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Abstract—In this paper we focus on speckle noise removal.
Previously, variational models have been proposed to remove the
multiplicative speckle noise. In general, the variational models
require a significant amount of run time to converge, and need
to set the proper tuning parameter values to achieve optimal noise
reduction results. In this paper, we present a local polynomial
regression model for speckle noise removal. Our regression model
is fast, does not need to be trained on a set of images, does not rely
on tuning parameters, and is capable of performing fast speckle
noise removal on high resolution images. We have conducted
extensive experiments to evaluate our model performance. Our
polynomial regression filter outperformed popular noise removal
algorithms.

I. INTRODUCTION

Speckle noise is often observed from images produced
by coherent imaging systems, such as radar images, ultra-
sound images, and synthetic aperture radar (SAR) images etc.
Speckle noise produces a grainy texture and seriously degrades
the image quality. Meanwhile it is a challenging task to remove
speckle noise, which is a multiplicative noise. Let U ∈ Rn

+

denote an n-pixel original image, and F ∈ Rn
+ be the observed

image. Speckle noise is modeled as follows:

F = Uη,

where the multiplicative noise η has mean equal to 1 [32], [12].
Speckle noise is often modeled as a Gamma or a Rayleigh
distribution [11], [23], [15], [4], [1]. In this article we focus
on Gamma distribution. Let pn(η) denote the density of the
multiplicative noise.

pn(η) =
AA

Γ(A)
ηA−1e−Aη,

where Γ(·) is the Gamma function and E(η) = 1.
We construct a local polynomial regression filter to remove

the speckle noise. For a pixel, the neighboring pixels within
radius 5, and the corresponding quadratic and cubic terms
are used as predictors in the local polynomial regression
filter. Based on Box-Cox transformation, we use the logarithm
of the pixel values as the response in the regression filter.
Through extensive experiments, we show that our novel local
polynomial regression filter achieves outstanding speckle noise
removal performance. We summarize the contributions of our
approach as follows.

1) Our local polynomial regression filter is a fast approach.
The run time is negligible.

2) Our filter does not require any tuning parameter.
3) Our filter does not need a training set of images.
4) Therefore our filter is capable to perform fast speckle

noise removal on higher resolution images to achieve
the best performance.

This article is organized as follows. In Section I-A we
discuss the related work. Sec II presents our fast regression
approach for speckle noise removal. In Sec III we conduct
extensive experiments to evaluate the performance of our fast
local polynomial regression filter and compare with popular
denoising algorithms.

A. Related Work

1) Denoising Algorithms for Additive Noise: There is a
large literature on removing additive noises, with additive
Gaussian noise receiving the most attention. [5] introduced the
non-local mean denoising algorithm, where the denoised pixel
value is computed by averaging pixels through a Gaussian ker-
nel from neighborhoods with similar structures. Median filter
[17] simply uses the median of the neighborhood of a pixel as
the output, with different options to define a neighborhood.
BM3D filter [9], [8] groups similar neighborhoods, jointly
filters the grouped neighborhoods using a Wiener filter, and the
final output is a weighted average of the local estimates. [7]
applies Wiener filter to patches with similar structure jointly,
and the final output is a weighted average. The patch based
algorithms [7], [13], [14], [16], through minimizing mean
squared error, followed a similar line of reasoning as the least
squares type estimators. In [6] a neural network approach has
been applied to remove additive noise. [20], [22] focused on
additive Poisson noise or additive Gaussian-Poisson noise.

2) Variational Models: A class of variational models, e.g.,
[29], [2], [32], [12], have been proposed to remove multi-
plicative noise. Variational models denoise an image û by
solving a minimization problem, where the target function
is the sum of a data fitting term D(u) and a regularization
term R(u) multiplied by the regularization parameter λ > 0.
Various variational models used different data fitting terms and
different regularization terms, where λ is one of the tuning pa-
rameters. Pre-determined tuning parameters significantly affect
the variational models performance. Numerically solving such
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Fig. 1. Clean 512×512 images from left to right: (a) Lenna; (b) Cameraman; (c) House; (d) Peppers

a minimization problem often suffers from slow convergence
and subsequently large run time. [32] used Douglas-Rachford
splitting technique, which is equivalent in the settings of [32]
to the alternating direction methods of multipliers (ADMM),
to reduce the computation time needed for numerically solving
the problem.

II. LOCAL POLYNOMIAL REGRESSION MODEL

Let F (i, j) be the (i, j)-pixel of the observed image F .
We focus on a ball of radius d with F (i, j) at the center.
F (i ± k, j ± l) with 1 ≤ k, l ≤ d are the neighboring pixels
within radius d from F (i, j), d ≥ 1. Within radius d, there are
4d(d+1) neighboring pixels. We construct a local polynomial
regression model as follows:

f(F (i, j)) = β0 +

d∑
k=1

d∑
l=1

β1,i−k,j−lF (i− k, j − l)

+

d∑
k=1

d∑
l=1

β1,i+k,j+lF (i+ k, j + l)

+

d∑
k=1

d∑
l=1

β2,i−k,j−lF
2(i− k, j − l)

+

d∑
k=1

d∑
l=1

β2,i+k,j+lF
2(i+ k, j + l)

+

d∑
k=1

d∑
l=1

β3,i−k,j−lF
3(i− k, j − l)

+

d∑
k=1

d∑
l=1

β3,i+k,j+lF
3(i+ k, j + l) + ε,

where the β’s are the coefficients or weights to be estimated
by the regression filter.

In our regression model, to obtain a denoised (i, j)-pixel
value, the predictors are based on a pixel’s neighboring pixels
within radius d, a squared neighborhood with the pixel at the
center. We have 4d(d + 1) linear terms, 4d(d + 1) quadratic
terms, and 4d(d + 1) cubic terms of the neighboring pixels
as the predictors. We assume pixels on the edge are reflective
and use of the extension theorem to expand on pixels values
on and outside the boundary in order to maintain the same

number of pixels used in the denoising process.
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Fig. 6. Box-Cox Transformation for Lenna with A = 3

Due to the multiplicative Gamma noise, pixel values F (i, j)
are not normally distributed. Therefore we apply Box-Cox
transformation to obtain the optimal function of F (i, j) as
the response in the regression model. Box-Cox transformation
method examines the error sum of squares (SSE) of Fλ(i, j)
for different λ values. For λ = 0, instead of the power
function, Box-Cox method uses logF (i, j) as the response.
Afterwards, the response function with a λ value that returns
the smallest SSE is the optimal response. Often the response
used in practice has a λ very close to optimal but under a
more convenient transformation.

We run Box-Cox transformation for different Gamma A
values and different images. The optimal λ values are around
0.25. For example, Figure 6 shows Box-Cox transformation
result for Lenna image with A = 3. As a standard practice,
instead of directly using the optimal λs, we take the value
λ = 0 which is close to optimal, and use the convenient
log transformation, f(F (i, j)) = logF (i, j), as the response
in our polynomial regression model. logF (i, j) is used in
Section III.

Through experiments, we discover that a neighborhood of
d = 5 is sufficient to return an optimal denoised results
for various images. Due to space limit, we do not show the
experiments for different d values in this paper. Meanwhile,
we observe a single pass of our regression filter returns good
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Noisy Image (SSIM = 0.16, PSNR = 10.00) Regression Filter (SSIM = 0.64, PSNR = 25.81) Median Filter (SSIM = 0.49, PSNR = 18.05) BM3D Filter (SSIM = 0.63, PSNR = 10.00)

Fig. 2. From left to right: (a) Lenna with speckle noise A = 3; (b) Denoised Lenna using our regression approach; (c) Denoised Lenna using median filter;
(d) Denoised Lenna using BM3D filter

Noisy Image (SSIM = 0.20, PSNR = 12.74) Regression Filter (SSIM = 0.80, PSNR = 27.53) Median Filter (SSIM = 0.65, PSNR = 16.76) BM3D Filter (SSIM = 0.66, PSNR = 8.43)

Fig. 3. From left to right: (a) House with speckle noise A = 9; (b) Denoised house using our regression approach; (c) Denoised house using median filter;
(d) Denoised house using BM3D filter

Noisy Image (SSIM = 0.31, PSNR = 14.43) Regression Filter (SSIM = 0.67, PSNR = 26.33) Median Filter (SSIM = 0.56, PSNR = 15.33) BM3D Filter (SSIM = 0.49, PSNR = 8.59)

Fig. 4. From left to right: (a) Peppers with speckle noise A = 15; (b) Denoised peppers using our regression approach ; (c) Denoised peppers using median
filter; (d) Denoised peppers using BM3D filter

results, while 2-3 passes of our regression filter over the noisy
images further improve the noise removal results.

We assess the performance of denoising filters with two
measures: the peak signal-to-noise ratio (PSNR) [27] and the
structural similarity index (SSIM) [31]. In Figures 2, 3, 4, and
5, we show the images with multiplicative speckle noises for
four different Gamma A values: 3, 9, 15, and 21. We show
the denoised images using our polynomial regression filter,
median filter [17] using the Matlab function, and BM3D filter
[9]. PSNR and SSIM are displayed atop each image. Figure 1
shows the corresponding clean images.

a) Customized λ: We notice the optimal λ value varies
from one image to another due to the inherent structure of
an image. We can write the response in our regression filter
as f(F (i, j), λ), a function of the Box-Cox transformation
parameter λ. Based on our collection of general images, we set
λ = 0 and use logF (i, j) in this article. If a user focuses on
a specific application, such as ultrasound images, the user can
take a sample of images, run Box-Cox transformation, find
the optimal λ, and use another response customized for the
application, with the predictors being the linear, the quadratic,
and the cubic terms of the neighborhood pixels.

The regression filter is successful in removing speckle
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Noisy Image (SSIM = 0.31, PSNR = 17.40) Regression Filter (SSIM = 0.77, PSNR = 28.43) Median Filter (SSIM = 0.61, PSNR = 14.31) BM3D Filter (SSIM = 0.65, PSNR = 8.94)

Fig. 5. From left to right: (a) Cameraman with speckle noise A = 21; (b) Denoised cameraman using our regression approach; (c) Denoised cameraman
using median filter; (d) Denoised cameraman using BM3D filter

noise lies in the facts that we observed a linear association
between the noisy pixel and the neighboring pixels and most
importantly the fact that regression is robust when it comes to
minor violations of the normality assumption.

III. EXPERIMENTS

A. Experiment One

As shown in Figures 2, 3, 4, and 5, we observe that a speckle
noise filter’s performance is affected by the inherent structure
of the image. Hence we compare our polynomial regression
filter with median filter and BM3D filter over 100 images. The
images are downloaded from [10]. For every image, we have
speckle noise for four different Gamma A values, 3, 9, 15,
and 21, run the three filters, and record PSNR and SSIM of
the noisy and the denoised images.

Figure 7 shows the difference in PSNR between the
noisy images and the denoised images (i.e., PSNR of
denoised−PSNR of noisy). Figure 8 shows the difference in
SSIM between the noisy images and the denoised images (i.e.,
SSIM of denoised−SSIM of noisy). For almost all the images
and all the four Gamma A values, our polynomial regression
filter significantly outperformed median filter and BM3D filter.

B. Experiment Two

Using 17 images, [12] measured performance of three vari-
ational models: the NRSNR model [12], the BF model [3], and
the AA model [2]. [12] ran experiments with four Gamma A
values: 3, 9, 15, and 21. We downloaded 12 images following
the web page link in [12]. The original clean images are
512×512. [12] resized the clean images to 256×256, then
multiplied by a Gamma noise, to simplify the parameter tuning
process. Our polynomial regression filter is fast, does not have
tuning parameters, and is capable of perform speckle noise
removal on high resolution images. Hence we conduct two
experiments, one with 12 original 512×512 images, and the
second one with 12 resized clean 256×256 images. Table I
records PSNR of the noisy images and the denoised images
using our regression filters for A = 3, 9, 15, and 21 based on
512×512 clean images. Table II records PSNR of the noisy
images and the denoised images using our regression filters
for the same four A values based on 256×256 clean images.

Noisy Image (SSIM = 0.31, PSNR = 17.40) Regression Filter (SSIM = 0.84, PSNR = 31.70)

Fig. 9. Left: 512×512 Cameraman with speckle noise A = 21; Right:
Denoised cameraman using our regression filter and then resized to 256×256

[12] tabled the PSNR results too. For example, house image
saw (please refer to [12] for other images): A = 3, noisy
image PSNR=9.52, NRSNR model PSNR=23.79, (gain of
14.27) with run time 11.66sec; BF model PSNR=23.20, (gain
of 13.68) with run time 2.71sec; AA model PSNR=22.46,
(gain of 12.94) with run time 14.90sec. A = 9, noisy image
PSNR=14.24, NRSNR model PSNR=26.73, (gain of 12.49)
with run time 17.10sec; BF model PSNR=26.81, (gain of
12.57) with run time 28.78sec; AA model PSNR=25.87, (gain
of 11.63) with run time 7.56sec. A = 15, noisy image
PSNR=16.47, NRSNR model PSNR=28.14, (gain of 11.67)
with run time 20.18sec; BF model PSNR=27.81, (gain of
11.34) with run time 29.68sec; AA model PSNR=27.37, (gain
of 10.90) with run time 5.58sec. A = 21, noisy image
PSNR=17.95, NRSNR model PSNR=29.03, (gain of 11.08)
with run time 21.39sec; BF model PSNR=28.98, (gain of
11.03) with run time 37.63sec; AA model PSNR=28.26, (gain
of 10.31) with run time 4.65sec.

The variational models frequently suffered from large run
time in order to converge, and needed to reduce the image
resolution to simplify parameter tuning process. On the other
hand our polynomial regression filter sees negligible run time
and has no tuning parameter. It performs very well and
frequently outperforms the variational models as shown in
Tables I and II. We also observe that the denoising results
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Fig. 7. Difference in PSNR between the noisy image and the denoised image from left to right: (a) A = 3; (b) A = 9; (c) A = 15; (d) A = 21
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Fig. 8. Difference in SSIM between the noisy image and the denoised image from left to right: (a) A = 3; (b) A = 9; (c) A = 15; (d) A = 21

Image A = 3 A = 9 A = 15 A = 21
Noisy Denoised Gain Noisy Denoised Gain Noisy Denoised Gain Noisy Denoised Gain

Cameraman 10.84 24.99 14.15 15.41 26.77 11.36 17.87 27.79 9.92 17.40 28.44 11.04
House 9.62 27.41 17.79 12.74 27.53 14.79 15.15 27.13 11.98 16.72 29.12 12.4
Jetplane 5.71 18.31 12.6 8.37 24.21 15.84 10.02 25.26 15.24 10.83 25.75 14.92
Lake 8.92 22.39 13.47 11.82 22.10 10.28 13.70 24.18 10.48 14.84 25.11 10.27
Lena 10.00 25.81 15.81 14.61 25.30 10.69 16.59 24.94 8.35 17.94 25.54 7.6
Livingroom 11.82 24.18 12.36 17.16 25.24 8.08 18.73 25.90 7.17 20.48 26.27 5.79
Mandril 9.07 22.04 12.97 12.21 22.85 10.64 13.49 24.14 10.65 17.01 24.72 7.71
Peppers 10.12 24.15 14.03 12.80 25.01 12.21 14.43 26.33 11.90 16.32 25.70 9.38
Pirate 13.30 23.13 9.13 17.50 23.55 6.05 18.72 25.21 6.49 19.15 25.48 6.33
Walkbridge 11.45 21.98 10.53 15.43 22.86 7.43 17.67 22.82 5.15 18.46 23.13 4.67
Blonde 7.05 13.16 6.11 9.85 21.90 12.05 11.96 23.06 11.10 12.81 23.26 10.45
Darkhair 12.74 20.58 7.84 16.03 27.94 11.91 17.00 28.45 11.45 18.03 30.42 12.39

TABLE I
PSNR OF NOISY AND DENOISED IMAGES, AND GAIN IN PSNR, USING OUR REGRESSION FILTER FOR TWELVE 512×512 IMAGES

in general improve significantly on higher resolution images.

b) Resize after denoising a high resolution image: In
another experiment, we first perform speckle noise removal
on 512×512 images using our polynomial regression filter.
Afterwards we resize the denoised images to 256×256, using
the Matlab function imresize(). We obtain our best denoising
results this way. As shown in Figure 9, PSNR increased from
17.40 to 31.70 with a gain of 14.30, and SSIM increased from
0.31 to 0.84 with a gain of 0.53. If only a low resolution image
can be displayed, directly performing speckle noise removal
on the original high resolution noisy image, then resizing the

denoised image to lower resolution is a much better approach.
Therefore a fast filter that is capable of handling very high
resolution image is critical to achieve good performance.

IV. CONCLUSION

In this article we construct a local polynomial regression fil-
ter for speckle noise removal. Through extensive experiments
we demonstrate the outstanding performance of our regression
filter. Our regression filter is fast and handle higher resolution
images with even better performance.
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Image A = 3 A = 9 A = 15 A = 21
Noisy Denoised Gain Noisy Denoised Gain Noisy Denoised Gain Noisy Denoised Gain

Cameraman 12.27 23.20 10.93 16.13 24.89 8.76 17.93 25.82 7.89 18.69 26.54 7.85
House 9.97 24.68 14.71 12.99 26.50 13.51 15.28 26.95 11.67 16.03 28.19 12.16
Jetplane 5.63 20.17 14.54 8.29 21.65 13.36 9.96 23.16 13.20 11.02 24.10 13.08
Lake 10.05 21.72 11.70 13.74 22.85 9.11 15.01 23.91 8.90 15.84 25.08 9.24
Lena 10.70 23.44 12.74 14.94 23.54 8.6 17.48 24.65 7.17 18.69 25.16 6.47
Livingroom 11.72 21.98 10.26 16.93 25.11 8.18 18.51 25.78 7.27 20.12 26.31 6.19
Mandril 8.64 20.16 11.52 12.11 22.24 10.13 14.45 22.75 8.30 14.91 22.95 8.04
Peppers 10.75 22.52 11.77 13.24 24.27 11.03 15.45 25.29 9.84 16.50 25.25 8.75
Pirate 13.58 22.09 8.51 16.59 23.64 7.05 17.45 24.40 6.95 18.39 24.52 6.13
Walkbridge 12.45 22.60 10.15 15.74 23.55 7.81 18.22 24.74 6.52 19.12 25.18 6.06
Blonde 7.60 21.65 14.05 11.14 23.72 12.58 12.00 24.47 12.47 12.96 24.44 11.48
Darkhair 13.95 24.44 10.49 16.37 27.24 10.87 17.56 27.27 9.71 18.41 27.55 9.14

TABLE II
PSNR OF NOISY AND DENOISED IMAGES, AND GAIN IN PSNR, USING OUR REGRESSION FILTER FOR TWELVE 256×256 IMAGES
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