the sequence is monotonic. This provides an estimate for
 each edge in each traceroute path. If an edge is included in more
 than one path, then we take as the edge estimate the median of

 these values. In a sense, Apava amounts to taking care of the non
 negativity constraint on a path-by-path basis rather than taking
 care of it globally, as does NNLS. We have compared the two
 methods on data collected on the Avaya network (described in
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 Figure 9. Comparing end-to-end traceroute and RTP.

 Sec. 2.2.3) and found them to perform similarly for the most

 part. For computational reasons, we focus on ?pava m the rest
 of this section.

 Our goal is to estimate RTP delays. We investigate the pos

 sibility of using Apava as an estimate for prtp. We also assess
 the relationship between the traceroute and RTP data to com
 bine them. We have roundtrip delay times for all end-to-end
 pairs from both data sources. Figure 9 plots the differences for
 the 1,332 cases with end-to-end pairs grouped according to the
 number of edges between the source and destination. Most of
 the differences are near 0, with 63% within 2 ms, 25% between

 2 and 10 ms, and 12% >10 ms. As expected from engineer
 ing considerations, traceroute is equal to or (in a small but not
 negligible set of cases) larger than the RTP measurement, but
 rarely smaller. The differences are substantial enough so that
 we cannot simply take the traceroute results as valid surrogates
 for RTP delays. We now discuss several heuristic methods that
 use the traceroute data as auxiliary information to estimate RTP
 performance.

 A straightforward approach is to rescale the estimated trace

 route delays ?pava so that the estimated delay summed over all
 of the edges in the end-to-end path matches the RTP delay mea
 sured on the same end-to-end path. When an edge is a member
 of more than one end-to-end path, we first scale on each path
 and then take the median over all of the paths that contain this

 edge. We call this estimator jij^, where "cal" designates "cali
 bration."

 An alternative is a penalization framework that uses the inter

 mediate values Apava t0 estimate the prtp. This can be obtained
 by minimizing

 ||y - R/t"'||2 + XW^P - /t';ava||2, (4)

 where X is a weighting parameter that is specified. The resulting

 estimator, ?p?n> can be obtained using LS. We note in passing
 that regularization methods have been used in network tomog
 raphy in other contexts as well.
 We also can directly minimize

 ||y - Rrtpfirtp\\2 + A||z - RVrpll2, (5)

 which is just a weighted LS, with X representing var(7)/ var(Z).
 Because traceroute delays can be substantially larger than RTP
 delays, it makes sense to take X small or even to consider the
 limit as X ?> 0. In this limiting case, we are estimating all
 estimable linear functions from the RTP data alone while us

 ing the traceroute data solely to disambiguate the degeneracies.
 This approach goes some way toward allowing for the possibil
 ity that the traceroute observations are not estimating the same
 parameters as the RTP data.

 Figure 10 compares the three edge-level estimators Apava>
 /x^q, and jlr^n from (4) with A. = .001. Other small values of
 X would produce nearly identical fits. The scatter diagrams

 show the values of /^rava - p^ against /^ and p$n - p^
 against /x^ for each of the 525 edges. The first two estimates,
 in panel (a), are in fairly close agreement; both have 114 coef
 ficients (22%) that are exactly 0, they differ by at most 40 ms,
 and 99% of them are within 10 ms of one another. These esti

 mators are quite different from the penalized estimator /ipfn> as
 seen in panel (b).

 Figure 11 provides a different comparison of the same three
 estimators. The scatter diagrams display residuals against fitted
 values, and the mean sum of squared residuals are 207, 217,
 and 76. Using the second penalized approach in (5) also leads
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 Figure 10. Comparing /x^J to /x^ava (a) and /Zp<fn (b).

 to a mean sum of squared residuals of 76. The penalized esti
 mators are clearly superior, and using /ipen from (4) involves
 much less computation than using (5).

 An important practical problem not addressed here is com
 puting the estimators in real time in a distributed network en
 vironment. The penalized estimation method seems to provide
 a good balance of accuracy and computational ease, but further
 research is needed.

 A more general formulation for combining the two sources
 is a calibration model. Recall that in the calibration problem,

 we have inexpensive but less reliable measurements from one
 source and expensive, reliable, but limited measurements from
 another. In our case, the traceroute is the less reliable source
 and the RTP test is the more reliable source. We have end-to

 end delay measurements for the 1,332 pairs from both sources
 but only traceroute data for the edges. Thus we can develop a
 calibration model that relates the two data sources from the end

 to-end measurements and use the model to calibrate the edge
 level traceroute data. Using the existing notation, we can write

 If =/df\Rto)
 for / = 1,..., n. The functional form of /( ) captures the re

 lationship between the end-to-end RTP data Y\tp and the end
 to-end traceroute data. This relationship may depend on the

 path pi, for instance, through the number of edges in the path.
 There are many ways to specify and fit/(-). Once this is done
 and the model is fit, the information from traceroute and RTP
 data can be combined to estimate the edge parameters.

 4. MONITORING NETWORK PERFORMANCE:
 DETECTING AND DIAGNOSING CHANGES

 This section considers methods for monitoring network per
 formance, detecting degradation in performance levels, and di
 agnosing where the problems occur. Given the high-level of
 quality, network monitoring often amounts to filtering through
 large amounts of irrelevant data to determine unusual behavior
 that is important.

 4.1 Monitoring Techniques

 Because our primary interest is in end-to-end performance,
 for the purposes of monitoring, we can focus our attention on
 path characteristics. There is an extensive literature on process
 monitoring techniques and changepoint detection methods that
 can be used to monitor end-to-end performance (see, e.g., Bas
 seville and Nikiforov 1993; Stoumbos, Reynolds, Ryan, and

 Woodall 2000). Some preliminary results for monitoring loss
 rates using exponentially weighted moving average (EWMA)
 techniques have been given by Xi et al. (2006).

 A challenge in implementing these techniques to network
 monitoring is that there is usually a large number of paths
 to monitor (e.g., 1,332 end-to-end pairs in the moderate-sized

 Avaya network). Monitoring a large number will result in a high
 rate of false alarms, but if we control the overall false alarm
 rate, then the power of detection will be low. It is important to
 keep the number of paths to be monitored to a reasonable num
 ber (say 20-30) using engineering knowledge about the net
 work topology and other critical business information. There
 are also key questions about the parameters to monitor, such
 as loss rates, mean delays, probability of large delays, or some
 overall measure, such as eMOS.

 In cases where we can estimate the edge-level parameters
 (e.g., using one of the techniques discussed in Sec. 3), we can
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 Figure 12. Root cause analysis.

 also monitor these parameters directly. A statistical comparison
 of the relative efficiencies of monitoring techniques based on
 end-to-end paths versus edge parameters has been done by Yang
 (2006). However, this involves solving the inverse problem at
 each stage, which can be computationally expensive.
 While detecting and diagnosing changes in performance, it

 is important to distinguish between changes that may be sta
 tistically significant and changes that are practically important
 for the network and its applications. For example, there can be
 a substantial change in the mean delay of one edge, but if this
 edge is part of a short path or if the other edges in the path have
 very small delays, then the overall path-level performance can
 still be quite adequate.

 Consider Figure 12, which shows a simple topology with
 three endpoints (A, B, and C) involved in end-to-end communi
 cations that are handled by four routers (a, b, c, and d). Suppose
 that edge-level estimation resulted in the estimates (in millisec
 onds) next to each edge in the figure. Assume that the thresh
 old beyond which end-to-end communication is inadequate is
 200 ms. The edge c-d has the largest latency (180 ms) and
 thus might stand out from an edge-level estimation or monitor
 ing perspective. But it is used only in the B-C communication,
 for which it is adequate. Thus the c-d edge does not constitute
 a problem from this perspective. On the other hand, the A-B
 communication is inadequate, because it has an accumulated
 latency of 210 ms. It is the serial utilization of the a-b-c edges
 that generates the problem. For example, users might experi
 ence a greater impact if the delay on a-b increased from 80 to
 100 ms than if c-d increased from 120 to 180 ms.

 Consequently, monitoring and diagnosing a network's per
 formance must incorporate fundamentally the design and de
 sired behavior of the network and use these factors as a basis for

 any alarms, alerts, or diagnostic statements. For the example of
 Figure 12, it could be argued that the network as designated is
 not capable of meeting the requirement for this application. To
 understand the possible root causes for end-to-end problems,
 we also must incorporate the paths into the analysis directly.

 4.2 Diagnosing Changes: Root-Cause Analysis

 With the foregoing example in mind, we propose the follow
 ing approach for root-cause analysis. Let 7/ be an indicator of
 success and failure for the /th test, where 7/ = 1 means that the

 test fails and 7/ = 0 corresponds to the test being successful.
 This indicator could represent, for example, whether or not the
 delay for the /th test is adequate relative to its own threshold.
 As in Section 3.1, let R be the relevant routing matrix where

 Rij = 1 if thejth edge is involved in the /th test and 0 otherwise

 fory = 1,..., K and K is the total number of edges. (This ap
 proach also can be generalized to incorporate not just topologi
 cal factors such as edges but also other factors, such as software
 version or codec, etc.)

 Let m be the probability that the /th test fails. For they'th edge,

 let pj be the probability that performance on this edge "fails";
 that is, the jth edge performs poorly enough so that the whole
 end-to-end test fails. Furthermore, a test has some probability of
 failing that is not necessarily associated with any specific edge,
 so let p denote this background probability of failure; that is, p
 is the probability that the test fails, although none of the edges
 directly "causes" the failure. Then 7/ ~ Bernouilli(7T/). For the
 end-to-end test to be successful, it must be successful for each
 traversed edge as well as for the background, so that

 (\-m) = (\-p)x W 0-P;).
 {j:Rij=l}

 Estimating the pj's is difficult mostly because of the large
 number of boundary conditions, but a straightforward approach
 appears to work well when there are few failures. We define the

 edge culpation ratio

 cardinality {/ :y; = 1 and Ry = 1}

 3 cardinality{/: yt = 0 and Ry = 1}'

 that is, Ij is the odds ratio of the number of tests crossing edge
 j that failed to the number of tests crossing this edge that suc
 ceeded. We call this approach "culpation." The inculpation set

 is the set of edges for which the culpation ratio Ij is above
 some specified threshold. Such edges are inculpated as those
 that seem to contribute to a high probability of failure for tests
 traversing them. The inculpation set is simple to obtain and re
 quires processing that can be easily distributed across the net
 work. Indeed, the edge memberships in the routing matrix R
 can be determined and stored independently of the test results;
 distributing the culpation estimation process amounts to par
 titioning R into subsets of columns (i.e., edges) that are han
 dled separately. Moreover, the culpation approach also can be
 applied to interactions among edges by expanding the routing
 matrix R and including products between the columns, as with
 analysis of variance. However, one needs to be judicious and
 include only interactions among edges that make some sense
 in the network; otherwise the problem could quickly become
 unmanageable.

 We now illustrate how the inculpation method works using
 the eMOS statistic (see Sec. 2.2.3) as the end-to-end test, in
 corporating delay, loss, and jitter. We take the threshold for test
 failure to be 3.5 or lower, where 4.0 or higher is interpreted
 roughly as "toll quality" voice transmission. Figure 1 shows the
 inculpation set corresponding to the edges {/://> .8} on a gray
 scale as dark and the excluded edges as light. There is only one
 dark edge, involved in some of the test traffic in and out of the
 Dubai site but not all destinations from Dubai. We selected the

 threshold .8 as a value large enough so that the set contains only
 one edge. Decreasing the threshold results in including more
 edges. By varying the threshold and examining how the incul
 pation set changes, we can get an idea of the edges that seem to
 have the most problematic behavior. In this case, lowering the
 threshold adds further edges near Dubai.
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 4.3 Visualization Tools for Monitoring and Diagnosis

 The formal techniques discussed so far are insufficient for
 understanding and diagnosing problems in large, complex net
 works. We have developed and used visualization tools in an it
 erative manner to supplement the formal techniques (Adhikari
 et al. 2006; Adhikari, Denby, Landwehr, and Meloche 2007).
 A static medium such as a journal article obviously constrains
 our ability to illustrate the features of a visualization tool.

 The first challenge is to represent the topology and layout of
 a large network as a graph. We discuss this problem in more
 detail in the next section. Given such a graph, we have found
 animation to be useful in studying changes in performance over
 time. For the topology in Figure 1, we can color edges that ex
 ceed performance thresholds in, say, red and thus indicate the
 changes over time. Such animations will reveal coincidences
 over time and space that otherwise would be difficult to detect.
 One difficulty with this approach is that the network topology
 can change over time as nodes and edges are added and deleted,
 which in turn affects connectivity patterns and other character
 istics that might be shown on the network graph.
 One useful feature is to display additional information

 through mouse-over features. This could include static infor
 mation that is too extensive to display all of the time in the plot.
 Because the topology graph can get very cluttered, we have
 found it better to reserve a separate panel in the plotting region
 to display such information than to display it directly adjacent
 to the item that is moused-over. For nodes, information could
 be such items as IP addresses for a router, its name, product
 type, and so on. For edges, the additional information could be
 a statistic measuring recent performance on that edge, such as
 delay.

 An analysis of edges can hide information about end-to-end
 paths by visually emphasizing edges rather than paths. Thus
 it is important to reintegrate end-to-end path information into
 the visualization. A feature that we have developed for dealing

 with this is to click on two endpoints, after which the display
 highlights (e.g., colors differently) the path (or paths) taken by
 traffic between these two endpoints. The associated numerical
 results and graph coloring also can be restricted to calculations
 using only data from the end-to-end paths between the two end
 points.

 Another feature is a pop-up time series plot that helps with
 all three aspects of drill-down, temporal behavior, and paths.
 Clicking on an edge creates a new plot, such as the one given
 in Figure 13, which shows end-to-end test results for delay for
 tests that traversed this edge over a period of time, regardless
 of the end-to-end paths. In Figure 13, time is shown on the x
 axis with the most recent points on the right, so animating this
 over time gives the appearance of the points scrolling to the
 left. The label for the j-axis is shown on the right, which is
 unconventional but useful here because we typically are most
 interested in reading off numerical values for the most recent
 points. Furthermore, there are check boxes on the bottom that
 indicate all of the end-to-end paths that pertain to these data; by
 checking each box or not, we include or exclude in the plot the
 data points from that path. Sometimes a "banding" feature is
 visible in the plot, whereby the points fall in several separated
 horizontal bands. By checking and unchecking the boxes, inter
 esting behavior can often be associated with specific end-to-end
 paths. Color also can be used to identify characteristics of the
 points, such as whether or not they contributed to triggering an
 alarm for the edge.
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 Figure 13. Pop-up time series for all paths touching the edge.
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 Clearly, there are many other possibilities for visualizing net
 work performance and network data. Developing and imple
 menting visualization tools that are useful to the network engi
 neer or analyst requires careful consideration of many aspects,
 including user preferences and interactions. Some innovative
 visual displays for packet header data have been given by Solka,
 Marchette, and Wallet (2000).

 5. ANALYSIS OF NETWORK TOPOLOGY

 This section briefly describes several research issues associ
 ated with the analysis of network topology.

 5.1 Topology Discovery

 As has been evident throughout the article, knowledge of net
 work topology is essential for assessing and monitoring its per
 formance. However, this information is often difficult to obtain.

 Furthermore, the topology can change frequently as network
 devices go up or come down.

 There are standard engineering methods for obtaining topo
 logical information provided that we have the necessary access.
 The most straightforward is to obtain the routing table of all
 the routers of interest. This information will give the connec
 tivity graph of the network under consideration and can be ob
 tained through using a certain protocol, SNMP. But this is a la
 borious task because of policies that restrict such router queries
 for security reasons. In addition, SNMP access usually receives
 low priority, and thus discovery based on this mechanism can
 take a long time (e.g., hours) for a large network. Furthermore,
 if routing protocols are active in the course of the discovery
 process, this can produce an inconsistent set of routing tables
 from which it will not be possible to recover some of the net
 work paths.

 Another approach is to use the IP record route mechanism,
 which involves setting a single bit in the IP header. Routers that
 process packets with the IP record route bit set will record their
 IP address in the IP header before sending the packet on its
 way to the destination. The IP header can record up to nine IP
 addresses, including the source IP address. However, several is
 sues make IP record route difficult to exploit in practice. First,
 IP record route fails when there are more than eight interven
 ing routers, which is common. Second, many devices routinely
 drop packets that have such special processing bits set. Third,
 and most importantly, many devices handle the IP record route
 packets in an entirely different way than regular packets, often
 sending such packets to a different interface than regular pack
 ets would have been sent. Thus the recorded route may not be

 the one actually used.
 The approach that we used to discover the Avaya network

 topology in Figure 1 was based on traceroute data. We used
 traceroute data sent from all the end-to-end pairs and recon
 structed the topology by merging the underlying spanning trees.

 Given the problems noted with traceroute data, this is a "best
 guess" effort at constructing the topology. (See also Achlioptas,
 Clauset, Kempe, and Moore 2005 and DallAsta et al. 2006 for
 biases in using traceroute data.)

 Methods also have been proposed in the literature for dis
 covering a single-source topology using multicast (or back-to
 back unicast) probe data. Given a source and a set of destina
 tions, the problem is to identify a tree topology that best fits
 the data from among all topologies. We can define a similarity
 measure based on loss rates or delay times (nodes that share
 a longer common path should be more correlated than those
 with small paths), then use a clustering algorithm to group
 the nodes together and determine a topology. Duffield et al.
 (2002) showed that this strategy can completely identify a bi
 nary tree topology. Coates et al. (2002) discussed an alterna
 tive approach based on a random search strategy for locating an
 optimal tree topology. They also proposed a different probing
 method (called sandwich probing) that induces higher correla
 tion and also gets around the clock-synchronization problem.
 Duffield and Lo Presti (2004) presented an alternative method
 ology based on measurements from end-to-end delay covari
 ances. Finally, Castro et al. (2004a,b) discussed how the topol
 ogy discovery problem can be cast as a ML estimation problem
 and provided some additional references.

 The topology discovery problem as formulated herein is
 computationally rather difficult, and there is still no satisfac
 tory solution. It has a similar flavor to identifying phylogenies
 in genetics, for which various clustering algorithms can be use
 ful, although the phylogenic problem has more structure due to
 evolutionary considerations.

 5.2 Representing, Visualizing, and
 Summarizing Networks

 Representing a large, complex network as a graph is a chal
 lenging problem. The graph layout needs to combine some as
 pects of logical and physical reality. Achieving this by manually
 moving points around can be very time-consuming and tedious.
 Automatic layout procedures have received much research at
 tention in the last few years (see Michaildis 2006 for a review).

 The automatic layout problem is defined as follows: Given a
 set of nodes connected by a set of edges, identify the positions
 of the nodes in some space and calculate the curves that con
 nect them. Most graph-drawing techniques use straight lines to
 connect the nodes and Euclidean space, although other choices,
 such as lattices or hyperbolic space, have proven useful in some
 application areas. Most scalable graph drawing algorithms use
 either an embedding model or an adjacency model (Michai
 lidis 2006). In the former approach, path length distances are
 defined between the nodes, which are subsequently approxi
 mated by Euclidean distances derived from low (usually two
 or three-)dimensional configurations. Multidimensional scaling
 and its variations (Buja and Swayne 2002) are examples of this
 approach. In the adjacency model, the emphasis is on placing
 close together in Euclidean space nodes that are connected to
 gether. A popular algorithm uses an eigenvalue decomposition
 of the Laplacian matrix of the underlying graph.
 Whereas automatic layout algorithms are needed to get

 started, our experience is that there is generally detailed en
 gineering, geographic, or network information that can help
 modify the layout and make it more interpretable for the user.
 We have found it beneficial to combine some automatic layout
 to get started with capabilities to manually modify the results.
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 A related problem is that the network can be so large or dense
 such that it all cannot, be displayed conveniently and informa
 tively on the computer screen. Thinking of the virtual display
 as a large canvas features are needed to enable the user to nav
 igate as desired across different regions of the canvas and to
 zoom in or out. A companion topic involves compression tech
 niques to automatically reduce the size of the graph while at the
 same time enhancing semantically relevant information, such
 as the presence of highly connected nodes (hubs) and clusters,
 or preserving the shape of the node degree distribution. Sev
 eral compression schemes that use node-degree or shortest-path
 importance, or node similarity measures, have been discussed
 by Adler and Mitzenmacher (2001) and Gilbert and Levchenko
 (2004).

 As we have noted, changes in network topology over time
 add to the difficulties in representing and visualizing the net
 work. Technical challenges include finding an appropriate data
 representation for dynamically evolving graphs, tracking those
 changes over time, updating its structure, and visualizing its
 evolution. Overviews of some relevant issues have been pro
 vided by Cortes, Pregibon, and Volinsky (2003) and Eppstein,
 Galil, and Italiano (1999).

 6. CONCLUDING REMARKS

 We have provided a review of several interesting statistical
 issues that arise in the context of assessing and monitoring net

 work performance as well as in characterizing the properties of
 networks. Although considerable work has been done in this
 area, mostly in the network community, many interesting and
 challenging statistical problems remain. Because the research
 issues change rapidly with advances in technology, it is impor
 tant that statisticians identify and collaborate with network en
 gineers who are closely tied to the technology and problems.
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