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A B S T R A C T

With a spatial statistical database covering a large region, how to publish differential privacy

protected information is a challenge. In previous works, information was published using

large fixed spatial cells. In this paper, we develop novel flexible methods to publish the spatial

information, which allows the users to freely move around the large region, zoom in and

zoom out at arbitrary locations, and obtain information over spatial areas both large and

small. We develop two methods to publish the spatial information protected under differ-

ential privacy. First the region is divided into the smallest spatial cells, where each cell does

not observe an event happening more than once. Given repeated measurements, such as

multiple day data, the noise added Bernoulli probabilities are computed for all the small-

est spatial cells. For larger spatial cells of high interests to users, the noisy Bernoulli

probabilities are combined into noisy Poisson-Binomial distributions which also satisfy dif-

ferential privacy requirement. We use the New York Taxi data in the experiments to

demonstrate how our methods work. We show that both of our methods are accurate, while

the noisy count probabilities directly obtained from fixed large spatial cells often generate

the spatial counts much smaller than the true values.
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Keywords:

Spatial counts

Differential privacy

Poisson-Binomial distribution

Data generation

Transformation invariance

1. Introduction

We consider a spatial statistical database where the spatial
counts needs to be published under differential privacy pro-
tection. For example, with New York Taxi data (New York City
Taxi Trip Data, 2010–2013), we are interested in the numbers
of taxi pick-ups in different spatial regions/locations. How to
publish the information about spatial counts over a large region
under differential privacy is not as straight forward as publish
differentially private one dimensional counts, where there has
been some well studied work, such as differentially private his-
tograms. Since spatial data normally covers a large region, the

past work (Mir et al., 2013; Wang et al., 2016) used large fixed
spatial cells and published differentially private counts in those
fixed large spatial cells.

In this paper we develop two methods to publish informa-
tion from a spatial database under differential privacy
protection. Our methods do not use a fixed large spatial cell
size as in the previous works. Instead we propose more flex-
ible approach. Just as users can zoom in and zoom out on
Google maps to have a better view of a certain spatial region,
the published information using our approach allows users to
view spatial information over spatial regions both small and
large. Users also can freely move around the map without black-
out spots. On the other hand, using fixed size large spatial cells

* Corresponding author.
E-mail address: xbw@purdue.edu (B. Xi).

https://doi.org/10.1016/j.cose.2017.11.018
0167-4048/© 2017 Elsevier Ltd. All rights reserved.

c om pu t e r s & s e cu r i t y ■ ■ ( 2 0 1 7 ) ■ ■ –■ ■

ARTICLE IN PRESS

Please cite this article in press as: Jun Jiang, Bowei Xi, Murat Kantarcioglu, Spatial counts under differential privacy mechanism on changing spatial scales, Computers &
Security (2017), doi: 10.1016/j.cose.2017.11.018

Available online at www.sciencedirect.com

journal homepage: www.elsevier.com/ locate /cose

ScienceDirect

mailto:xbw@purdue.edu
https://doi.org/10.1016/j.cose.2017.11.018
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/COSE


means users cannot obtain any information for areas smaller
than the pre-determined cell size. An area which is larger than
the fixed cell size, but sits across two or more cells, also becomes
black-out spots where users cannot obtain any information.

We develop two methods to publish the probabilities of spatial
counts,both satisfying ε− differential privacy.For the first method
we divide a large region into very small spatial cells. The size
of the smallest spatial cells needs to be chosen carefully. With
the New York Taxi data, we use 5 meter by 5 meter spatial cells.
In all these small cells, the probability of observing an event
happening more than once is negligible, considered as zero.
Meanwhile the size of these small cells needs to be as large as
possible, so the probability of observing one event is not too
close to zero. This would also reduce the amount of informa-
tion (i.e., the number of Bernoulli probabilities) to be released.
Given repeated measurements (e.g., multiple day data or multi-
hour data), the Bernoulli probabilities of observing an event are
computed with added Laplace noises for all the small cells cov-
ering the region. The noise added Bernoulli probabilities are
then published. In the big data era, storing a large number of
Bernoulli probabilities is not a difficult task.

For a spatial cell covering more than one smallest cell, we
combine the noisy Bernoulli probabilities into a Poisson-
Binomial distribution. Note that the actual numbers of cells
larger than the smallest cells on a map is exceedingly large.
We recommend that the noisy Poisson-Binomial distribu-
tions are computed and stored only for larger spatial cells of
high interests to users. We show the noisy Poisson-Binomial
distributions also satisfy ε− differential privacy. Then through
experiments with the New York Taxi data, we compare our
methods, the Bernoulli method and the Poisson-Binomial
method, with the noisy count probabilities over different spatial
cell sizes and using different ε values. Both our methods are
more accurate than the noisy count probabilities.

The paper is organized as follows. In Section 1.1 we discuss
the related work. Section 2 introduces the differential privacy
mechanism. In Section 3 we discuss the Bernoulli method and
the Poisson-Binomial method. In Section 4 we conduct experi-
ments using the New York Taxi data to compare our methods
with the noisy count probabilities.Section 5 concludes this paper.

1.1. Related work

One approach to release differentially private count distribu-
tion is to publish a differentially private histogram. A histogram
combines the counts into several bins. The number of bins and
the bin size are two important factors for a differentially private
histogram. Dwork et al. (2006) first introduced the concept of
differentially private histogram, and provided a relatively
straight forward approach. Machanavajjhala et al. (2008) con-
sidered differentially private histogram under a Bayesian
framework. They had Dirichlet prior and posterior for the bin
probabilities. They established a constraint for the posterior to
ensure the perturbed histogram satisfies differential privacy
requirement. Wasserman and Zhou (2010) studied several dif-
ferentially private histograms and analyzed their convergence
rate under both L2 distance and Kolmogorov–Smirnov dis-
tance. Blum et al. (2013) proposed to have such bin sizes that
the sum of counts in the bins are nearly the same. Hay et al.
(2010) proposed an approach to reduce the variance of the noise

for the query responses. Xiao et al. (2011) developed a wavelet
method to handle multi-dimensional data with a low noise vari-
ance upper bound. Xu et al. (2013) introduced two algorithms
to improve the accuracy of differentially private histograms.

However histogram is a less accurate method to publish a
count distribution. Directly adding Laplace noise to basic
queries, such as count and mean, appeared early in differen-
tial privacy literature (Dwork, 2008). Earliest work (Dwork et al.,
2006) also considered adding Gaussian noise, Poisson noise to
such query responses. In this paper we compare our methods
with the noisy count probabilities which are published di-
rectly without being grouped into histogram. We show through
experiments that a noisy Poisson-Binomial distribution con-
structed using the noisy Bernoulli probabilities is more accurate
than the noisy count probabilities.

Wang et al. (2016) developed a mechanism to release spatial-
temporal data under differential privacy.They started with large
regions, such as 80 meters by 110 meters for Taxi Trajectory
data.Then the regions with small statistics values were further
grouped together. Instead, our work shows directly publish-
ing statistics of the smallest spatial cells achieves very accurate
results. It is also a much more flexible approach to allow the
viewers to see the responses over spatial regions of any size
and in arbitrary locations. Mir et al. (2013) developed a mecha-
nism to publish differentially private information from cell
phone call detail records.The spatial cells used were 0.01 degree
of longitude by 0.01 degree of latitude or larger, roughly 1100
meters by 800 meters or larger. They generated synthetic data
using their approach and compared with real data. The dif-
ferences were on a scale of 0.17–2.2 miles in distance by using
very large spatial cells.

2. Differential privacy mechanism

Differential privacy mechanism (Dwork, 2008; Dwork and Smith,
2010; Dwork et al., 2006) releases aggregate information from
a statistical database, ensuring an individual participant’s in-
formation cannot be discovered while entering or leaving the
database. A statistical database can be queried in both an in-
teractive setting or an non-interactive setting. The definition
follows a rigorous mathematical framework. Differential privacy
is achieved by injecting noise to the response of a query, while
making the distributions of the responses over two data-
bases differing by one element nearly identical. Either Laplace
mechanism or exponential mechanism can be applied to
achieve ε− differential privacy. Exponential mechanism applies
to the non-numeric queries, while Laplace mechanism applies
to the query functions with numerical value outputs. Accord-
ing to (Dwork, 2008; Dwork and Smith, 2010; Dwork et al., 2006),

ε − differential privacy is defined as follows. Let K be a ran-
domized function, and the difference between two databases
D and D′ is at most one element. If ∀ B ∈ range(K),

Pr K D B
Pr K D B

e
( ) ∈( )

′( ) ∈( )
≤ ε,

then K satisfies ε− differential privacy. Differential privacy has
several useful properties. In particular, it has transformation
invariance (Kifer and Lin, 2010), defined as follows.
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Definition 1. (Transformation Invariance (Kifer and Lin,
2010)). Let K be a differential privacy mechanism, and let A be a ran-
domized algorithm whose input space is the output space of K. If the
randomness of one algorithm is independent of the other, K′ = A o K
also satisfies ε− differential privacy.

A key concept in differential privacy is the sensitivity of a
query function f. f’s sensitivity is defined as the maximum
change in function f value over two databases differing by at
most one element. Hence sensitivity is only related to the func-
tion f itself. Sensitivities of many query functions are well
established. For example, count has sensitivity 1, and mean has
sensitivity 1/N, N being the number of objects in the database.

Laplace mechanism adds a Laplace noise to the output of
a query function f.The noise added response to the query func-
tion f is

f D Lap
sensitivity( ) + ⎛

⎝⎜
⎞
⎠⎟ε

.

ε controls the strength of the privacy guarantee. It is a pre-
determined important parameter. Dwork and Smith (2010)
suggested that ε could be as small as 0.01, 0.1, or in some other
cases, ln(2) and ln(3). Hsu et al. (2014) mentioned ε was chosen
as small as 0.01 (Sarwate et al., 2009), as large as 7
(Machanavajjhala et al., 2011) in the literature. In this paper,
we evaluate our approach using ε values from 0.05 to 4.

3. Materials and methods: spatial counts on
changing spatial scales

When a map of synthetic spatial counts is constructed based
on the responses to the queries to a statistical spatial data-
base, the map needs to allow the map viewers to freely zoom
in and out and view the resulting counts. The map should also
allow the viewers to freely move around the map and view the
counts on different spatial scales. Given the availability of re-
peated measurements, and given the goal of constructing an
interactive map on varying spatial scales, one method to query
the spatial database is first to focus on small spatial cells. In
these small spatial cells, the probabilities of observing an event
happening two or more times are negligible. The queries then
is to seek the Bernoulli probabilities of an event in these small
spatial cells.

With the noise added Bernoulli probabilities, if certain larger
spatial cells are of interest to many map viewers, the noise
added Bernoulli probabilities can be combined into Poisson-
Binomial distributions over larger cells. An alternative is to
directly query and obtain the noise added count probabilities
over certain larger cells. The probabilities can be used to gen-
erate synthetic spatial counts, which are organized into a map
for the viewers. Below we describe our Bernoulli method, our
Poisson-Binomial method, and the noisy count probabilities.

3.1. Bernoulli probabilities for smallest spatial cells

In a spatial database, assume T repeated measurements of
the spatial counts are available, for example, T days of the

spatial data captured and stored. We carefully choose a
smallest spatial cell size Cmin, which is A meters by A meters.
In such smallest spatial cells, the probability of observing an
event happening more than once is negligible (i.e., Pr(happening
more than once) = 0). Meanwhile the size of the smallest
spatial cells need to be large enough, such that probabilities
of observing an event are not too small. Often the scales of
an interactive map is public knowledge, known to both the
regular users and the adversaries. Hence Cmin is also known
to everyone.

Let Cij
min be the (i, j) − th smallest spatial cell on a map. Let

mij(1) be the count of observing an event in the cell, and mij(0)
be the count of not observing an event.

m m Tij ij0 1( ) + ( ) = .

Count has sensitivity 1. Under the Laplace mechanism, a
noise δ ij

min can be directly added to the count mij(1), with

δ ij
min

min

Lap~
1

ε
⎛
⎝⎜

⎞
⎠⎟

. The noise added count for cell Cij
min is

m m Lapij
d

ij
min

1 1
1( ) = ( ) + ⎛

⎝⎜
⎞
⎠⎟ε

.

Equivalently, the probability of observing an event is the
mean of T Bernoulli (0/1) events.

ˆ .p
m

T
ij

ij=
( )1

Mean has sensitivity 1/T. Hence the noise added probabil-
ity of observing an event is

p
m

T
Lap

T

m Lap

T
ij
d ij

min

ij
min=

( )
+ ⎛

⎝⎜
⎞
⎠⎟

=
( ) + ⎛

⎝⎜
⎞
⎠⎟1 1

1
1

ε
ε . (1)

The probability of event not happening in the cell is 1 − pij
d.

The map area is divided into the smallest spatial cells. Queries
can be sent to a spatial database to obtain the above noisy Ber-
noulli probabilities for all these smallest spatial cells. There are
special cases, where an event cannot happen in a particular
cell, we have mij(0) = T. For example, a taxi pick-up cannot
happen inside a building. Then both pij

d = 0 and mij
d 1 0( ) = for

the cell. Obviously the noisy Bernoulli probabilities satisfy ε−
differential privacy.

3.2. Poisson-Binomial distribution for larger spatial cell

For a larger spatial cell, the noisy Bernoulli probabilities of the
smallest cells inside the larger cell can be organized into a dis-
tribution which can be stored and used later.

As an example, consider the case when the smallest spatial
cells Cmin are 5 meters by 5 meters, and a large spatial cell CL

which is 50 meters by 50 meters. CL contains M = 100 small-
est cells Cmin. Let Xi be Bernoulli random variable with probability
of observing an event equal to pi

d (Equation 1), with i = 1, . . .,
M. Let Y be the sum of independent Bernoulli random vari-
ables Xis.
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Y Xi

M

= ∑
1

.

Whether an event happens or not in a smallest spatial
cell follows the distribution of Xi. The distribution of the
number of events observed in the larger cell CL follows the
distribution of Y under differential privacy mechanism. If the
noisy Bernoulli probabilities were constant, p p pd

M
d

1 = = =… , Y
would be a standard binomial random variable. Because the
noisy Bernoulli probabilities are different for different cells,
Y, the sum of independent but not identically distributed
Bernoulli random variables, follows a Poisson-Binomial dis-
tribution (Hong, 2013).

Poisson approximation or normal approximation can be used
to compute the cumulative distribution function (cdf) of the
Poisson-Binomial random variable Y (Hodges and Le Cam, 1960;
Le Cam, 1960). In this paper, we use the exact and closed form
formula for Y derived in Fernndez and Williams (2010) and Hong
(2013). Note Y takes values from 0 to M. Let i = −1 . Let ω = 2π/
(M + 1). Let

γ ωj
d

l
d

l
d

l

M

p p exp j j M= − + × ( )[ ] =
=

∏ 1 0
1

i , , , .…

The cdf of Y is as follows.

Pr Y y
M

exp j y

exp j
j
d

j

M

≤( ) =
+

− − +( )( )[ ]
− −( )=

∑1
1

1 1
10

i
i

ω γ
ω

We implement the fast Fourier transform algorithm devel-
oped in Hong (2013) to compute the cdf of Y for a larger cell.
And subsequently we use the noisy cdf of Y to generate syn-
thetic counts in a larger cell following a noisy Poisson-
Binomial distribution.

Remark. Due to the transformation invariance property (Defi-
nition 1) of differential privacy, the cdf of the Poisson-Binomial
distribution also satisfies ε− differential privacy.

3.3. Count probability for larger spatial cell

Assume a larger cell CL is the size of M smallest spatial cells
Cmin. Assume up to b events is observed in CL in a single mea-
surement. The counts in cell CL add up to T.

m m m b TL L L0 1( ) + ( ) + + ( ) =… .

Count has sensitivity 1. The noise added counts are

m k m k LapL
d

L
L

( ) = ( ) + ⎛
⎝⎜

⎞
⎠⎟

1
ε

. (2)

Consequently the noisy probability of observing an event
k times in cell CL is

p k
m k

m k

m k Lap

m k Lap
L
d L

d

L
db

L
L

L
L

( ) = ( )
( )( ))

=
( ) + ⎛

⎝⎜
⎞
⎠⎟

( ) + ⎛
⎝

∑0

1

1
ε

ε
⎜⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟∑0

b
. (3)

Remark. Due to the transformation invariance property (Defi-
nition 1) of differential privacy, the noisy count probabilities
p kL

d ( ) s also satisfy ε− differential privacy.

Matching Noises on Different Spatial Scales To ensure the
overall noise level in an area stay reasonably constant for dif-
ferent spatial cell sizes, we match the variances of a larger
spatial cell CL with the total variances of the M smallest spatial
cells contained in CL. A Laplace noise has variance 1 2ε . We set

1
2 2ε εL min

M= .

Equivalently we set the εmin for the smallest spatial cells Cmin

as M times the εL of a larger spatial cell.

ε εmin LM= .

4. Results and discussion: New York taxi data

We use two months of 2013 New York Taxi data (Donovan and
Work, 2015), August and September, to compare our methods
and the noisy count probabilities. Taxi data is publicly avail-
able and can be downloaded from (New York City Taxi Trip Data,
2010–2013). New York taxis are equipped with GPS device, which
periodically send the GPS updates. In this dataset, taxi trips
with passengers in the cars are recorded. A record of a taxi trip
has eight variables, 1) pick-up time, accurate up to a second;
2) pick-up longitude; 3) pick-up latitude; 4) drop-off time, also
accurate up to a second; 5) drop-off longitude; 6) drop-off lati-
tude; 7) duration of the trip; 8) distance of the trip.

In this paper we focus on the taxi pick-up events, which
are used to show the heavy traffic area in New York City. In
our experiment, we focus on the area surrounding Grand
Central, a busy area. We first convert the longitude and lati-
tude of a taxi pick-up event to (x, y) coordinates measured in
meters, which facilitates the construction and computation of
spatial cells and the counts of events in spatial cells. We set
the origin at Grand Central. The longitude and latitude of the
origin (0, 0) is (−73.9765, 40.7528). Then we compute the lengths
of one degree of longitude and one degree of latitude mea-
sured in meters at the origin, following the formulas of great-
circle distance (Great-circle distance ; Latitude). Given latitude
ϕ = 40.7528, we have

d cos coslat = − × ⎛
⎝⎜

⎞
⎠⎟ + × ⎛

⎝⎜111132 954 559 822
2

180
1 175

4
180

. . .
φ

π
φ
π

⎞⎞
⎠⎟

d
cos

sin
Lon =

× × ⎛
⎝

⎞
⎠

− ×

π φ
π

φ
π

6378137
180

180 1 0 00669437999014
180

2. ⎛⎛
⎝

⎞
⎠

At Grand Central, one degree of longitude measures
84448.739463 meters, and one degree of latitude measures
111049.137430 meters.

d dlat Lon= =111049 137430 84448 739463. , . .
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Hence a taxi pick-up (x, y) coordinates are computed as
follows.

x pickup lon dLon= +( ) ×. . ,73 9765

y pickup lat dlat= −( ) ×. . .40 7528

4.1. Experiments

We use the August 2013 New York Taxi data to compute the
noisy counts and the noisy Bernoulli probabilities. We create

repeated measurements ourselves. We take the 2pm–4:30pm
period from Monday to Thursday in August, a relatively stable
period of the day, and break the taxi trip records into 5 minute
intervals. Thus we obtain 660 repeated measurements (T = 660)
of the spatial events, i.e., taxi pick-ups. We choose the small-
est spatial cell Cmin as 5 meters by 5 meters. For nearly all the
smallest spatial cell, we observe at most one taxi pick-up in
each 5 minute interval (i.e., one measurement). The size of Cmin

is also large enough so the Bernoulli probability is not too close
to zero. Given a εmin , we then compute the noisy Bernoulli prob-
abilities pij

d (Equation 1) for all the smallest spatial cells
surrounding Grand Central. We assume the time and

Fig. 1 – Comparing synthetic counts from three methods with the real counts in September. εmin = 4 . Spatial cell size 200
meters by 200 meters. Black dotted line is the 45 degree reference line going through the origin. Yellow solid line shows the
counts generated using noisy Bernoulli probabilities. Red dotted line shows the counts generated by noisy Poison-Binomial
distribution. Blue dashed line shows those generated by noisy count probabilities directly computed from the 200m*200m
cells. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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location of a taxi pick-up event needs to be protected when
releasing information from the dataset.

We examine three larger cell sizes, 50 meters by 50 meters,
100 meters by 100 meters, and 200 meters by 200 meters. The
noisy Bernoulli probabilities are combined into Poisson-
Binomial distributions over the larger cells. We also compute
the noisy counts m kL

d ( ) (Equation 2) and the noisy count prob-
abilities p kL

d ( ) (Equation 3) for the larger cells.
We use the September 2013 New York Taxi data as valida-

tion. Again we take the 2pm–4:30pm period from Monday to

Thursday in September, and break the taxi trip records into 5
minute intervals. Hence we obtain 630 repeated measure-
ments in September for validation purpose. Using the noisy
Bernoulli probabilities, Poisson-Binomial distributions, and the
noisy count probabilities, we generate 100 copies of the syn-
thetic counts in the larger cells. The maximum number of
pickup events b in a cell ranges from 10 to 20 for 200 meters
by 200 meters cells. b ranges from 4 to 6 for 100 meters by 100
meters cells. And b is around 1 to 3 for 50 meters by 50 meters
cells. In one larger cell, the synthetic counts by each method

Fig. 2 – Comparing synthetic counts from three methods with the real counts in September. εmin = 4 . Spatial cell size 100
meters by 100 meters. Black dotted line is the 45 degree reference line going through the origin. Yellow solid line shows the
counts generated using noisy Bernoulli probabilities. Red dotted line shows the counts generated by noisy Poison-Binomial
distribution. Blue dashed line shows those generated by noisy count probabilities directly computed from the 100m*100m
cells. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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are ordered, and plotted against the 100 quantiles, (i − 0.5)/
100 with i = 1, . . ., 100, of the 630 repeated measurements.

Figs 1–3 have εmin = 4 for the smallest 5 meter by 5 meter
cells; ε50 0 4= . for 50 meter by 50 meter cells; ε100 0 2= . for 100
meter by 100 meter cells; ε200 0 1= . for 200 meter by 200 meter
cells. Figs 4–6 have εmin = 2 for the smallest 5 meter by 5 meter
cells; ε50 0 2= . for 50 meter by 50 meter cells; ε100 0 1= . for 100
meter by 100 meter cells; ε200 0 05= . for 200 meter by 200 meter
cells. On Figs 1–6, the Y axis stands for the ordered synthetic

counts generated by the three methods. The X axis stands for
the 100 quantiles of the 630 repeated measurements from Sep-
tember. We also have a 45 degree reference line going through
the origin, created by plotting the 100 quantiles against
themselves.

Synthetic counts generated from the noisy Bernoulli prob-
abilities and the noisy Poisson-Binomial distributions are both
more accurate than the noisy counts over different spatial cell
sizes and different ε values. An interesting observation is that

Fig. 3 – Comparing synthetic counts from three methods with the real counts in September. εmin = 4 . Spatial cell size 50
meters by 50 meters. Black dotted line is the 45 degree reference line going through the origin. Yellow solid line shows the
counts generated using noisy Bernoulli probabilities. Red dotted line shows the counts generated by noisy Poison-Binomial
distribution. Blue dashed line shows those generated by noisy count probabilities directly computed from the 50m*50m
cells. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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the synthetic counts generated using the noisy count prob-
abilities are less accurate in smaller cells, but quite close to
the real data in the largest 200 meter by 200 meter cells. Note
the variance of added noise is smaller in smaller cells. Hence
the noisy count probabilities are less accurate under small in-
jected noises. The 2nd plot in the top row of Fig 1 helps to
explain this phenomenon. Cell size is not the most impor-
tant factor for the noisy count probabilities. When the range
of the count query is small, even if it is a large cell, the noisy

count probability approach becomes less accurate. The noisy
count probability approach has better accuracy in busy cells,
with wider range of the count query.

5. Conclusion

In this paper we develop two methods to publish differential
private spatial count probabilities, the Bernoulli method, and

Fig. 4 – Comparing synthetic counts from three methods with the real counts in September. εmin = 2. Spatial cell size 200
meters by 200 meters. Black dotted line is the 45 degree reference line going through the origin. Yellow solid line shows the
counts generated using noisy Bernoulli probabilities. Red dotted line shows the counts generated by noisy Poison-Binomial
distribution. Blue dashed line shows those generated by noisy count probabilities directly computed from the 200m*200m
cells. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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the Poisson-Binomial method. Publishing the noisy Bernoulli
probabilities computed from the smallest spatial cells divid-
ing up a map region is the most flexible scheme, allowing
users to freely move around the map, and to zoom in
and zoom out at arbitrary locations. The noisy Poisson-
Binomial distributions are computed from the noisy Bernoulli
probabilities for larger spatial cells of high interest. Both
methods are more accurate than the noisy count probabili-
ties. In the experiments using New York Taxi data, synthetic

counts generated using both methods match the real data
accurately.
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