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a b s t r a c t

A multifractal fractional sum–difference model (MFSD) is a monotone transformation of a
Gaussian fractional sum–differencemodel (GFSD). TheGFSD is the sumof two independent
components: a moving sum of length two of discrete fractional Gaussian noise (fGn); and
white noise. Internet traffic packet interarrival times are very well modeled by an MFSD in
which the marginal distribution is Weibull; this is validated by extensive model checking
for 715,665,213 measured arrival times on three Internet links. The simplicity of the
model provides a mathematical tractability that results in a foundation for understanding
the statistical properties of the arrival process. The current foundation is time scaling:
properties of aggregate arrivals in successive equal-length time intervals and how the
properties change with the interval length. This scaling is also the basis for the widely
discussedmultifractalwaveletmodels. TheMFSDprovides amore fundamental foundation
that is based on how changes in the fGn and white noise components result in changes in
the arrival process as various factors change such as the aggregation time length or the
traffic packet rate. Logistic models relate theMFSDmodel parameters to the packet rate, so
only the rate needs to be specified in using the MFSD model to generate synthetic packet
arrivals for network engineering simulation studies.

© 2016 Elsevier B.V. All rights reserved.

1. Background

1.1. Internet technology and network engineering

Internet traffic results from the transfers of information between pairs of computers, or hosts, across the Internet
[1–3]. For simplicity we refer to the information as a ‘‘file’’. The file is broken up into packets with sizes typically up to 1460
bytes = 11680 bits. The packets are sent from the source host over a path consisting of routers connected by transmission
links, and the file is reassembled at the destination host. The two hosts establish a connection to carry out the transfer, which
means each is listening for the arrival of packets from the other. Headers, typically 40 bytes in size, are added to each packet
to manage the file transmission and packet routing. In addition, both hosts can send control packets with no file data, just
headers, as part of the transmission management. This means that packet sizes range from 40 bytes to 1500 bytes. Each
router has input links and output links; when a packet arrives on an input link, the router reads a field in the header to
determine the destination host, and looks in a table to determine the output link over which the packet should be sent to
get to the destination.
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Each transmission link on the Internet at each point in time can be servicingmany ongoing connections. The packet arrival
times for transmission on the link are a superposition of the packet arrival times of the individual ongoing connections.
Interestingly, the term ‘‘superposition’’ is used in statistics, but in network engineering, the term is ‘‘statisticalmultiplexing’’.
We use the latter here to remind us that this area of Internet research is about statistics. If a packet arrives for transmission
and the link is busy transmitting, then the arriving packet is put in a queue. The interface that writes the packet to the link
has a speed in bits/second that determines the service time, the packet size in bits divided by the link speed. The queueing
is a major factor in quality-of-service (QoS) for Internet connections; if queueing delay is too large, QoS degrades [4].

This work addresses a common type of traffic being carried on most Internet links. The traffic consists of a very wide
range of applications such as downloading Web pages, sending email, logging in remotely to a computer, and streaming
video or audio. We name this ‘‘multi-application traffic’’. We shall see from the work here that the statistical multiplexing
homogenizes the traffic once there are enough connections using a link. This is just a beginning of the well known central
limit theorem of point processes: they tend toward Poisson as the number of multiplexed processes increases. The detailed
arrival behavior of individual applications is washed out by this, making statistical modeling possible. As we will see, this
tends to happen at quite low traffic rates. More precisely we want to model the ‘‘offered load’’ on a router. This is traffic that
arrives onto the back-plane of the router from input interface links and is destined for a specific output interface link.

1.2. The need for a validated statistical model for the multiplexed arrival process of the offered load

A statistical model for the offered load can be used to generate traffic for simulations which determine the maximum
traffic load on the link that can achieve quality of service (QoS) standards. Packets from the back-plane going to the link are
held in a queue to await transmission on the link if the link is busy. Traffic, in bits/second, is written to the link at the link
speed, which is also in bits per second. So wait times are in the queue are determined by the relative sizes of the traffic rate
and the link speed. The traffic load is chosen to achieve acceptable queue wait-time distributions.

One might think that this traffic engineering would be easy. Just institute a measurement program that collects arrival
times and packet sizes of each packet in many streams of packets on many routers for different rates and types of traffic.
The problem is that the Internet is not instrumented to do this. Even if it were, the complexity of finding just the right traffic
conditions needed in an experiment would be quite hard, and impossible when the conditions do not yet exist. The most
practical route for network engineering study is to run computer simulations with packet arrival times as inputs to a queue,
and queueing delay as the output.

A simulation for network engineering requires a model for the arrival process. The queueing properties are determined
by the statistical properties of the process [5–8]. We take the arrival process to be the sequence of interarrival times, tu. The
interarrivals have very complex statistical properties when studied directly, which in the past has mademodeling complex.
Three properties account for the complexity—long-range dependence, non-Gaussian behavior, and changing statistical
properties with the packet arrival rate α = 1/E(tu).

It is critical that a model be valid. Validation must be carried out in substantial detail. In addition, to be most useful
for simulation, there needs to be a way to accomplish fast generation of packet arrivals, especially at high packet rates.
Interestingly, while there has been much past work in describing the statistical properties of the arrival process, cited in
coming sections, there is still not a validated model that provides fast generation. The barrier has been the complexity
due to the long-range dependence, nonlinearity, and changing statistics with the arrival rate. This paper contains a very
substantial amount of validation. Not only do we look just at the model itself, but rather we drive properties of the model,
and then check the derivations by comparing with empirical estimation of the properties based on the data.

The long-range dependence was discovered in the 1990s and reported in two pioneering articles [9,10]. Here, we take
long-range dependence tomean that as the frequency f goes to zero, the power spectrum increases like f −2d for 0 < d < 0.5,
which means as the lag k gets large, the autocorrelation function decreases like k2d−1. These statistical properties make the
arrival process ‘‘bursty’’, in the language of network engineering. Compared with Poisson arrivals that have the same arrival
rate, the upper tail of queueing delays is longer, and the average amount of traffic that can be put on the link and maintain
QoS is less [11–15].

One must, however, treat the notion of burstiness with immense care because there is more to the story. Consider the
number of packet arrivals in a fixed interval of time. It has amean and a standard deviation. Consider the ratio of the standard
deviation to the mean, the coefficient of variation. We will see clearly the following properties here. As the traffic rate
increases, the long-range dependence remains, but the coefficient gets smaller and smaller. So the traffic remains ‘‘bursty’’
in the technical sense, but eventually is not salient because the traffic gets smoother and smoother. In the early days after
the discovery of long-range dependence, this smoothing was not appreciated and led to the wrong engineering concepts for
the core of the Internet where traffic rates are high.

As one would expect, the interarrival sequence is non-Gaussian. It is expected because it is a waiting time until an event
occurs and is a positive randomvariable. Sowe can expect the process to be nonlinear (non-Gaussian) since just themarginal
distribution of the process is non-Gaussian.

One other matter must be considered for traffic engineering simulation. The statistical properties of the arrival process
changes with the expected number of ongoing connections. The change is not just a change in α, the rate, but rather a
profound change in themultivariate distributions of any sequence ofm consecutive interarrivals. This is a very general result
for point processes [16]. Traffic on a link has a ‘‘deterministic’’ component. By this we simply mean that the expected value
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of the traffic has diurnal and day-of-the-week patterns. Usually, traffic engineering is carried out by running simulations
adjusting the mean of the generated traffic to match that of the maximum. Service providers must provide satisfactory QoS
at all times.

1.3. Article content

This article investigates the multifractal fractional sum–difference (MFSD) model, developed for tu. The model is simple
and very easy to understand. This arises from the discovery that a monotone nonlinear transformation, zu = T (tu), is a long-
range dependentGaussian process thatwe call a Gaussian fractional sum–difference (GFSD)model. zu is a linear combination
of a long-range dependent process and white noise. Details are in Section 3.

MFSD and GFSD models were first put forward in [17,18]. In Section 15 we discuss what has been added in this paper.
We also compare the MFSD and GFSD models with other models.

The properties of tu – long-range dependent, non-Gaussian, changing statistical properties with the traffic rate α in
packet/second (p/s) – when addressed without benefit of the model, appear immensely complex, requiring complex
summary statistics to characterize their behavior. The MFSD and GFSD models enable deep insight into traffic properties.
In this paper, we recast the model using Hosking’s discrete-time analog [19] of fractional Gaussian noise (fGn). This allows
us to derive for many informative quantities such as autocorrelations, exact or approximate formulas. This gives immense
insights that in the past have only been described empirically. We also carry out a very broad and deep validation of the
models.

One derivation provides a simple and fast mechanism for generation of arrivals for simulation. It is simple because only
the traffic rate needs to be specified. It is fast, not because it is a fast algorithm, but rather an approximate model based
on sums of m consecutive values of tu in non-overlapping blocks. As we have emphasized, simple and fast generation
is very important for network engineering studies. This is illustrated here by describing one simulation study using the
approximation of the MFSD.

2. Past statistical foundations and modeling: self-similarity and fGn

In the earliest papers, packet arrival counts were described as self-similar and fractional Gaussian noise (fGn) was put
forward as a model [20,9,10,21–24]. Using this fGn model, [25] derived a number of statistical properties, and investigated
queueing properties as a part of network engineering study.

fGn is a tractable model and allows mathematical investigations, for example, the above work of [25]. The problem,
however, is that more traffic analysis resulted in subsequent articles showing that fGn is not an adequate model; the arrival
process is not self-similar across, and arrival counts for small interval lengths are non-Gaussian [26–28].

The inadequacy of fGn led to intensive study of time scaling properties and the development of new models based on
scaling. Work focused on m-sums and m-means, defined as follows. For u = 1, 2, . . . , let wu be a time series. For positive
integerm, the m-sum process consists of everymth value of a moving sum of lengthm:

w(m)v =

m
i=1

w(v−1)m+i, v = 1, 2, . . . .

The m-mean process is w̄(m)v = w(m)v /m. In a very large literature, the statistical properties of these m-statistics and how
they change withmwere studied in many ways [27,29–35,26,36–46,28,47–51].

Multifractal wavelet models based on the statistics were developed [32,43,52–54]. In almost all cases,wu was taken to be
arrival counts. In a few cases, thewu were taken to be interarrival sequences [32,52]. The time scaling analyses andmodeling
formed a foundation for intuition about the statistical properties of the arrival time process.

In [55], the computation and communication workloads on the data-centers-on-chip (DCoC) showmultifractal behavior.
However the properties of the inter-event times are different from the network traffic, e.g., the increments are non-
stationary and statistically asymmetric. [55] use fractional calculus and apply statistical physics concepts tomodel the DCoC
workloads.

One widely-used method of scaling analysis is the variance-time plot [9,12,32,45,56]: the log of the sample variance
of w̄(m)v is plotted against log m. Another example is autocorrelation-time analysis in which the standard nonparametric
estimate of the autocorrelation function of them-means is studied as a function of logm [35].

Another method is multifractal moment analysis, a study of the moments of normalized values of w(m)v . This is closely
associated with the multifractal wavelet models in the above citations. The moments of them-sums of packet counts in the
measured traces at smaller time scales exhibit complex behavior, and tend towardmono-scaling at large time scales [29,8,26,
27,57,58]. Multifractal moment analysis studies traffic’s complex scaling properties, in particular traffic’s high variability at
small time scales. The multifractal concept is an enlargement of self-similar processes. Self-similar processes have a certain
uniformity in the moments that make them monofractal. We have a moment-statistic study of the m-sums in Section 7,
which has the details on how the multifractal moment analysis is carried out.

Multifractal wavelet models reproduce the statistical properties of packet arrival times, fixing the shortcoming of fGn.
However, there are drawbacks. The wavelet models are fundamentally nonparametric, based on m-sums, which formally
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means a description involving many parameters. This makes them complex, resulting in a mathematical tractability that
does not readily facilitate derivations to study mathematically the many statistical quantities that provide insight into the
arrival process. In addition, the models do not readily lead to a simple mechanism for synthetic traffic generation at a pre-
specified packet arrival rate α for traffic engineering simulations.

In contrast to this previous work, the simple MFSD model is mathematically tractable, is an excellent fit to the arrival
process at all traffic rates above 1000 packets/second, and leads to a fast traffic generator that needs only the packet rate to
be specified in carrying out simulations for traffic engineering.

2.1. Section contents

The contents of the next sections are the following: Section 3 introduces the MFSD and GFSDmodels. Section 4 describes
the live and multiplexed packet trace segments that were used for validating the models. Section 5 provides validation for
the marginal distribution of the MFSD. Section 6 examines the power spectrum of the GFSD and provides validation for
the GFSD. Section 7 provides validation for the MFSD through the m-sum moment-statistics. Section 8 derives equations
for the parameters λ(α) and θ(α) in terms of α. Section 9 examines the autocorrelation function of the GFSD and provides
validation for the GFSD. Section 10 examines the autocorrelation functions of hu, su and theirm-scaled-sums, and discusses
the near-self-similarity of hu and su. Section 11 conducts a rate–time analysis of variance and autocorrelation for the GFSD.
Section 12 examines the autocorrelation function of the MFSD and shows the second moment properties of the GFSD apply
to theMFSD aswell. Section 13 introduces a fast traffic generationmethod. Section 14 contains a VoIP queueing studywhich
illustrates how the traffic generated using the MFSD model can be used in such studies. Section 15 concludes the paper.

3. GFSD and MFSD models

The GFSD and MFSD models employ the fractional ARIMA (FARIMA) models of Hosking [19]. ARIMA models involve
autoregressive and moving average polynomials in the backward shift operator B. The FARIMA model multiplies the
autoregressive polynomial by (I − B)d for −0.5 < d < 0.5, the fractional exponent. (I − B)d is defined by expanding
in a power series in B. d is restricted to the shown range to make the FARIMA stationary. We restrict the exponent further
to positive values because this enables modeling persistence, autocorrelations that fall off slowly, which is appropriate for
the properties of Internet traffic.

3.1. hu and su

Let hu be fractionally differenced white noise, the Hosking discrete analog of fractional Gaussian noise (fGn),

(I − B)dhu = ϵu.

ϵu is Gaussian white noise with mean 0, and variance σ 2
ϵ . We take

σ 2
ϵ =

(1 − d)Γ 2(1 − d)
2Γ (1 − 2d)

for purposes stated below; the resulting variance of hu is σ 2
h = (1 − d)/2.

Let su be a moving sum of length 2 of hu,

su = hu + hu−1.

su can be written in another form,

(I − B)dsu = ϵu + ϵu−1,

so su is a fractional moving-average process [19]. The above value of σ 2
ϵ makes the variance of su equal to 1.

3.2. zu, the GFSD, and tu, the MFSD

Let nu be Gaussian white noise with variance 1. A Gaussian fractional sum–difference (GFSD) model for a time series zu
has the form

zu =


(1 − θ)su +

√
θnu,

where su and nu are independent processes and 0 ≤ θ ≤ 1. θ is the mixture coefficient of the GFSD. The mean of zu is 0. The
variance is 1 for notational convenience, and does not limit modeling.

A multifractal fractional sum–difference model (MFSD), tu, is a stationary discrete-time series that is a nonlinear strictly
monotone transformation of a GFSD, zu. Let the cdf of tu be T (t). Let Z(z) be the cdf of a Gaussian distribution with mean 0
and variance 1. Then

tu = T−1(Z(zu)),
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Table 1
Information about analyzed packet trace segments.

Factor Auckland 15-min Auckland 1-h

Link speed (megabits/second) 1000 1000
Transmission technology Ethernet Ethernet
Lab timestamp accuracy (µs) 0.030 0.030
Collection duration (days) 2.25 2.25
Collection date March 2008 March 2008
Number live 96 24
Number live-multiplexed 24 0
Max utilization live 5.24% 4.95%
Min packet rate live (p/s) 1193 1268
Max packet rate live (p/s) 7674 7712
Min packet rate live-multiplexed (p/s) 2537 NA
Max packet rate live-multiplexed (p/s) 137884 NA

and
zu = Z−1(T (tu)).

zu is the Gaussian image of tu, and tu is the multifractal image of zu.
Suppose themarginal distribution of tu is aWeibull with shape parameterλ. Let the arrival rate beα = 1/E(tu), measured

in packets/second (p/s). Our parameterization of the Weibull is somewhat different than usual, replacing the usual scale
parameter with the rate α, which is more meaningful for packet interarrivals. The cdf for this parameterization is

T (tu) = W (tu; λ, α) = 1 − e−{αΓ (1+λ−1)tu}λ .

The transformation to the multifractal image is

tu = W−1(Z(zu); λ, α) =
{− log(1 − Z(zu))}1/λ

αΓ (1 + λ−1)
.

tu is a Weibull MFSD.
For a multiplicative MFSD, the Weibull marginal is replaced by the log normal. µ is the mean of log(tu) and τ 2 is its

variance. The cdf is T (tu) = L(tu;µ, τ 2). The transformation to the multifractal image,

tu = L−1(Z(zu);µ, τ 2) = eτ
√
1−θsueτ

√
θnueµ,

has a simple multiplicative form.
It is the Weibull MFSD that is the validated model for tu. Section 5 discusses the observed marginal distribution of

the interarrival process of the Internet traffic data, and the estimates of the Weibull parameter λ. However, for certain
problems the log normal MFSD is used as an approximation because its simpler structure enables closed-form derivations.
The approximation is the log normal whose first two moments match those of the Weibull.

4. Model validation: live packet trace segments

Validation was carried out by analyzing live packet traces for traffic in both directions of 3 Internet links: Auckland,
Leipzig, and Bell. The total number of arrivals is 715,665,213. Bell was the Internet gateway link for a Bell Labs research
location with about 500 users. Leipzig was the gateway link for the University of Leipzig campus. Auckland was a link near
the edge of the University of Auckland network. All collection used Endace cards [59] to provide highly accurate, hardware
timestamps,which is essential to themodeling. The collected data consist of network and transport headers, and timestamps
of packet arrivals, but our analysis used only the packet size field and the timestamp.

The Bell live traces were obtained as a result of one author of this article being a part of the collection operation. The
Leipzig live traces were obtained from the Center for Applied Internet Data Analysis (CAIDA) [60]. The Auckland live traces
were obtained from the Waikato Internet Traffic Storage [61].

In coming sections, in the interest of space, we use just Auckland traces in our visual displays and numeric information.
However, statistical properties andmodeling conclusionswere the same for all links. The Auckland traces available for these
links were broken into trace segments of 15min or 1 hr, and each segment analyzed individually. Not all available segments
were appropriate for analysis for reasons given below. Table 1, discussed inmore detail later in this section, gives information
about the analyzed Auckland segments.

4.1. Stationarity

To accurately study changes in statistical properties with α, we need each trace segment to have a nearly constant
expected rate for the duration of the segment. We insure this, first, by taking segments with small lengths, and second,
by checking each segment for stationarity by visualization of measures of the packet rate such as the number of packets in
10 s intervals. We found that 15 min segments were typically quite close to stationary, and discarded any segments that
showed more than minor nonstationarity in the mean. We also found that certain 1 h traces were close to stationary.
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4.2. Packet rate above 1000 packets/second (p/s)

The MFSD model is not appropriate for packet rates α that are very low. This is associated with a small number of
connections. Each connection has packet arrivals resulting from the TCP protocol thatmanages the communication between
the twohosts of each connection. TCP creates specific patterns in the interarrivals. If there are a small number of connections,
then these patterns dominate the interarrivals. There must be a sufficient amount of statistical multiplexing to ‘‘wash out’’
the patterns. The multiplexing is very powerful. For our data, a rate above 1000 p/s is sufficient, a very low rate indeed. We
found that for rates below 1000 p/s TCP can create peaks in the power spectrum at frequencies of 1/k where k is a small
integer greater than or equal to 2. These peaks are readily seen in estimates of the power spectrum; their frequencies change
across the trace segments, likely due to changes in the Internet application that is dominant. If modeling is needed for very
small rates, then a better, feasible strategy is to use simulations that run TCP, which is feasible when rates are low.

While we do not model segments with rates below 1000 p/s, we do make use of them by making them part of out
numerical multiplexing of different segments that is described below in Section 4.5.

4.3. Modeled arrivals, measured arrivals, and timestamps

However, it is not practical tomeasure the back-plane offered load arrivals for a link on the back-plane itself, asmentioned
in Section 1. Here, we provide more detail.

The data come from operational routers of service providers that are designed and finely tuned to push bits along at very
high speeds. So it is not possible in almost all cases to get permission to run software to measure the back-plane which can
interferewith performance. Instead, passivemonitoring is carried out by putting a device on a link thatmirrors the traffic and
does not interfere with operations except for slight reductions in light intensities that are insignificant. This occurs not just
for this research but all empirical research on Internet traffic. However, as explained next, we can get good approximations
of the offered load.

The MFSD model applies to tu = au − au−1 where the au are the arrival times of the offered load to a back-plane that
is destined for an output interface link as explained in Section 1. However, we cannot measure the back-plane offered load
arrivals for a link at the back-plane because routers are not equipped to do this, so wemeasure on the links the arrivals. The
measured arrival time a′

u is the exit time from the queue for the link, a buffer that holds packets for transmission that arrive
when the link is busy. t ′u = a′

u − a′

u−1 are the measured interarrivals.
If packet u arrives when there is no packet in service, then a′

u = au. If packet u arrives when packet u − 1 is in the queue
or in service, its transmission begins as soon as packet u − 1 has finished, so t ′u is the service time of packet u − 1. Let pu be
the size of packet u (bits), and let ℓ be the speed (bits/second) with which the router writes a packet to the link. Then we
have t ′u = pu−1/ℓ. We refer to the t ′u as a ‘‘back-to-back interarrival’’. It is the smallest possible t ′u when packet u−1 has size
pu−1. The timestamps, ãu, are the a′

u plus measurement error, and the timestamp interarrivals are t̃u = ãu − ãu−1.

4.4. Timestamp accuracy and identifying packets with queueing delay

The accuracy of timestamps is critical to the validity of the MFSD modeling. The prediction of timestamp accuracy from
laboratory tests of the Endace card used for the Auckland trace segments is ±φ where φ = 15 ns. This is excellent if it is
valid. We investigate φ empirically.

Identifying queued packets is also important for the trace segment selection upon which modeling is based. We selected
live trace segments for analysis that have a small percent of delayed packets, less than about 10%, because modeling is for
the tu and not the t ′u. We need trace segments where the t ′u reflect the properties of the tu. These segments are those with
lower packet rates. We determine empirically the percent of queued packets as part of the same method that investigates
accuracy.

For all delayed packets u, we have t ′u = pu−1/ℓ. Measurement errors, however result in timestamps t̃u of these delayed
packets that lie in the interval p/ℓ± 2φ. Furthermore, we expect that the density of the t̃u will have a noticeable drop just
above t ′u + 2φ. This can lead to a revision in the value of φ, and allows identification of packets that experience delay.

An accuracy and delay-identification plot is shown in Fig. 1 for the Auckland live trace segment that has the largest bitrate,
33.5 megabits/second. On the plot, t̃u − pu−1/ℓ is graphed against pu−1/ℓ for u with t̃u less than 100 ns. Because there are
690,239 such u, just a sample of the values are plotted. The horizontal lines above and below 0 are drawn at ±30 ns, the
laboratory values of ±2φ. There is a dense band of points contained within the accuracy limits, and a sharp cutoff in density
above the band. This verifies φ = 15 ns, and packets within the band can be taken as the queued packets.

4.5. Numerical multiplexing

To study the changing statistical properties with the packet arrival rate α, we need trace segments with a wide range
of observed traffic rates, not just the live 15-min and 1-h traces whose rates are kept small to ensure a low percent of
delayed packets. To achieve larger-rate segments, we multiplexed on the computer 15-min live trace segments to produce
numerically-multiplexed 15-min trace segments (as opposed to physically multiplexed). The numerically multiplexed trace
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Fig. 1. Accuracy and delay-identification plot for one live Auckland 15-min trace segment.

Fig. 2. Log base 2 observed packet rates of 144 Auckland trace segments.

segments are actually somewhat more realistic than our raw segments in that the former have interarrivals that are
arbitrarily small as the actual interarrivals at the queue, but the latter have interarrivals with lower bounds varying by
packet size. Table 1 gives information about the Auckland segments, 120 live and 24 numerically-multiplexed. Fig. 2 graphs
the log packet rates of the segments.

4.6. Visual displays of 4 traces

Data visualization played a critical role in the validation process. Thereweremany types of displays and eachwas applied
to each analyzed trace segment. A number of these display types are shown in coming sections for 4 15-min Auckland trace
segments to convey results. The packet rates of the 4 segments range from small to large, and are as close to equally spaced
on a log scale as possible. The 2 with the smallest rates are live segments, and the 2 with the largest rates are numerically-
multiplexed segments. The packet rates in packets/second (p/s) are 1771 = 210.79, 5634 = 212.46, 17 928 = 214.13, and
66 913 = 216.03.

5. MFSD model validation and properties: marginal distribution

5.1. Validation of the marginal distribution

Visualization methods were a critical part of modeling the marginal distribution of the interarrival process tu. Quantile
plotswere used to check howwell standard parametric distributions –Weibull, log-normal, and gamma– fitted the observed
marginal distributions of the trace segments. The segments are well approximated by a marginal Weibull distribution, as
illustrated below.

Let α be the packet arrival rate, the inverse of the mean of tu, and let λ be the shape parameter. Note that rather than
using the usual scale parameter for the Weibull distribution, we are using one that works well for modeling Internet traffic.
For each trace segment, λ and α were estimated by the method of moments. α̂ is the inverse of the sample mean of the tu.
λ̂ is the value for which a Weibull with rate α̂ has a variance equal to the sample variance of the tu.
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Fig. 3. Weibull quantile plots of interarrivals of 4 Auckland trace segments.

The Weibull quantile plot is illustrated in Fig. 3 for the 4 Auckland trace segments described in Section 4.6. For each
segment, the fourth root of the quantiles of the observed tu at frequencies 0.00005 to 0.99995 in steps of 0.0001 are plotted
against the fourth root of the quantiles of a fitted Weibull using the above estimates. Fourth roots are taken because the
resulting transformed distribution is close to symmetric for values of λ̂ in the range of the trace segments. The vertical lines
are drawn at the quantiles with probabilities 0.01, 0.05, 0.25, 0.75, and 0.95, and 0.99. The oblique line has slope 1 and
intercept 0.

If the observed tu are well approximated by aWeibull, then the pattern of the points on the plot follows the oblique line.
In Fig. 3, and for almost all other analyzed trace segments, the Weibull provides an excellent fit, taking sampling variability
and queueing artifacts into account.

There are small departures, atoms in the observed sample distributions of the live segments in the top 2 panels. The
artifacts result from a small fraction of back-to-back measured interarrivals, t̂u, which are not the same as the modeled
interarrivals, tu, because of queueing delay; this is discussed in Section 4. The artifacts are nearly eliminated in the bottom
two panels due to the numerical multiplexing, which tends to break up atoms. The deviations of the empirical distribution
from the Weibull are small enough that the assumption of a Weibull is satisfactory.

5.2. The change in λ with α

Let λ̂k, k = 1, . . . , 144, be the estimate of the shape λ for the kth Auckland trace segment, and let α̂k be the estimate of
the packet arrival rate α. Fig. 4 graphs λ̂k against log2(α̂k)where log2 is log base 2. The smallest values of λ̂k are close to 0.6;
they tend to 1 as log2(α̂k) increases, which means the marginal distribution tends to exponential.

Section 8 presents a derivation of λ as a function of α using the MFSD model. Equations are solved that yield numeric
values, leading to a model λ(α) for the dependence of λ on α. The theoretical model agrees with the empirical pattern in
Fig. 4. This dependence of λ on α is a critical aspect of the statistical properties of the packet arrival process, so we switch
notation from λ to λ(α) in coming sections.
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Fig. 4. λ̂k is plotted against log2(α̂k) for the 144 Auckland trace segments.

6. GFSD model validation and properties: power spectrum

The four time series considered in the GFSD, which are defined in Section 3, are hu, su, nu, and zu. This section presents
formulas for their power spectra, which provides insight into statistical properties. Validation study is also carried out for
the observed zu of each trace segment by comparing nonparametric estimates of the power spectrum with that of a GFSD
model fitted to the zu.

6.1. Formulas and statistical properties

Let −0.5 < d < 0.5 andwu be a FARIMA(p, d, q) series. It is defined as

φ(B)(1 − B)dwu = θ(B)ϵu,

where ϵu is a white noise series with variance σ 2
ϵ , φ(B) = 1 − φ1B − · · · − φpBp, and θ(B) = 1 + θ1B + · · · + θqBq. B is the

backward shift operator, Bwu = wu−1. (1 − B)d is expanded as a power series of B as follows.

(1 − B)d = 1 +

∞
j=1

Γ (j − d)
Γ (j + 1)Γ (−d)

Bj

= 1 − dB −
1
2
d(1 − d)B2

−
1
6
d(1 − d)(2 − d)B3

− · · · .

Let 0 < f ≤ 0.5 denote frequency in units of cycles/interarrival. Power spectrum for a FARIMA(p, d, q) series is

pw(f ) = σ 2
ϵ

θ(ei2π f )θ(e−i2π f )

φ(ei2π f )φ(e−i2π f )
{(1 − ei2π f )(1 − e−i2π f )}−d.

[19] showed the power spectra of hu and su used in our model. In our model, hu is a FARIMA(0, d, 0) series, and σ 2
ϵ =

(1 − d)Γ 2(1 − d)/{2Γ (1 − 2d)}. φ(B) = θ(B) = 1 for hu. It has power spectrum

ph(f ) = σ 2
ϵ {(1 − ei2π f )(1 − e−i2π f )}−d

=
σ 2
ϵ

{2 sin(π f )}2d

=
(1 − d)Γ 2(1 − d)

2Γ (1 − 2d){2 sin(π f )}2d
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Fig. 5. Log power spectra ℓz(f ) for d = 0.31 and 3 values of θ .

su is a FARIMA(0, d, 1) series with φ(B) = 1 and θ(B) = 1 + B. It has power spectrum

ps(f ) = σ 2
ϵ (1 + ei2π f )(1 + e−i2π f ){(1 − ei2π f )(1 − e−i2π f )}−d

= (1 + ei2π f )(1 + e−i2π f )ph(f )
= 4 cos2(π f )ph(f ).

White noise nu has variance 1. Its power spectrum is

pn(f ) = 1.

Since zu =
√
1 − θsu +

√
θnu is the sum of two independent components, it has power spectrum

pz(f ) = (1 − θ)ps(f )+ θ.

ph(f ), ps(f ), and pz(f ) decrease strictly monotonically as f increases, and all go to infinity to order f −2d at the origin,
a signature property of the long-range dependence amply observed empirically in many previous studies. Let ℓz(f ) =

10 log10{pz(f )} where log10 is log base 10. In visual displays of the power spectra, we use this decibel scale because it shows
properties more effectively.

There are an infinite number of ways of decomposing zu into a long-range dependent component plus a white noise
component. The decomposition of the GFSD,

zu =
√
1 − θsu +

√
θnu,

is the one that maximizes the variance of the white noise because ps(0.5) = 0. This means pz(0.5) = θ , which is used below
in the estimation of θ .

Fig. 5 graphs 3 power spectra, ℓz(f ), on the decibel scale. For each of the 3, d = 0.31. The values of θ are different: 0.6
(—), 0.8 ( ), 0.975 ( ). They span the range of the estimates of θ . ℓz(f ) is evaluated at equally-spaced values of f from
2−16 to 1/2. The vertical line on each panel is drawn at frequency f0 = 0.129 cycles/interarrival for reasons we explain next.

For fixed f and d, pz(f ) is linear in θ with derivative 1− ps(f ). Let f0 be the frequency where 1− ps(f0) = 0, which means
pz(f0) and ℓz(f0) do not change with θ . f0 depends only on d, and for d = 0.31, f0 = 0.129 cycles/interarrival, which has a
period of 7.75 interarrivals. This is the value at which the vertical line is drawn in Fig. 5, illustrating the constancy at f0. It is
easy to see that pz(f ) and ℓz(f ) decrease with θ for f > f0, and increase for f < f0; this is also illustrated in Fig. 5.

6.2. Estimation of parameters d and θ

To carry out estimation andmodel checking for the GFSDmodel for each trace segment, the observed tu for each segment
were transformed to observed zu by the function zu = Z−1

{T̂ (tu)}, where T̂ is the empirical cumulative distribution function
of the tu, and Z is the normal cumulative distribution function with mean 0 and variance 1. Let n be the number of tu in the
segment. Let r(u) be the rank of tu. Then zu = Z−1

{(r(u)− 0.5)/n}.
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Fig. 6. Estimates of the GFSD mixture coefficient θ and fractional exponent d for the 144 Auckland traces. θ̂k (left panel) and d̂k (right panel) are plotted
against log2(α̂k), the log base 2 estimates of the packet rates. The horizontal line in the right panel shows the median, 0.31, of the d̂k .

The reason for using the empirical function, rather than a Weibull distribution function fitted to the tu, was to have a
portion of the model checking methods for zu not depend on the validity of the specification of the marginal distribution of
tu. In Section 5, model checking of the marginal of tu does not depend on the validity of the specifications for zu. In a number
of other sections, model checking depends jointly on specifications for the GFSD and the MFSD.

Estimation of the parameters d and θ of the GFSD are based on the periodogram of the observed zu. In addition, the
periodogram and the estimate of the power spectrum using the estimated parameters are a part of our model checking for
validation of the GFSD. To enable subsequent study of the m-means and m-sums with exactly the same observations, we
use just the first 2b observations of each trace segment where b is the greatest integer in log base 2 of the number of zu in
the segment. For the 144 Auckland trace segments, the minimum value of b is 20 and the maximum is 26. The periodogram
is computed at the Fourier frequencies fi = i/2b for i = 1, 2, 3, . . . , 2b−1. These frequencies are divided into 215 non-
overlapping blocks of equal length, so each has 2b−16 values. For j = 1, . . . , 215, let f̄j be the mean of the frequencies in
block j, and let Ī(f̄j) be the mean of the periodogram values in the block. Estimation and model checking proceed with f̄j
and Ī(f̄j).

Our parameter estimation method for each trace segment is designed to be robust to minor departures of the patterns
in the Ī(f̄j) from the general form of the GFSD power spectrum. Some departures can adversely affect the estimation of
d [62]. For example, minor low-frequency trends can remain because the detrending methods described in Section 4 cannot
entirely remove the diurnal variation in the packet rate α.

Because pz(0.5) = θ , the estimate θ̂ of θ is taken to be the mean of the Ī(f̄j) for fj ≥ 0.48. This insures that the
estimated power spectrum fits the pattern of the Ī(f̄j) for the highest frequencies. d is estimated from another frequency
band: 0.01 ≤ f̄j ≤ 0.06. d̂ is the estimate arising from a nonlinear least squares fit of 10 log10(pz(f̄j)) with θ = θ̂ to
10 log10(Ī(f̄j)) for fj in the band. This is a variation of the method of [63] where the frequency band is 0 < f < a for a
small a. The averaging of the periodogram before taking the log in the least-squares fitting falls in the category of an ATS
method [64]; averaging before moving to a log scale results in efficient least-squares estimation.

6.3. The change in θ and d with α

For the 144 Auckland trace segments and k = 1, . . . , 144, let θ̂k be the estimates of the mixture coefficient θ , let d̂k
be the estimates of the fractional exponent d, and let α̂k be the estimates of the packet rate α described in Section 3, the
inverse of the samplemean of the interarrivals. Fig. 6 graphs θ̂k and d̂k against log2(α̂k)where log2 is log base 2. The smallest
values of θ̂k are close to 0.6; they tend to 1 as log2(α̂k) increases, which means that zu tends to white noise. Except for
two large outliers, values of d̂k vary from about 0.28 to 0.35, a narrow range. The median, shown by the horizontal line,
is 0.31. This suggests that d does not change with α so that a fixed d of 0.31 is reasonable in our mathematical study of
traffic statistics based on the MFSD model. In fact, this is in keeping with other reports of values of d estimated in other
ways [65].

Section 8 presents a derivation of θ as a function of α using the MFSD model. Equations are solved that yield numeric
values, leading to a model θ(α) for the dependence of θ on α. The theoretical model agrees with the empirical pattern in
Fig. 6. This dependence of θ on α is a critical aspect of the statistical properties of the packet arrival process, so we switch
to the notation θ(α) in coming sections.
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Fig. 7. 10 log10(Ī(f̄j)) (•) and 10 log10(p̂z(f̄j)) ( ) for 4 trace segments.

6.4. Model validation: properties of the power spectrum

The validity of the GFSD model – its ability to account for the statistical time-series properties of zu – was explored by
studying power spectra, one description of the properties. Other descriptions are studied in later sections.

We study validity by comparing 10 log10(Ī(f̄j)), which is a (noisy) nonparametric estimate of the log power spectrum,
and 10 log10(p̂z(f̄j)) the GFSD model estimate with θ(α) = θ̂k and d = d̂k. Fig. 7 show the results for the 4 Auckland traces
described in Section 4.6. Each panel of the top row graphs 10 log10(Ī(f̄j)) (•) and 10 log10(p̂z(f̄j)) ( ) against f̄j. The bottom
row is similar, except that values are graphed against 10 log10(f̄j). Performance of themodel fits is excellent; their departures
from the nonparametric estimates are minor. This was the case for almost all of the packet trace segments of our validation
study.
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Fig. 8. Moment-statisticm-plot for one Auckland trace.

7. MFSD model validation:m-summoment-statistics

This section addresses the nonlinearity of tu through a moment-statistic study of the m-sum process t(m)v as defined in
Section 2. Normalized estimates of E{(t(m)v )q} are studied as a function of q and m, which is a time scaling study for each q.
This multifractal analysis is a standard in the Internet traffic literature [27,58,32,52,26,42,49,57,8]. For each trace segment
we compared nonparametric moment-statistics of the tu with the theoretical moment-statistics from both the Weibull and
multiplicative MFSDmodels fitted to the tu. This provides an important look at nonlinear properties to aid validation, which
very much justifies the analysis. However, it does not provide the foundational insights that arise from analyses in other
sections.

For each trace segment, we estimated moments using the first n = 2b observations of tu where b is the largest integer in
the log base 2 of the number of interarrivals. This was the same data selection method used in Section 6. Let t. =

n
u=1 tu.

The nonparametric qth sample moment for them-sum is

S(m)q =

2b−r
v=1


t(m)v

t.

q

. (1)

Values ofm were mr = 2r for r = 0, . . . , b − 1, and the moments were q = −10,−5,−2, 2, 5, 10.
The Weibull MFSD tu has 4 parameters. Two are for the Weibull marginal of tu: the shape λ(α) and the packet rate α.

Two are for the associated Gaussian image zu: the fractional exponent d and the mixture coefficient θ(α). The fittedWeibull
MFSD for each trace segment is the MFSD with parameter values equal to the estimates described in Sections 5 and 6: α̂, λ̂,
d̂, and θ̂ . The multiplicative MFSD tu has 4 parameters. Two are for the log normal marginal: the mean µ(α) and variance
τ 2(α) of log(tu). Their estimates µ̂ and τ̂ 2 are the values for which the first and second moments of the log normal match
the two moments of the Weibull with parameters α̂ and λ̂. Two are for the associated Gaussian image zu: d and θ(α). Their
estimates are also those of Section 6: d̂ and θ̂ , which are the same as those for the Weibull MFSD. We proceed with these
estimates as if they were the true values.

We are unable to mathematically derive MFSD moment-statistics for the Weibull and multiplicative MFSD models, so
simulation ‘‘derivations’’ were carried out for each trace segment. Each run for a trace segment consisted of generation of 2b

values of the interarrivals from the fitted model, which is the same number of values used for the nonparametric moment-
statistics. Moment statistics for the run are computed using Eq. (1). Final values, S(m)q , are means across 100 runs.

Fig. 8 is a moment-statistic m-plot for one of the four trace segments described in Section 4, the one with packet rate
α̂ = 214.1 p/s. (The other 3 segments of the section are not shown in the interest of space.) For this trace segment, b = 23.
Each panel plots log2{Ŝ

(mr )
q } against log2{mr} for each value of q for one of three cases: nonparametric, Weibull MFSD, and
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Fig. 9. Moment-statisticm-slopeplot for one Auckland trace.

multiplicative MFSD. Successive values for each q on a panel are connected by line segments. The resulting 6 curves, one per
value of q, increase with q for fixed log2{mr}.

For r = 0, . . . , b − 2, let

κr,r+1(q) =
log2{Ŝ

(mr+1)
q } − log2{Ŝ

(mr )
q }

log2{mr+1} − log2{mr}
= log2{Ŝ

(mr+1)
q } − log2{Ŝ

(mr )
q },

the slopes of the line segments shown in Fig. 8. Fig. 9 is a moment-statistic m-slopeplot. Each panel of the figure plots the
following: κr,r+1(q) against q for the case shown in the upper strip label of the panel and for the [r, r + 1] values shown in
the lower strip label. This is done just for r = 0 to 7. The line on each panel goes through the first two points to help judge
linearity.

The most important aspect of Figs. 8 and 9 is that the patterns for the nonparametric, Weibull MFSD, and multiplicative
MFSD moment-statistics are similar, and agree with patterns of nonparametric moment-statistics seen in previous
publications [30,32,52]. The two MFSD models are consistent with the data for this model checking method.

The nonlinearity of κr,r+1(q) as a function of q shown in the panels of Fig. 9 is an indicator ofmultifractal behavior [32,31].
The patterns are concave for [0, 1] and tend toward linear as [r, r + 1] increases. Patterns for [8, 9] and above, not shown,
are very close to linear.

8. Modeling the changing statistical properties with the packet rate

We have seen in Sections 5 and 6 that λ(α) and θ(α) increase toward 1 with increasing α. The statistical properties of tu
change in a profound way with an increase in the traffic rate α because the expected number of active connections tends to
increase with α. The parameters of theWeibull MFSD – theWeibull shape parameter λ(α) and the Gaussian image mixture
parameter θ(α) – reflect this change. Sections 5 and 6 show that each tends to 1 with α; the fractional exponent d does not
change appreciably with α and is taken to be 0.31. The limit of λ(α) means that the marginal distribution of the Weibull
MFSD tu tends to exponential. The limit of θ(α)means the zu tend to Gaussian white noise. So the tu tend to the interarrivals
of a Poisson process. This is a critical property that has an immense impact on queueing delay, and therefore on the network
engineering.

Using the Weibull MFSD model, we can also study theoretically the change in λ(α) and θ(α) with α. We do this in two
ways. The first is a derivation by simulation in which traffic is generated using the Weibull MFSD model. The second is a
heuristic mathematical derivationwhose detail is described in the Appendix. For both, we fix d = 0.31 and use initial values
λ0 = 0.70 and θ0 = 0.55 at the traffic rate α0 = 210.22 p/s, the smallest rate for the Auckland trace segments. The initial
values were chosen so that the derivations provide the best fit to the estimates λ̂k and θ̂k of Sections 5 and 6 as functions of
the packet rate estimates α̂k.

For the simulation, we generated 2 Weibull MFSD series, each with parameters λ0 and θ0 for the rate α0. The two MFSD
series were then numerically multiplexed, forming a series with rate 211.22 p/s. λ(α) and θ(α) were estimated using the
methods employed in Sections 5 and 6 for the live and numerically multiplexed data, but with d fixed at 0.31. Then two
series were generated at rate 211.22 p/s using the estimated parameters, these two series were multiplexed, and then the
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Fig. 10. Logit transformations of λ(α) (left) and θ(α) (right), derived by simulation ( ) and derived mathematically ( ), are plotted against log2(α).

parameters again estimated. This process continued up to rate 217.22 p/s. The result is 8 values of λ(α) and θ(α) including
the initial values, and 8 associated values of α.

For the mathematical derivation, the process proceeds in a similar way, but with a different multiplexing method. r
Weibull MFSD series with rates α0 and parameters λ0 and θ0 were assumed to bemultiplexed. Then values of λ(α) and θ(α)
for the multiplexed series were derived. The values of r were 2, 3, 4, 5, 7, 10, 14, 20, 28 39, 55, 78, 110, 155. The rates for the
derived parameters range from 210.22 p/s to 217.5 p/s. The result is 15 values of λ(α) and θ(α) including the initial values,
and 15 associated values of α.

Fig. 10 graphs logit transformations of the derived values of the parameters, logit2(λ(α)) = log2{λ(α)/(1 − λ(α))}
and logit2(θ(α)) = log2{θ(α)/(1 − θ(α))}, against log2(α). Each panel shows the simulation derived values ( ) and the
mathematically derived values ( ) for one parameter. For both parameters, the two derivations are very close. This provides
a necessary validation of the mathematically derived values because they use certain assumptions that are not true for
a Weibull MFSD model, but that are believed not to affect the results. The logit transformation results in a nearly linear
dependence on log2(α). The line on each panel is the least squares fit to the simulated values. The equations are

logit2(λ(α)) = −5.36 + 0.63 log2(α)
logit2(θ(α)) = −7.21 + 0.75 log2(α).

The equations on the scales of the parameters are

λ(α) =
2−5.36α0.63

1 + 2−5.36α0.63
. (2)

θ(α) =
2−7.21α0.75

1 + 2−7.21α0.75
. (3)

For arrival process generation for simulation, all parameters are now accounted for. α is specified as part of the simulation,
λ(α) and θ(α) are computed by the above models, and d = 0.31.

Fig. 11 graphs λ̂k and θ̂k against α̂k for the 144 Auckland traces. The curves are an evaluation of Eqs. (2) and (3) plotted
against log2(α). There is substantial statistical variability in λ̂k, θ̂k, and α̂k; the reason is that measured segments must
be short to insure stationarity. The curves do a reasonable job of fitting the patterns of the estimates considering this
variability.

9. GFSD model validation and properties: autocorrelation

The four time series considered in the GFSD, which are defined in Section 3, are hu, su, nu, and zu. This section
presents formulas for their autocorrelations, which sets the stage for Sections 10 and 12, where approximations of the
autocorrelations are derived for both zu and tu that provide important insight about statistical properties.

This section also describes results of the validation study carried out for the observed zu of each trace segment by
comparing the standard nonparametric estimates of the autocorrelation function with that of a GFSDmodel fitted to the zu.
This parallels the analysis of Section 6 that used the power spectrum formodel checking.Mathematically, the autocorrelation
function is equivalent to the power spectrum in that each is a Fourier transform of the other, but both are used for validation
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Fig. 11. λ̂k (upper panel ◦) and θ̂k (lower panel ◦) are plotted against log2(α̂k). Derived equations λ(α) (upper panel ) and θ(α) (lower panel ) are
plotted against log2(α).

since a small consistent departure across lags or frequencies of one can translate to a large departure locally at certain
frequencies or lags of the other.

Autocorrelation ρw(k) (k ≥ 1) of a serieswu is computed from its power spectrum pw(f ) (0 < f ≤ 0.5) as follows.

ρw(k) =

 0.5
0 cos(2π fk)pw(f )df 0.5

0 pw(f )df
.

The autocorrelation function for nu for k ≥ 1 isρn(k) = 0. The 3 other series, which are long-range dependent, have formulas
that are easily derived from their power spectra in Section 6, and from results of [19].

The autocorrelation at lag k ≥ 1 for hu, su and zu, respectively, are

ρh(k) =
Γ (1 − d)
Γ (d)

Γ (k + d)
Γ (k − d + 1)

=

k
i=1

(d + i − 1)
i − d

(4)

ρs(k) = ρh(k)
2(1 − d)k2 − (1 − d)2

k2 − (1 − d)2
(5)

ρz(k) = (1 − θ(α))ρs(k). (6)

ρz(k) > 0 and ρz(k) goes to 0 with k to order k2d−1, a signature property of the long-range dependence amply observed
empirically in many studies.

The validation process for each trace segment begins, as described in Section 6, with a transformation to the observed
Gaussian image zu from the observed multifractal image tu for i = 1, . . . , n. The nonparametric estimate of autocorrelation
at lag k for a segment is

n−1
n−k
u=1

zu+kzu.

The GFSDmodel estimates of the autocorrelations are an evaluation of Eq. (6) with d and θ(α) equal to the estimates d̂k and
θ̂k from Section 6.

Fig. 12 graphs the nonparametric estimates (•) and the fitted GFSD estimates ( ) against
√
k for the 4 Auckland trace

segments described in Section 4. The square-root lag is used because it allows better assessment of the autocorrelations for
small lags. The fitted GFSD estimates provide an excellent fit to the nonparametric estimates. This is the case for almost all
trace segments.

10. GFSD model properties: near-self-similarity of hu and su

The continuous time fGn process, which is the stationary increment of self-similar fBm, has an autocorrelation function
approachingd(2d+1)k2d−1 as k → ∞, a simplemathematical form that allowsmuch insight and tractablemathematics [25].
It has the attractive property that the log of the autocorrelation is linear in the log of the lag. Hosking proposed hu as a
discrete-time analog of continuous-time fGn [19].
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Fig. 12. Nonparametric estimates (•) and GFSDmodel estimates ( ) of autocorrelation are plotted against square root lag for 4 Auckland trace segments.

The two independent components of the GFSD, su and nu, are dependence extremes. One is white noise and the other
is long-range dependent. The properties of nu are easy to understand. The question is how we conceive of the long-range
dependence of su as an aid to our foundational understanding of the properties of zu. How close is su, a moving two-sum of
hu, to self-similar? This depends on how close hu is to self-similar.

Following the notation of Section 2, the m-sums of su and hu are s(m)v and h(m)v . The m-scaled-sums are these m-sums
divided bymd+0.5,

s̃(m)v = m−d−0.5s(m)v ,

h̃(m)v = m−d−0.5h(m)v .

The m-scaled-sums of a self-similar process are identical processes. We study closeness to self-similarity by studying how
close the m-scaled-sums of su and hu are to being identical processes. Since hu and su are Gaussian processes, closeness is
determined by the closeness across values ofm of the autocovariance function of eachm-sum.

Throughout this section we denote the fractional exponent as d. However, as in previous sections, we take d = 0.31
when the values of expressions including d are enumerated to check approximations. Of course this means the results apply
only to d = 0.31, sufficient for our purposes here.

10.1. Approximating the autocorrelation functions of hu and su

A first question is whether the autocorrelation function of hu,

ρh(k) =
Γ (1 − d)
Γ (d)

Γ (k + d)
Γ (k − d + 1)

,

is well approximated by a constant times k2d−1. From Stirling’s formula,

lim
k→∞

Γ (k + d)/Γ (k − d + 1)
k2d−1

= 1,

so we approximate by

ρ̈h(k) =
Γ (1 − d)
Γ (d)

k2d−1.

This is not the only possibility; for example, we could attempt an approximation in which the constant is chosen so that
ρ̈h(1) = ρh(1).

The left panel of Fig. 13 plots log2(ρh(k)) (◦) and log2(ρ̈h(k)) ( ), both with d = 0.31, against log2(k) for k = 1, . . . , 8.
ρ̈h(k) is an excellent approximation for these 8 lags. The largest discrepancy is at k = 1: ρh(1)/ρ̈h(1) = 1.012, which is very
small. For k = 2, . . . , 8, the discrepancy decreases, and continues decreasing for k > 8.
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Fig. 13. Log base 2 autocorrelation with d = 0.31 vs. log base 2 lag. Left: ρh(k) (◦), ρ̈h(k) ( ). Right: ρs(k) (◦), ρ̈s(k) ( ).

For su, the approximation of ρs(k) uses that for ρh(k) and then takes another step. Since su = hu + hu−1,

ρs(k) =
1 − d
2

{ρh(k − 1)+ 2ρh(k)+ ρh(k + 1)}.

The first step approximates by substituting ρ̈h(k) for ρh(k),

(1 − d)Γ (1 − d)
2Γ (d)

{(1 − 1/k)2d−1
+ 2 + (1 + 1/k)2d−1

}k2d−1.

The second approximation simplifies by replacing each of the two terms (1 − 1/k)2d−1 and (1 + 1/k)2d−1 by 1 to get

ρ̈s(k) =
2Γ (2 − d)
Γ (d)

k2d−1
= 2(1 − d)ρ̈h(k).

The approximation is exact in the limit,

lim
k→∞

ρ̈s(k)
ρs(k)

= 1.

In the right panel of Fig. 13, log2(ρs(k)) (◦) and log2(ρ̈s(k)) ( ), again with d = 0.31 are plotted against log2(k) for
k = 1, . . . , 8. For k = 1, . . . , 4, values of ρs(k)/ρ̈s(k) are 1.235, 1.034, 1.014, and 1.007. For k > 4, the differences are
negligible. ρ̈s(k) as an approximation is reasonably close at lag k = 1 and excellent for k ≥ 2.

10.2. Autocovariances of m-sums

This section examines how close the autocovariance functions of s̃(m)v are to one another acrossm, and similarly for h̃(m)v .
We first determine an m beyond which the autocovariance functions are nearly the same. The smaller this value of m, the
closer hu or su is to self-similar. Variances are treated first and then autocovariances at positive lags. The approximations
ρ̈h(k) and ρ̈s(k) are used in formulas for the autocovariances in place of ρh(k) and ρs(k) for two reasons. First, it aids the
assessment of self-similarity. Second, it provides simplification of formulas, both here and in later sections, which aids
mathematical investigations.

10.2.1. Variances
Form ≥ 1, the variance of s̃(m)v is

Vs̃(m)v
=

1
m2d+1


m + 2

m
k=1

(m − k)ρs(k)


. (7)

Replacing ρs(k)with ρ̈s(k) in the right side of this equation, we have

1
m2d+1


m +

4Γ (2 − d)
Γ (d)

m
k=1

(m − k)k2d−1


.
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Fig. 14. Plotted against m for d = 0.31 are Vh̃(m)v
/σ 2

h (◦) and V̈h̃(m)/σ
2
h ( ) in the left panel, and Vs̃(m)v

(◦) and V̈s̃(m)v
( ) in the right panel.

Replacing the summation by an integral in this last expression we get
2Γ (2 − d)

Γ (d + 1)(2d + 1)
+


1 −

2Γ (2 − d)/Γ (d)
d


m−2d

+
4Γ (2 − d)/Γ (d)

2d + 1
m−2d−1.

For d = 0.31, the first term dominates quickly as m increases, so we drop the other two terms, which results in the final
approximation

V̈s̃(m)v
=

2Γ (2 − d)
Γ (d + 1)(2d + 1)

. (8)

Following the same line of reasoning for hu results in an approximation for the variance of h̃(m)v ,

V̈h̃(m)v
=

σ 2
h Γ (1 − d)

Γ (d + 1)(2d + 1)
=

σ 2
h V̈s̃(m)v

2(1 − d)
, (9)

where σ 2
h = (1 − d)/2 is the variance of hu.

The approximations of Vs̃(m)v
and Vh̃(m)v

in Eqs. (8) and (9) are constants for all m, the result for a self-similar process. So
we judge the self-similarity of hu and su by the closeness of the approximations. Fig. 14 graphs both the true (◦) and the
approximate ( ) variances against m for d = 0.31. For h̃(m)v /σh, the true variances are very close to constant. The largest
deviation of the approximation, at m = 1, is 8%; the remaining deviations fall quickly toward 0 as m increases. Thus hu is
very close to satisfying the variance property of self-similarity. For s̃(m)v , the deviation of the approximation is a moderate
25% at m = 1, but falls quickly to 8% at m = 2 and 4% at m = 3. Thus su is very close to satisfying the variance property of
self-similarity form ≥ 2.

The results of Eqs. (8) and (9) are consistent with Theorem 2.2 of [66] on asymptotic behavior, derived using the
power spectrum. The theorem states that if the autocorrelation function of a long-range dependent series with fractional
exponent d converges to ck2d−1 as k gets large, then the m-scaled-sum variance converges to c(d(2d + 1))−1. In our case,
c = 2Γ (2 − d)/Γ (d) for su and c = σ 2

h Γ (1 − d)/Γ (d) for hu.

10.2.2. Autocovariances for lags greater than 0
For k ≥ 1, the autocovariance function of s̃(m)v is

Cs̃(m)v
(k) =

1
m2d+1


m

j=−m

(m − |j|) ρs(km + j)


.

We approximate using an approach similar to that for the variance. ρ̈s(k) approximates ρs(k), and an integral from −m to
m approximates the resulting summation. This results in the final approximation of Cs̃(m)v

(k) for k ≥ 1,

C̈s̃(m)v
(k) =

2Γ (2 − d)
Γ (d)

k2d−1
= ρ̈s(k). (10)

The same line of reasoning is used for approximating Ch̃(m)v
(k),

C̈h̃(m)v
(k) = σ 2

h
Γ (1 − d)
Γ (d)

k2d−1
= σ 2

h ρ̈h(k). (11)
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Fig. 15. Each panel plots true (◦) and approximate ( ) autocovariances against m for the scaled sum shown in the top strip label of the panel (h for hu ,
and s for su) and for the lag shown in the lower strip label.

The approximations of Cs̃(m)v
and Ch̃(m)v

in Eqs. (10) and (11) are constants for allm, the result for a self-similar process. So
we judge the self-similarity of hu and su by the closeness of the approximations. The top row of Fig. 15 graphs Cs̃(m)v

(k) (◦)

and C̈s̃(m)v
(k) ( ) against m for d = 0.31 and 6 values of lag: k = 1, 2, 3, 10, 30, 100. The bottom row does the same for

Ch̃(m)v
(k)/σ 2

h and C̈h̃(m)v
(k)/σ 2

h . For h̃
(m)
v , the approximation is excellent for all values ofm and k shown, becomesmore accurate

as either m or k increase. The same is true of s̃(m)v for k ≥ 2; for k = 1 the approximation deviates somewhat form ≤ 5.

10.3. Near-self-similarity of hu and su

The above results show hu is very close to self-similar for d = 0.31. The term ‘‘discrete fGn’’ is certainly appropriate.
su is not as close to self-similar, but is not far off; this would be expected since su is a moving 2-sum of hu. However, su is
certainly close enough to self-similar to allow it be thought of as such for the purpose of foundational, intuitive reasoning
for the Gaussian image, zu. zu is a mixture of a near-self-similar series and a white noise series where themixture parameter
θ(α) increases toward 1 as α → ∞. As we will see in later sections, we can also apply this intuition for the second moment
properties of the multifractal image tu.

11. GFSD model properties: rate–time analysis of variance and autocorrelation

This section treats the variances of them-statistics of zu, and how they change with increasingm, which is time scaling.
An m-statistic study is a time scaling analysis that has been widely used as a basis for understanding traffic statistical

properties. The variance time plot is one of most used methods of such study. It consists of a display of the logm-mean vari-
ance against logm [10,9,67,32,56,44,45,68,69]. The common pattern of the log variance with increasing logm is decreasing,
convex, and a slope tending to 2d − 1.

Time scaling analysis is at its base, a frequency domain concept. Them-mean is a digital low-pass filter whose pass-band
becomesmore concentrated near zero asm increases. However, analyses have stayed in the time domain through a study of
the variances and autocorrelation properties. This classical study has been almost exclusively empirical using nonparametric
estimates of autocovariances, and with little guidance from theory. In this section, with the benefit of the structure of the
GFSDmodel for zu, we addmuch insight into the statistical properties ofm-statistics. Themodel providesmore fundamental
drivers of the properties.

11.1. Variance

11.1.1. GFSD model validation
We use a variance time plot for validation of the GFSD model as done using the power spectrum in Section 6 and the

autocorrelation function in Section 9. This follows the same initial procedures as in Section 6. The first 2b values of the n
observations of tu are analyzed,where b is the greatest integer in log2(n), and log2 is log base 2. The 2b values are transformed
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Fig. 16. Four variance rate–time plots for 4 Auckland trace segments. The logmodel variance, log2 Vz̄(m)v
( ), and the log nonparametric variance, log2 V̂z̄(m)v

(•), are graphed against log2 m.

to observed zu using the empirical cumulative distribution function of the selected tu. The values ofm are taken to bemr = 2r

for r = 0, . . . , b − 5.
The classical nonparametric estimate of the variance for the variance time plot for eachmr is the sample variance, V̂z̄(mr )

v
,

of the values of z̄(mr )
v , v = 1, . . . , 2b/mr . Fig. 16 is a variance rate–time plot that compares the nonparametric and model

values. On each panel, log2{Vz̄(mr )
v

} ( ) and log2{V̂z̄(mr )
v

} (•) are plotted against log2(mr) for each one of the 4 Auckland trace
segments described in Section 4. The packet rates of the segments are shown in the strip labels at the tops of the panels. The
model variances are very close to the nonparametric variances for the 4 segments, as they are for almost all trace segments,
providing another validation of the GFSD modeling of zu.

11.1.2. Time and rate scaling analysis of variance
The driver of the effects of m and α on Vz̄(m)v

is the changing relative contributions of the independent Gaussian

components of zu,
√
θnu and

√
1 − θsu, to Vz̄(m)v

as m and α change. The two components are dependence extremes, white
noise and near-self-similar, respectively.

z̄(m)v =


(1 − θ(α))s̄(m)v +


θ(α)n̄(m)v ,

Vz̄(m)v
= (1 − θ(α))Vs̄(m)v

+ θ(α)Vn̄(m)v

= (1 − θ(α))Vs̄(m)v
+ θ(α)m−1. (12)

We see thatm and α influence the variance by changing the relative importance of the first and second terms. Fig. 16 is close
to the classic plottingmethod. It becomes a rate–time plot simply because four traces are displayedwith different rates. This
was fine for validation purposes. While we can see certain properties as α and m change, other alterations in methodology
increase substantially the effectiveness of the analysis.

The formof the GFSDmakes clear that it is not sufficient to study just time scaling in isolation. Time scaling and the packet
rate, α, interact. So we replace the classical method with a time–rate analysis method, taking bothm and α into account. In
addition, we change the classical m-statistic, the m-mean, replacing it by the m-scaled-sum, z̃(m)v = m−d−0.5z(m)v , which is
used in Section 10. This change, while it might seem minor, has a very big impact on the effectiveness of visual assessment
of the patterns on the time–rate visual display because a self-similar process now has constant variance and autocorrelation
acrossm for fixed rate α.

The m-scaled-sums of zu, su, and nu are related by

z̃(m)v =


(1 − θ(α))s̃(m)v +


θ(α)ñ(m)v ,

so their variances are related by

Vz̃(m)v
= (1 − θ(α))Vs̃(m)v

+ θ(α)Vñ(m)v
= (1 − θ(α))Vs̃(m)v

+ θ(α)m−1.

The effects of m and α are determined by the changing relative contributions of θ(α)m−1 and (1 − θ(α))Vs̃(m)v
to Vz̃(m)v

. In
other words, the simple structure of the GFSD leads to a straightforward assessment.

We approximate Vz̃(m)v
using the approximation of Vs̃(m)v

given in Eq. (8), which results in

V̈z̃(m)v
= (1 − θ(α))

2Γ (2 − d)
(2d + 1)Γ (d + 1)

+ θ(α)m−2d. (13)
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Fig. 17. Variance rate–time plot for 3 values of log2(α). The exact Vz̃(m)v
(•) and the approximate V̈z̃(m)v

( ) are plotted against r .

For d = 0.31, the estimate of d described in Section 8, Eq. (13) becomes

V̈z̃(m)v
= 1.25(1 − θ(α))+ θ(α)m−0.62. (14)

We do not, as in the classical approach, take the log of V̈z̃(m)v
since it would make the simple additive structure non-additive

and thus harder to assess. Instead, assessment is aided by lettingm = 2r and studying the variance as a function of r and α.
Overall, the accuracy of the approximation is excellent. For m = 1, Vz̃(m)v

= 1, but V̈z̃(m)v
= 1 + 0.25(1 − θ(α)). At

θ(α) = 0.6, close to the smallest value observed in the data, the error is 0.1, off by only 10%; as θ(α) goes to 1 from 0.6, the
error decreases to 0. As r increases, the error for fixed θ(α) monotonically decreases with r . The approximation is, in fact,
the asymptotic value

lim
m→∞

Vz̃(m)v

V̈z̃(m)v

= 1.

The high accuracy is illustrated in Fig. 17. Vz̃(m)v
(•) and V̈z̃(m)v

( ) are plotted against 16 values of r from 0 to 15 for 3 values
of log2(α): 10.5, 13.5, and 16.5 log2(packets/second). 10.5 and 16.5 are close to the minimum and maximum log rates of
the Auckland trace segments. The horizontal lines show the asymptotic values. The accuracy is certainly good enough to use
V̈z̃(m)v

for study of general properties of time and rate scaling.
So far, the discussion has shown the rate effect through θ(α), which increases to 1 with increasing α. However, Section 8

derives a logistic model for θ(α). We substitute the expression for θ(α), Eq. (3), into Eq. (14) to relate V̈z̃(m)v
directly to α. We

could study the relative contributions of the two additive terms in Eq. (14) through the ratio of the second term to the sum,
which is the fraction of variance due to the white noise component. Instead, because of the logistic model for θ(α), we study
the ‘‘log odds’’,

ζ (α,m) = log2


θ(α)m−0.62

1.25(1 − θ(α))


.

Substituting for θ(α) yields a very simple equation,

ζ (α,m) = −7.53 + 0.75 log2(α)− 0.62 log2(m). (15)

Eq. (15) gives much insight into the time–rate scaling of zu. If log2(α) increases by 1 for fixedm, which means the packet
rate doubles, then ζ (α,m) increases by 0.75 and the variance ratio by a factor of 20.75

= 1.68. For a given m = m0, let
m′

0 > m0 be the value of m that makes up for the increase in the variance of the white noise term and brings the ratio
back to the original value, that is ζ (α,m′

0) = ζ (2α,m0). This achieved by m′

0 = 2.31m0, which means a time scale
increase must ‘‘over-compensate’’ to equalize the effect of rate scale increase. This is a different instance of the concept
of ‘‘multiplexing gains’’ from rate increase discussed in the literature [70,11,12,71,17,44], but just qualitatively, without the
form and quantification of Eq. (15).

Eq. (15) also shows quantitatively the progression of z̃(m)v to white noise as α increases for any fixed value of m, and the
progression of z̃(m)v to near-self-similar asm increases for any fixed value of α. This is illustrated in Fig. 18. ζ (α,m) is plotted
against log2(m) for each of four values of log2(α): 10.5, 13.5, 16.5, and 19.5 log base 2 p/s. The points for each value of log2(α)
lie on a line; the intercepts of the lines increase with log2(α). The lowest rate is close to the value of 1000 p/s below which
the MFSD model is not valid, as discussed in Section 1. To help the interpretation of the quantitative information on the
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Fig. 18. ζ (α,m) is plotted against log2(m) for each of four values of log2(α): 10.5, 13.5, 16.5, and 19.5 log base 2 p/s. The points for each value of log2(α) lie
on a line; the intercepts of the lines increase with log2(α). The horizontal dashed lines show values of ζ (α,m) for which the percentages of the variances
of the white noise term are, from top to bottom, 99%, 95%, 5%, and 1%.

display, the horizontal dashed lines show values of ζ (α,m) for which the percentages of the variances of the white noise
term are, from top to bottom, 99%, 95%, 5%, and 1%.

For log2(m) = 0 and log2(α) = 19.5,
√
θ(α)ñ(0)v =

√
θ(α)nv accounts for a little more than 99% of the variance of

z̃(0)v = zv , so zv is very close to white noise. It takes an m of 222 to get to a point where
√
(1 − θ(α))s̃(m)v is about 99% of the

variance of z̃(m)v , making z̃(m)v very close to self-similar. By contrast, for log2(m) = 0 and log2(α) = 10.5,
√
θ(α)nv accounts

for just 56% of the variance of zv . In this case, an m of only 211 is sufficient to get to a point where
√
(1 − θ(α))s̃(m)v is about

99% of the variance of z̃(m)v , because the initial zu is closer to self-similar than when the rate α is larger.

11.2. Autocorrelation

In the past, little time scaling analysis of autocorrelation has been carried out directly, compared with that for variance.
In one instance, a very informative work, [35] observed empirically that the autocorrelations of m-means of arrival counts
in fixed intervals increase with increasingm. Next we carry out rate–time analysis of the autocorrelation function, ρz̃(m)v

(k).
The analysis proceeds in a manner very similar to that of the above analysis of the variance, so we proceed quickly to the
approximate formulas that provide the insight.

First,

ρz̃(m)v
(k) =

Cz̃(m)v
(k)

Vz̃(m)v

=

(1 − θ(α))Cs̃(m)v
(k)

Vz̃(m)v

.

Using approximations in Eqs. (10) and (13) leads to the ρz̃(m)v
(k) approximation

ρ̈z̃(m)v
(k) =

(1 − θ(α))2Γ (2 − d)/Γ (d)
θ(α)m−2d + (1 − θ(α))2Γ (2 − d)/[Γ (d + 1)(2d + 1)]

k2d−1. (16)

Taking d = 0.31, the overall estimate of d from our trace segments, and using Eqs. (14) and (15), results in

ρ̈z̃(m)v
(k) =

0.50
1 + 2ζ (α,m)

k2d−1
=

0.50
1 + 2−7.53+0.75 log2(α)−0.62 log2(m)

k2d−1. (17)

Eq. (17) shows the driver for the rate and time properties, and our understanding of them, is ζ (α,m). This makes
conclusions for the autocorrelations remarkably similar to those for the variance. The equation shows quantitatively the
progression of ρz̃(m)v

(k) to the zero autocorrelations of white noise as the rate α increases for any fixed value of m, and the
progression to the near-self-similar autocorrelations 0.5k2d−1 asm increases for any fixed value of α. Note that form, this is
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Fig. 19. Nonparametric estimates of autocorrelation (•) and estimates from fitted multiplicative MFSD models ( ).

in agreement with the above results of [35]. As with the variance, the greater the value of α, the greatermmust be to bring
the autocorrelation function close to that of near-self-similar. In addition, the increase inmmust ‘‘overcompensate’’, a part
of the concept of multiplexing gains.

12. MFSD autocorrelation

In previous sections we have studied extensively the properties of zu, the Gaussian image of tu, as a prelude to
understanding tu. In this and coming sections we address the MFSD model for tu. In doing this, however, we use the
multiplicative MFSD in place of the Weibull MFSD. The increased tractability leads to important results, and our validation
process shows the approximation is excellent.

The log normal parameters are the mean and variance, µ(α) and τ 2(α), of log(tu), the notation reflecting the fact that
the mean and variance change with α. The chosen log normal is that whose first two moments match those of the Weibull.
The resulting values are

τ 2(α) = log(Γ (1 + 2/λ(α)))− 2 log(Γ (1 + 1/λ(α))) (18)

µ(α) = −τ 2(α)/2 − log(α) (19)

σ 2
t (α) =

Γ


1 +

2
λ(α)


α2Γ 2


1 +

1
λ(α)

 −
1
α2
. (20)

As α → ∞, λ(α) → 1, so µ(α) → −∞ and τ 2(α) → log(2) = 0.693. The minimum value of λ(α) observed in our data is
about 0.6 for which τ 2(α) = log(4.09) = 1.41. τ(α)2 decreases monotonically as α increases.

In this section we consider the autocorrelation function of tu and its approximation. Because tutu−k is also log normal,
L(2µ(α), 2τ(α)2(1 + ρz(k))), the autocorrelations have a simple formula

ρt(k) =
eτ

2(α)ρz (k) − 1

eτ2(α) − 1
. (21)

There is also strong empirical validation. The log normalMFSD ρt(k)with d = 0.31 andµ(α) and τ(α)2 estimated from each
of the trace segments, almost always provides a good fit to the standard nonparametric estimate of autocorrelation for the
segment. This is illustrated in Fig. 19. The nonparametric estimates (•) and the estimates from the log normal MFSD ρt(k)
( ) are plotted against square root of lag for the 4 Auckland trace segments used in previous sections. Taking statistical
variability into account, which includes correlation in the estimates across the lags, the fit is good.

The autocorrelations of zu, ρz(k), while highly persistent, are not large; almost all values are below 0.25, and beyond the
first few lags, are below 0.10. The values of τ 2(α) for α above about 1000 packets/second, range from about 1.41 to 0.693
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Fig. 20. Power series approximation ( ) of multiplicative MFSD autocorrelations (◦).

as α increases. The resulting values of τ(α)2ρz(k) are small enough that the term exp{τ(α)2ρz(k)} in Eq. (21) is very well
approximated by a first order power series approximation, 1 + τ 2(α)ρz(k). Let

φ(α) = τ 2(α)/(eτ
2(α)

− 1). (22)

The above first order approximation results in an even simpler autocorrelation approximation of ρt(k) for lag k ≥ 1

ρ̈t(k) = φ(α)ρz(k) = φ(α)(1 − θ(α))ρs(k) = (1 − θ̈ (α))ρs(k) (23)

where

θ̈ (α) = 1 − φ(α)(1 − θ(α)). (24)

For d = 0.31, Fig. 20 graphs the values of the log normal MFSD ρt(k) from Fig. 19 for lags 1 to 64 (◦) and the values
of ρ̈t(k) ( ). Except for lag 1, which has a minor departure, the approximation is very close. Figs. 19 and 20 provide an
important validation for the autocorrelation structure of the MFSD model.

The astonishing result is that the autocorrelations of the multiplicative MFSD are very well approximated by those of a
GFSD, not the Gaussian image of the MFSD with the value θ(α), but rather with θ̈ (α). We have

θ̈ (α)− θ(α) = (1 − φ(α))(1 − θ(α)),

so θ̈ (α) is larger, which means the approximating GFSD has a larger white noise component than the Gaussian image. For α
increasing, starting at about 1000 packets/second, the lower limit of validity of the MFSD and GFSD models, we have θ(α)
goes from 0.60 to 1, τ 2(α) go from 1.41 to 0.693, φ(α) goes from 0.456 to 0.693, θ ′(α) goes from 0.818 to 1, and θ ′(α)−θ(α)
goes from 0.218 to 0. What this means is that the second moment results for zu in Sections 9–11 hold for tu as well.

13. Fast traffic generation for network traffic engineering simulation studies

Simulation studies of network designs are critical to network traffic engineering. This has been discussed in Section 1.
We need a fast traffic generationmethod for simulations, especially for those with large traffic rates α. We have developed a
fast generationmethod. Themethod uses themultiplicativeMFSD. Nextwe describe themethod and the heuristic reasoning
behind it.

Consider the t(m)v of a multiplicative MFSD. So long as m is not too large and α is large enough, arrivals within t(m)v

are approximately Poisson. The reason is that for the generating GFSD, the component su does not contribute as much to
the variation in t(m)v if m is not too big because the (1 − θ(α))su component has most of its power at low frequencies,
while the θ(α)nu component is white noise. This means that, conditional on t(m)v , the arrival process within the interval is
approximately uniform over the interval.

So we generate an MFSD series that serves as t(m)v , and then simply generatem− 1 random uniforms for each interval to
get the interarrivals. This makes traffic generation faster by a factor of aboutm.m = 100 is a big saving, but yetm qualifies
for all but small α. In fact, the smallest m that works increases with increasing α because the influence of θ(α)nu increases
and the contribution of (1 − θ(α))su decreases. A full quantitative study of m and α for this matter is beyond the scope of
the paper.

The first step in a generation is to choose α. Next we generate t(m)v as a multiplicative MFSD, exp{τ ∗(α)z∗
v + µ∗(α)},

where z∗
v is a GFSD with parameters θ∗(α) and d. d = 0.31 based on results from Section 6. Next we describe how we get

the parameters τ ∗(α), µ∗(α), and θ∗(α).
We need θ(α) and λ(α), calculated from the logistic models described in Section 11.We needµ(α) and τ 2(α), calculated

from λ(α) and α using Eqs. (18) and (19). We then compute θ̈ (α) from Eqs. (22) and (24), which is larger than θ(α). In
addition, we compute the variance of tu, σ 2

t (α) from Eq. (20).
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Fig. 21. The log base 2 of normalized nonparametric estimates of variances (•), and the log base 2 of normalized approximate variances ( ) for t(m)v , are
plotted against log2(m) for the 4 Auckland trace segments.

We derive an approximation of the mean, variance and autocovariance of t(m)v . The derivation brings together results of
Sections 10–12. One derivation is for the variance Vt(m)v

, and the other for the autocovariance Ct(m)v
(k) for k ≥ 1. The success

depends on the result of Section 12 that the autocorrelations of tu are very well approximated by those of a GFSD (Eq. (23)).
This allows us to apply the results in Section 10 for z(m)v to obtain results for t(m)v . It was convenient in that section to work
withm-scaled-sums, z̃(m)v , but results hold also for z(m)v with obvious changes in formulas to take account of the scaling factor
md+0.5 and the variance σ 2

t (α) not being equal to 1.
To get the approximate variance V̈t(m)v

and approximate autocovariance C̈t(m)v
(k), we simply apply the results of the

approximations in Section 10 for a GFSD model (Eqs. (8) and (10)) with d and mixture parameter θ̈ (α), and multiply the
results by the factorsm2d+1 and σ 2

t (α). We then have the approximate variance and autocovariance

V̈t(m)v
= σ 2

t (α)


θ̈ (α)m + (1 − θ̈ (α))

2Γ (2 − d)
(2d + 1)Γ (d + 1)

m2d+1


(25)

C̈t(m)v
(k) = σ 2

t (α)(1 − θ̈ (α))
2Γ (2 − d)
Γ (d)

m2d+1k2d−1. (26)

Furthermore it is straightforward to obtain the exact mean of t(m)v ,

E

t(m)v


=

m
α
. (27)

We obtain θ∗(α), τ ∗(α), andµ∗(α) by matching the mean, variance, and autocovariance of exp{τ ∗(α)z∗
v +µ∗(α)} using

Eqs. (25), (26), and (27).

τ ∗2(α) = log


1 +

V̈t(m)v

(m/α)2


(28)

µ∗(α) = log
m
α


+

1
2
log


1 +

V̈t(m)v

(m/α)2


(29)

θ∗(α) = 1 −
d(2d + 1)Γ (d)
2Γ (2 − d)

exp(τ ∗2(α))− 1
τ ∗2(α)

. (30)

The results in Eqs. (25) and (26) are validated using live trace segments. For validation, we compared the approximate
variances and autocovariances from Eqs. (25) and (26) to standard nonparametric estimates of the variances and
autocovariances. We are interested in reasonable values of m, since these m values achieve a significant reduction in the
number of values that describe the traffic.

We found that Eqs. (25) and (26) did an excellent job of fitting the nonparametric estimates. Figs. 21 and 22 illustrate the
results for the 4 Auckland traces described in Section 4. The standard nonparametric sample variances and autocovariances
of t(m)v (•) are normalized by dividing by the sample variance of the tu. The approximate variances and autocovariances ( )
are normalized by dividing by the variance σ 2

t (α). As we have done in all validation studies discussed in the paper, the base
model parameters are taken to be the estimates λ̂, θ̂ , and d̂ described in Sections 5 and 6.

In Fig. 21, the log base 2 of the normalized approximate variances and nonparametric variances are plotted against
log2(m). The approximation is excellent considering that variance estimates from long-range dependent time series have
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Fig. 22. Form = 128, normalized nonparametric estimates of autocovariances (•), and normalized approximate autocovariances ( ) for t(m)v are plotted
against

√
k for the 4 Auckland trace segments.

large variability. In Fig. 22 the normalized approximate and nonparametric autocovariances are plotted against square root
lag form = 128. The fits are excellent, again given the variability due to long-range dependence.

14. VoIP traffic engineering

14.1. Background

TheMFSDmodel in this article applies to the superposed packet arrival process of themany different types of applications
on commodity Internet links. For example, a core link on the Comcast or Verizon or AT&T network. One part of traffic
engineering addresses this aggregate traffic.

However, containedwithin this traffic are applications that need special attention because they havemore stringent QoS
requirements than most applications. This is true of certain real–time applications. VoIP, voice over the Internet is one of
them. Service providers often give priority queueing to VoIP packets. An arriving VoIP packet is moved forward in the queue
to be in front of all packets with no priority queueing.

Among the handful of studies that report on VoIP packet traces, [72,73] study VoIP packet traces collected on FastWeb,
whereVoIP did not get priority queueing. [74] analyzed live VoIP data collected on theGlobal Crossing international network,
where VoIP calls received priority queueing. They studied the statistical properties of the VoIP traffic as it enters the network
on VoIP gateways. They built a generationmodel for this ‘‘offered load’’. It operates quite differently from theMFSD. Each call
consists of two semi-calls, caller-to-callee and callee-to-caller. Individual semi-calls are modeled. To carry out generation
for a simulation, semi-calls are generated through time and multiplexed on the computer, resulting in a single stream for
simulation.

VoIP packets need to reach the destination quickly, no more than about 150 ms from end-to-end. VoIP packets have
20 ms spacing, which must be maintained to a degree at the destination so the codec can receive them and assemble them
to provide real–time continuous speech. Deviations from 20 ms are jitter; absolute jitter must achieve an upper bound of
30 ms with very high probability.

One question is whether priority queueing is needed. We ran a small simulation to illustrate one way to answer the
question. A real simulation would need to be much more expansive in investigating a very wide range of traffic rates. In
our illustrative simulation the VoIP packets are multiplexed with MFSD packets but are not given priority queueing. We
investigate how much MFSD traffic can be mixed with the VoIP traffic before VoIP QoS problems arise.

For this simulation, we do not need to use VoIP traffic, for example, generated by the above VoIP model. Simple test VoIP
traffic will do because the result is dominated by the queueing properties of theMFSD traffic. As in real life, in our simulation
the VoIP traffic has a much smaller bit rate.
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Table 2
Tail quantiles of absolute jitter and delay in milliseconds.

Quantile Utilization 0.1 Utilization 0.3 Utilization 0.5
Absolute jitter Delay Absolute jitter Delay Absolute jitter Delay

0.99 0.0456 0.0431 0.2305 0.2085 0.7692 0.6980
0.999 0.0729 0.0642 0.3486 0.3250 1.8256 1.7322
0.9999 0.0932 0.0884 0.4742 0.4517 3.5570 4.0116

Fig. 23. Quantiles of delay.

14.2. Illustrative simulation

We generated commodity multi-application traffic using our MFSD model and the fast method of Section 13. We need
packet sizes, too, for this simulation. The packet sizeswere generated independently using the empirical distribution of sizes
from the traffic collection of Section 4. We set the packet rate as α = 212 packets/second. The average packet size is 772.22
bytes/packet. So the mean bit-rate of the synthetic multi-application traffic is 25.3 megabits/second.

We take the VoIP packets to be 200 bytes each, the value for the commonly used 64 kilobits/second capture rate, take the
20 ms accumulation interval, as in [74]. We generate a constant stream of VoIP packets arriving at the queue at a rate of one
per ms. This represents a stream for multiple semi-calls. Note the VoIP traffic rate of 1.6 megabits/second is small compared
with α, that of the other traffic. The synthetic multi-application traffic and the synthetic VoIP traffic are superposed to form
the input stream to a FIFO queue. Simulation run time was 1 h.

We describe the three simulation runs of our study. For each, we first choose the utilization U , the average traffic
rate divided by the link speed. The three runs have values U = 0.1, 0.3, and 0.5 respectively. The traffic packet rate is
α = 212 packets/second = 25.3 megabits/second, so the corresponding link speeds are L = 25.3/U megabits/second.

Let Ai be the arrival time of the ith packet and Bi its packet size. The queueing delay of the ith packet in the multiplexed
packet stream is calculated as

Di = [Di−1 + Bi−1/L − (Ai − Ai−1)]
+.

In each run, we study the distribution of the delays of the VoIP packets Vk. Jitter is computed from the delays of the VoIP
packets that are 20 ms apart,

Jk = Vk − Vk−20.

We study the distribution of the absolute jitter values |Jk|.
For each of the three utilizations – U = 0.1, 0.3, 0.5 – we compute the sample quantiles of the two distributions, delay

and absolute jitter, at frequencies 0.00005 to 0.99995 in steps of 0.0001. Figs. 23 and 24 graph the quantiles against the
frequencies. Both delay and absolute jitter increase significantly as U increases. VoIP QoS criteria specify upper bounds, so
the upper tails are of particular interest. Table 2 shows the 0.99, 0.999, 0.9999 quantiles.
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Fig. 24. Quantiles of absolute jitter.

Now the simulation study is for one hop which means one queue. The criteria – 150 ms for delay and 30 ms for absolute
jitter – are end-to-end, which means many queues. Other studies show that the number of hops has a limit of about 30.
To be conservative we use this for planning. We simply divide the end-to-end criteria to get single hop criteria of 5 ms for
delay and 1ms for absolute jitter. Table 2 shows that a utilization between 0.3 and 0.5 would satisfy criteria for a traffic rate
of 25.3 megabits/second. Simulation runs at other utilizations can, of course, find exact values. Just these values alone are
encouraging. Elimination of VoIP priority queueing might in fact be feasible. The traffic rate of 25.3 megabits/second is not
large, and a U in the range suggested for this rate is not unreasonable. Furthermore, higher traffic rates can be expected to
give even better results.

15. Summary and discussion of results

15.1. What is needed for traffic engineering

Following the discovery of long-range dependence of Internet traffic in 1994–1995, there was a very active 15-year
period of empirical study that provided much understanding of the properties of the packet arrival process. However, what
was not achieved was the development of a mathematical, statistical model for the interarrival process that achieved three
important goals: (1) extensive validation; (2) mathematical tractability; (3) a usable synthetic generation of packet arrivals
for studies in network engineering. Work declined over the 15-year period in model development. However, the need for
such a model for mathematical study and simulation study is as strong as in 1994. Network traffic engineering depends
heavily on both. Network traffic engineering is still critical for optimal Internet performance.

15.2. What has been achieved by this work

MFSD andGFSDmodelswere first put forward in [17,18]. In the first reference, the long-range dependencewas described
by a nonparametric estimate of the power spectrum. In the second reference this was replaced by a FARIMA model for the
long-range dependent series which here we denote su: (I − B)dsu = ϵu + ϵu−1 where ϵu is white noise.

Here we use su, but reformulate it to be su = hu + hu−1 a first-order moving average of Hosking’s fractional Gaussian
noise (fGn). This allows us to derive here, for the first time, many exact or approximate formulas for informative quantities
such as autocorrelations. This gives immense quantitative insights about the traffic that in the past have only been described
qualitatively and empirically, for example, by the sample autocorrelation function. One reason for a clear understanding of
properties is that we verify, surprisingly for the first time, that Hosking’s hu is so close to self-similar that we can think of it
as such. Furthermore, we are able to include in the formulas, the dependence of the quantities on the traffic rate, α p/s. This
change is a critical property not understood before this paper.

Being able to derive quantities, has allowed us to carry out a much deeper model validation of the MFSD and GFSD than
in [17,18]. In fact, the depth and breadth of the validation here is unprecedented in Internet traffic modeling.
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For traffic generation here, one approximation allows a much faster generation than in [17,18]. Also, the model
parameters θ and λ are modeled as a function of the traffic rate α p/s. So a simulation needs only to specify the rate, which
makes generation as simple and straightforward as is possible.

One surprising result is that while the nonlinear transformation of the GFSD to the MFSD certainly changes dramatically
the statistical properties of the MFSD, the second moment properties of the MFSD are very close to those of a GFSD.

15.3. Other modeling approaches

Multiple methods were proposed in the past to model and generate self-similar traffic. A M/G/∞ approach was used
in [10], where connections were generated following a Poisson process and connection durations followed heavy tailed
distribution. [75] developed a randommidpoint placement algorithm to generate an approximate fBm series. The algorithm
recursively subdivided an interval, and gave a value at the midpoint based on the values at the end points. [23] used a
fast Fourier approach to generate an approximate fGn series. [76] used a further approximation to fGn power spectrum
in generation. [77] generated a large number of ON/OFF sources. Aggregation of the ON/OFF sources converged to fBm.
The problem, as we have clearly shown here, is that the traffic is not well modeled by a self-similar process, which has
very strong assumptions, and is generally not likely to accurately characterize the stochastic properties of time series
data.

It is surprising thatmodels like theMFSD and GFSD, given their simplicity, did not appearmuch earlier. One reason is that
the vastmajority of traffic studies analyzed packet counts in fixed intervals such as 10ms, instead of the packet interarrivals.
Notably, [29–31,36,39,47,45,78,79] studied the aggregate traffic, i.e., packet counts/bytes on different times scales. [29]
performed a multifractal moment analysis of measured traces. WAN traces showed asymptotic self-similar behavior at
larger time scales, and multifractal scaling behavior at smaller time scales. [30,31] used a cascade structure to model the
packet counts on different time scales, to capture the complex scaling behavior of the packet counts. [39] suggested that the
hierarchical nature of the IP networks gave rise to the observed scaling phenomenon. [47] studied the wavelet spectrum of
the packet counts and provided a wavelet estimator of the Hurst parameter. [45] used a n-level hierarchical on–off process
to model the aggregate traffic. [78] applied wavelet techniques to fGn, FARIMA processes, and measured traffic traces to
determine the time scales where long range dependence dominates. [79] generated on–off flows in a large scale controlled
experimental environment, measured and studied the aggregate traffic series.

The aggregate traffic represents a data reduction that makes computation easier through having a much smaller dataset.
However, it is not possible to discover and investigate the MFSD by analyzing just counts. Although important properties of
the network traffic were learned from the study of the moments and the scaling of the counts, the aggregate traffic does not
describe the stochastic process of the individual packet arrivals. Thework here addresses directly the arrival process because
that iswhat the routers see, andwhatmust be addressed in studies of network engineering, and because it ismathematically,
the foundational process.

A cascade constructionwasused [80,52] to generatemultifractal aggregate traffic. Themultipliers in the cascade structure
were random variables. [32] developed a multifractal wavelet model, which was an extension of the simple random
multiplicative cascades. The wavelet and the scaling coefficients followed a special multiplicative structure. They can be
estimated from the measured traces, and in turn be used to generate synthetic traffic data [81].

Th multifractal wavelet models and the random cascade models are complex and have a large number of parameters.
They do not give much real insight about the stochastic properties of traffic. Looking at moments of a random variable does
not give good insight into the variables distribution.

Furthermore, wavelets and cascades are not attractive for generation. They are nonparametric. To generate at rate α p/s
one has to find live traffic with rate α p/s, fit, and then generate. We must remember we cannot generally generate traffic
at rate α0 p/s by generating at rate γα0 p/s, and then dividing the interarrivals by γ , because much more than the mean of
the interarrivals changes with changing rate. It is only true if one is considering traffic rates so high that the arrival process
is Poisson.
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Appendix. Derivations of λ and θ for changing α

A.1. Heuristic derivation of λ

We present a heuristic derivation for λ in this section, under the simplified assumption of renewal processes. Assume
there are r i.i.d. renewal processes, where r is a positive integer. Each renewal process has a Weibull marginal distribution
with parameters α and λ. From the analysis of the trace segments in the previous sections, we notice the marginal
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distribution for the live traffic statistical multiplexing process (superposition process) is Weibull with parameters λ(r) and
α(r), where the increasing traffic rate is

α(r) = rα.

Based on the Weibull marginal distribution for the individual renewal processes, we have the marginal density of their
statistical multiplexing process [82]:

g r(t) = −
d
dt


e−


tαΓ


1+ 1

λ

λ  ∞

t
αe−


xαΓ


1+ 1

λ

λ
dx
r−1


.

The median βr of the distribution with density g r(t) is found by solving the following equation:

e−


βrαΓ


1+ 1

λ

λ 
1 − α

 βr

0
e−


xαΓ


1+ 1

λ

λ
dx

r−1

= 0.5. (31)

We approximate the distribution with density g r(t) by aWeibull distribution with parameters λ(r) and α(r)whosemedian
matches βr .

βr
=

(log 2)
1
λ(r)

rαΓ (1 + 1/λ(r))
. (32)

We solve Eq. (32) for λ(r). The right hand side of Eq. (32) changes monotonically with λ(r). Hence there is a unique solution
for λ(r).

A.2. Heuristic derivation of θ

Assume there are r i.i.d. MFSD source processes tu. Each has aWeibull marginal distributionwith parametersα and λ. The
corresponding Gaussian image zu of a source process tu follows a GFSD model with parameters θ and d. From the analysis
of trace segments in the previous sections, we observe the values of the fractional difference parameter d do not change
appreciably under different traffic rates. We then fix the value of d to be the median of the estimates in Section 6. Let

d(r) = d = 0.31.

For the Weibull marginal distribution of the statistical multiplexing process t ru , we have the estimates α̂(r) = rα, and λ̂(r)
obtained from Eq. (32).
θ(r) can be obtained from the autocorrelation at lag 1 for the Gaussian image zru of the statistical multiplexing process t ru

as follows:

θ(r) = 1 −
ρr
z (1)(2 − d)

d + 1
. (33)

To estimate θ(r), we first compute ρr
t (1) for the statistical multiplexing process t ru , then obtain ρr

z (1) from ρr
t (1), and apply

Eq. (33).
In order to obtain ρr

t (1), first we examine the sources of the arrivals that lead to the two consecutive interarrival times
in the superposition process, t ru and t ru+1. Assume the uth arrival aru in the statistical multiplexing process is the jth arrival
from source 1. Note t ru+1 = aru+1 − aru. Let ti,j be the jth interarrival time from source i, and Vi be a forward recurrence time
(the time from an arbitrary time point until the next arrival) for source i. To find the autocorrelation between t ru and t ru+1,
we examine the following five cases:

1. The arrivals aru−1 and aru+1 both come from source 1. Then t ru and t ru+1 are two consecutive interarrival times from source
1. We have ρr

t (1) = ρt(1).
2. The arrival aru+1 comes from source 1, but the arrival aru−1 comes from a different source i. We have t ru+1 = t1,j+1. And

t ru = V1 = t1,j −η, where η is the sum of interarrival times and forward recurrence times from sources other than source
1. Then as in Case 1, ρr

t (1) = ρt(1).
3. The arrival aru−1 comes from source 1, but the arrival aru+1 comes from a different source i. Then t ru = t1,j and t ru+1 = Vi.

Since the individual source processes are independent, ρr
t (1) = 0.

4. The arrivals aru−1 and aru+1 come from different sources, and neither comes from source 1. Assume arrival aru+1 come from
source i, i ≠ 1. Then t ru = V1 and t ru+1 = Vi. We have ρr

t (1) = Corr(V1, Vi) = 0.
5. The arrivals aru−1 and aru+1 both come from the same source i, i ≠ 1. This is exactly the same as Case 4. Again t ru = V1 and

t ru+1 = Vi. ρr
t (1) = 0.
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Hence under the first two cases ρr
t (1) = ρt(1), while under the last three cases ρr

t (1) = 0. Let the minimum forward
recurrence time from all other sources be Vmin = min{i=2...r} Vi. Case 1 and 2 occur when aru and aru+1 both come from source
1. This implies t1,j+1 < Vmin. Therefore,

Pr(Case 1 or 2) = Pr(t1,j+1 < Vmin).

Thus, we have

ρr
t (1) = Pr(t1,j+1 < Vmin)Corr(t1,j, t1,j+1|t1,j+1 < Vmin). (34)

It remains to solve for both terms on the right hand side of Eq. (34). Based on the density of a forward recurrence time
from one source process [82], we obtain the density for Vmin, the minimum of r − 1 forward recurrence times. Since t1,j+1 is
Weibull with parameters λ and α, and independent of Vmin, we have

P(t1,j+1 < Vmin) = 1 − (r − 1)α


∞

0
e−2yλ/ψ


1 − α

 y

0
e−xλ/ψdx

r−2

dy,

where ψ =

αΓ (1 +

1
λ
)
−λ

.
Next we approximate the joint density of two consecutive interarrival times from the same source process, tj and tj+1,

by converting the joint density of their Gaussian images zj and zj+1, zj = Z−1(W (tj)), and ignoring the correlation between
tj and tj+1 in the Jacobian matrix. Let ρ = ρz(1) = Corr(zj, zj+1). We have the following approximate density, up to a
normalizing factor:

fW (tj, tj+1) ∝
1

1 − ρ2
exp


−1

2 − 2ρ2


ρ2 Z−1(W (tj))+ Z−1(W (tj+1))

2
+ 2(ρ2

− ρ)Z−1(W (tj))Z−1(T (tj+1))
  λ2

ψ2
(tjtj+1)

λ−1 exp{−(tλj + tλj+1)/ψ}.

Using fW (tj, tj+1) combined with P(t1,j+1 < Vmin), Corr(t1,j, t1,j+1|t1,j+1 < Vmin) can be calculated.
There are two ways to compute ρr

t (1), either using Eq. (34) or directly using the approximate joint density fW (tj, tj+1),
because fW (tj, tj+1) can be applied to two consecutive interarrival times t ru and t ru+1 in the superposition process as well. This
provides a numerical method for us to find ρr

z (1) from a given ρr
t (1).

We first obtain the estimate ρ̂r
t (1)using Eq. (34).With λ̂(r) obtained using Eq. (32) and α̂(r) = rα, we evaluate fW (tj, tj+1)

over a grid of potential ρr
z (1) values. For each ρ

r
z (1) value we compute the corresponding ρr

t (1) directly using fW (tj, tj+1).
The estimate ρ̂r

z (1) is the one that provides the closest match to ρ̂r
t (1) obtained from Eq. (34). Then we apply Eq. (33) to

have an estimate of θ̂ (r).

References

[1] W. Stevens, TCP/IP Illustrated, Volume 1: The Protocols, Addison-Wesley, 1994.
[2] L. Peterson, B. Davie, Computer Networks: A Systems Approach, Morgan Kaufmann, 1999.
[3] G. Kesidis, An Introduction to Communication Network Analysis, Wiley-IEEE Press, 2007.
[4] D. Rolls, G. Michailidis, F. Hernández-Campos, Queueing analysis of network traffic: Methodology and visualization tools, Comput. Netw. 48 (3) (2005)

447–473.
[5] F. de Pereira, N. da Fonseca, D. Arantes, On the performance of generalized processor sharing servers under long-range dependent traffic, Comput.

Netw. 40 (2002) 413–431.
[6] P. Belottia, A. Caponeb, G. Carellob, F. Malucelli, Multi-layer mpls network design: The impact of statistical multiplexing, Comput. Netw. 52 (2008)

1291–1307.
[7] P. Bogdan, R. Marculescu, Non-stationary traffic analysis and its implications on multicore platform design, IEEE Trans. Comput.-Aided Des. Integr.

Circuits Syst. 30 (2011) 508–519.
[8] F.H. Vieira, L.L. Lee, An admission control approach for multifractal network traffic flows using effective envelopes, AEU-Int. J. Electron. Commun. 64

(2010) 629–639.
[9] W. Leland, M. Taqqu, W. Willinger, D. Wilson, On the self-similar nature of ethernet traffic, IEEE/ACM Trans. Netw. 2 (1994) 1–15.

[10] V. Paxson, S. Floyd, Wide-area traffic: The failure of Poisson modeling, IEEE/ACM Trans. Netw. 3 (1995) 226–244.
[11] N. Duffield, Economies of scale in queues with sources having power-law large deviations scalings, J. Appl. Probab. 33 (1996) 840–857.
[12] A. Erramilli, O. Narayan, W. Willinger, Experimental queueing analysis with long-range dependent packet traffic, IEEE/ACM Trans. Netw. 4 (1996)

209–223.
[13] D. Heyman, T. Lakshman, What are the implications of long-range dependence for VBR-video traffic engineering? IEEE/ACM Trans. Netw. 4 (1996)

301–317.
[14] K. Park, G. Kim,M. Crovella, On the effect of traffic self-similarity on network performance, in: Proceedings SPIE Intl. Conf. Perf. and Control of Network

Systems, 1997.
[15] V. Ribiero, R. Riedi, R. Baraniuk, Multiscale queuing analysis, IEEE/ACM Trans. Netw. 14 (5) (2006) 1005–1018.
[16] D.R. Cox, H.D. Miller, The Theory of Stochastic Processes, Chapman and Hall, London, 1977.
[17] J. Cao, W. Cleveland, D. Lin, D. Sun, Internet traffic tends toward Poisson and independent as the load increases, in: C. Holmes, D. Denison, M. Hansen,

B. Yu, B. Mallick (Eds.), Nonlinear Estimation and Classification, Springer, New York, 2002, pp. 83–109.
[18] J. Cao, W.S. Cleveland, D.X. Sun, Bandwidth estimation for best-effort Internet traffic, Statist. Sci. 19 (2004) 518–543.
[19] J. Hosking, Fractional differencing, Biometrika 68 (1) (1981) 165–176.
[20] I. Csabai, 1/f noise in computer network traffic, J. Phys. A: Math. Gen. 27 (1994) L417–L421.
[21] W. Willinger, M. Taqqu, W. Leland, D. Wilson, Self-similarity in high-speed packet traffic: Analysis and modeling of ethernet traffic measurements,

Statist. Sci. 10 (1995) 67–85.

http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref1
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref2
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref3
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref4
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref5
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref6
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref7
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref8
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref9
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref10
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref11
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref12
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref13
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref15
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref16
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref17
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref18
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref19
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref20
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref21


D. Anderson et al. / Performance Evaluation 107 (2017) 1–33 33

[22] W. Willinger, M. Taqqu, A. Erramilli, A bibliographical guide to self-similar traffic and performance modeling for modern high-speed networks,
in: F.P. Kelly, S. Zachary, I. Ziedins (Eds.), Stochastic Networks: Theory and Applications, Clarendon Press (Oxford University Press), Oxford, 1996,
pp. 339–366.

[23] V. Paxson, Fast approximate synthesis of fractional Gaussian noise for generating self-similar network traffic, Comput. Commun. Rev. (1997) 5–18.
[24] M. Taqqu, W. Willinger, R. Sherman, Proof of a fundamental result in self-similar traffic modeling, Comput. Commun. Rev. 27 (1997) 5–23.
[25] I. Norros, A storage model with self-similar input, Queueing Syst. 16 (1994) 387–396.
[26] P. Abry, R. Baraniuk, P. Flandrin, R. Riedi, D. Veitch, The multiscale nature of network traffic: Discovery, analysis, and modelling, IEEE Signal Process.

Mag. 19 (2002) 28–46.
[27] R. Riedi, J. Vehel, Multifractal properties of TCP traffic: a numerical study, Tech. Rep. 3129, INRIA Rocquencourt, France, 1997.
[28] V. Ribeiro, Z. Zhang, S. Moon, C. Diot, Small-time scaling behavior of Internet backbone traffic, Comput. Netw. 48 (3) (2005) 315–334.
[29] M. Taqqu, V. Teverovsky, W. Willinger, Is network traffic self-similar or multifractal, Fractals 5 (1997) 63–73.
[30] A. Feldmann, A.A. Gilbert, W. Willinger, Data networks as cascades: Investigating the mulifractal nature of Internet WAN traffic, in: ACM SIGCOMM,

1998, pp. 42–55.
[31] A. Gilbert, W. Willinger, A. Feldmann, Scaling analysis of random cascades, with applications to network traffic, IEEE Trans. Inform. Theory 45 (3)

(1999) 971–991.
[32] R. Riedi, M. Crouse, V. Ribeiro, R. Baraniuk, A multifractal wavelet model with application to network traffic, IEEE Trans. Inform. Theory 45 (3) (1999)

992–1019.
[33] A. Veres, M. Boda, The chaotic nature of TCP congestion control, in: IEEE INFOCOMM, 2000, pp. 1715–1723.
[34] J. Yuan, Y. Ren, X. Shan, Self-organized criticality in a computer network model, Phys. Rev. E 61 (2) (2000) 1067–1071.
[35] J. Hannig, J. Marron, R. Riedi, Zooming statistics: Inference across scales, J. Korean Stat. Soc. 30 (2001) 327–345.
[36] A. Erramilli, M. Roughan, D. Veitch, W. Willinger, Self-similar traffic and network dynamics, in: Proceedings of the IEEE, 2002, pp. 800–819.
[37] D. Figueiredo, B. Liu, V. Misra, D. Towsley, On the autocorrelation structure of TCP traffic, Comput. Netw. 40 (2002) 339–361.
[38] T. Mikosch, S. Resnick, H. Rootzen, A. Stegeman, Is network traffic approximated by stable Levy motion or fractional Brownian motion? Ann. Appl.

Probab. 12 (1) (2002) 23–68.
[39] W. Willinger, R. Govindan, S. Jamin, V. Paxson, S. Shenker, Scaling phenomena in the Internet: Critically examining criticality, Proc. Natl. Acad. Sci.

USA 99 (3) (2002) 2573–2580.
[40] T. Dang, S. Molnar, I. Maricza, Some results on multiscale queueing analysis, in: Proceedings of the 10th International Conference on

Telecommunications ICT, Papeete, French Polynesia, 2003, pp. 1631–1638.
[41] N. Liu, J. Baras, Statistical modeling and performance analysis of multi-scale traffic, in: Proceedings of IEEE Infocom, 2003.
[42] K. Maulik, S. Resnick, Small and large time scale analysis of a network traffic model, Queueing Syst. 43 (2003) 221–250.
[43] S. Resnick, A. Gilbert, W. Willinger, Wavelet analysis of conservative cascades, Bernoulli 9 (1) (2003) 97–135.
[44] T. Karagiannis, M. Molle, M. Faloutsos, A. Broido, A nonstationary Poisson view of Internet traffic, in: Proceedings of IEEE INFOCOM, 2004.
[45] W.Gong, Y. Liu, V.Misra, D. Towsley, Self-similarity and long rangedependence on the Internet: A Second look at the evidence, origins and implications,

Comput. Netw. 48 (2005) 377–399.
[46] H. Jiang, C. Dovrolis, Why is the Internet traffic bursty in short time scales, in: Sigmetrics, ACM Press, 2005, pp. 241–252.
[47] S. Stoev, M. Taqqu, C. Park, J. Marron, On the wavelet spectrum diagnostic for Hurst parameter estimation in the analysis of Internet traffic, Comput.

Netw. 48 (2005) 423–445.
[48] D. Veitch, N. Hohn, P. Abry, Multifractality in TCP/IP traffic: the case against, Comput. Netw. 48 (2005) 293–313.
[49] M. Masugi, T. Takuma, Multi-fractal analysis of IP-network traffic for assessing time variations in scaling properties, Physica D 225 (2007) 119–126.
[50] M. Roughan, D. Veitch, Some remarks on unexpected scaling exponents, SIGCOMM Comput. Commun. Rev. 37 (2007) 71–74.
[51] M. Ashoura, T. Le-Ngoc, Priority queuing of long-range dependent traffic, Comput. Commun. 31 (2008) 3954–3963.
[52] J. Gao, I. Rubin, Multiplicative multifractal modeling of long-range-dependent network traffic, Int. J. Commun. Syst. 14 (2001) 783–201.
[53] J. Gao, I. Rubin, Superposition of multiplicative multifractal traffic streams, in: Proceedings of ICC2000, 2001.
[54] R. Riedi, Multifractal processes, in: P. Doukhan, G. Oppenheim, M.S. Taqqu (Eds.), Theory and Application of Long-Range Dependence, Birkhauser,

Basel, 2002, pp. 625–715.
[55] P. Bogdan, Mathematical modeling and control of multifractal workloads for data-center-on-a-chip optimization, in: Proceedings of the 9th

International Symposium on Networks-on-Chip, 2015, p. 21.
[56] C. Fraleigh, F. Tobagi, C. Diot, Provisioning IP backbone networks to support latency sensitive traffic, in: IEEE INFOCOM, 2003.
[57] P. Shanga, Y. Lub, S. Kamae, Detecting long-range correlations of traffic time series with multifractal detrended fluctuation analysis, Chaos Solitons

Fractals 36 (2008) 82–90.
[58] A. Feldmann, A. Gilbert, W. Willinger, T. Kurtz, The changing nature of network traffic: Scaling phenomena, SIGCOMM Comput. Commun. Rev. 28

(1998) 5–29.
[59] Endace DAG. http://www.endace.com/.
[60] The CAIDA Tools Site. http://caida.org/tools.
[61] WITS: Waikato Internet Traffic Storage. http://www.wand.net.nz/wits/catalogue.php.
[62] C. Hurvich, E. Moulines, P. Soulier, The fexp estimator for potentially non-stationary linear time series, Stochastic Process. Appl. 97 (2002) 307–340.
[63] J. Geweke, S. Porter-Hudak, The estimation and application of long memory time series models, J. Time Series Anal. 4 (1983) 221–238.
[64] W. Cleveland, C. Mallows, J. McRae, Ats methods: Nonparametric regression for non-Gaussian data, J. Amer. Statist. Assoc. 88 (1993) 821–835.
[65] L. Muscariello, M. Meillia, M. Meo, M.A. Marsan, R.L. Cigno, An MMPP-based hierarchical model of Internet traffic, in: 2004 IEEE International

Conference on Communications, pp. 2143–2147.
[66] J. Beran, Statistics for Long-Memory Processes, Chapman & Hall, 1994.
[67] M. Crovella, A. Bestavros, Self-similarity in world wide web traffic: Evidence and possible causes, IEEE/ACM Trans. Netw. 5 (1997) 835–846.
[68] D. Tutsch, G. Babin, P. Kropf, Application-layer traffic analysis of a peer-to-peer system, IEEE Internet Comput. Mag. 12 (2008) 70–77.
[69] C. Park, F. Hernández-Campos, L. Le, J.S.Marron, J. Park, V. Pipiras, F.D. Smith, R.L. Smith,M. Trovero, Z. Zhu, Long-range dependence analysis of Internet

traffic, J. Appl. Stat. 38 (2011) 1407–1433.
[70] K. Sriram, W. Whitt, Characterizing superposition arrival processes in packet multiplexers for voice and data, IEEE J. Sel. Areas Commun. 4 (1986)

833–846.
[71] K. Krishnan, A new class of performance results for a fractional Brownian traffic model, Queueing Syst. 22 (1996) 277–285.
[72] R. Birke, M. Mellia, M. Petracca, D. Rossi, Understanding VoIP from backbone measurements, in: INFOCOM 2007: The 26th IEEE International

Conference on Computer Communications, 2007, pp. 2027–2035.
[73] D. Ciullo, M. Mellia, M. Meo, Traditional IP measurements: What changes in a today multimedia IP network, in: Telecommunication Networking

Workshop on QoS in Multiservice IP Networks, IT-NEWS 2008, 2008, pp. 262–267.
[74] B. Xi, H. Chen, W.S. Cleveland, T. Telkamp, Statistical analysis and modeling of Internet VoIP traffic for network engineering, Electron. J. Stat. 4 (2010)

58–116.
[75] Wing-Cheong Lau, Ashok Erramilli, Jonathan L.Wang,WalterWillinger, Self-similar traffic generation: The randommidpoint displacement algorithm

and its properties, in: 1995 IEEE International Conference on Communications, 1995, pp. 466–472.
[76] Sergio Ledesma, Derong Liu, Synthesis of fractional Gaussian noise using linear approximation for generating self-similar network traffic, ACM

SIGCOMM Comput. Commun. Rev. 30 (2000) 4–17.
[77] P. Pruthi, A. Erramilli, Heavy-tailed On/Off source behavior and self-similar traffic, in: 1995 IEEE International Conference on Communications, ICC’95,

1995, pp. 445–450.
[78] D. Veitch, P. Abry, M.S. Taqqu, On the automatic selection of the onset of scaling, Fractals 11 (04) (2003) 377–390.
[79] P. Loiseau, P. Gonçalves, G. Dewaele, P. Borgnat, P. Abry, P.V.-B. Primet, Investigating self-similarity and heavy-tailed distributions on a large-scale

experimental facility, IEEE/ACM Trans. Netw. 18 (4) (2010) 1261–1274.
[80] K. Kant, On aggregate traffic generationwithmultifractal properties, in: 1999 Global Telecommunications Conference. GLOBECOM’99, pp. 1179–1183.
[81] V.J. Ribeiro, R.H. Riedi, M.S. Crouse, R.G. Baraniuk, Simulation of nonGaussian long-range-dependent traffic usingwavelets, ACM SIGMETRICS Perform.

Eval. Rev. 27 (1999) 1–12.
[82] D. Cox, Renewal Theory, Methuen and Co. Ltd., London, 1962.

http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref22
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref23
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref24
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref25
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref26
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref27
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref28
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref29
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref31
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref32
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref34
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref35
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref37
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref38
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref39
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref42
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref43
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref45
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref46
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref47
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref48
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref49
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref50
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref51
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref52
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref54
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref57
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref58
http://www.endace.com/
http://caida.org/tools
http://www.wand.net.nz/wits/catalogue.php
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref62
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref63
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref64
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref66
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref67
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref68
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref69
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref70
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref71
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref74
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref76
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref78
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref79
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref81
http://refhub.elsevier.com/S0166-5316(16)30253-X/sbref82

	Multifractal and Gaussian fractional sum--difference models for Internet traffic
	Background
	Internet technology and network engineering
	The need for a validated statistical model for the multiplexed arrival process of the offered load
	Article content

	Past statistical foundations and modeling: self-similarity and fGn
	Section contents

	GFSD and MFSD models
	 hu  and  su 
	 zu , the GFSD, and  tu , the MFSD

	Model validation: live packet trace segments
	Stationarity
	Packet rate above 1000 packets/second (p/s)
	Modeled arrivals, measured arrivals, and timestamps
	Timestamp accuracy and identifying packets with queueing delay
	Numerical multiplexing
	Visual displays of 4 traces

	MFSD model validation and properties: marginal distribution
	Validation of the marginal distribution
	The change in  λ with  α 

	GFSD model validation and properties: power spectrum
	Formulas and statistical properties
	Estimation of parameters  d  and  θ
	The change in  θ and  d  with  α 
	Model validation: properties of the power spectrum

	MFSD model validation:  m -sum moment-statistics
	Modeling the changing statistical properties with the packet rate
	GFSD model validation and properties: autocorrelation
	GFSD model properties: near-self-similarity of  hu  and  su 
	Approximating the autocorrelation functions of  hu  and  su 
	Autocovariances of  m -sums
	Variances
	Autocovariances for lags greater than 0

	Near-self-similarity of  hu  and  su 

	GFSD model properties: rate--time analysis of variance and autocorrelation
	Variance
	GFSD model validation
	Time and rate scaling analysis of variance

	Autocorrelation

	MFSD autocorrelation
	Fast traffic generation for network traffic engineering simulation studies
	VoIP traffic engineering
	Background
	Illustrative simulation

	Summary and discussion of results
	What is needed for traffic engineering
	What has been achieved by this work
	Other modeling approaches

	Acknowledgments
	Derivations of  λ and  θ for changing  α 
	Heuristic derivation of  λ
	Heuristic derivation of  θ

	References


