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The effect of diet on metabolites found in rat urine
samples has been investigated using nuclear magnetic
resonance (NMR) and a new ambient ionization mass
spectrometry experiment, extractive electrospray ioniza-
tion mass spectrometry (EESI-MS). Urine samples from
rats with three different dietary regimens were readily
distinguished using multivariate statistical analysis on
metabolites detected by NMR and MS. To observe the
effect of diet on metabolic pathways, metabolites related
to specific pathways were also investigated using multi-
variate statistical analysis. Discrimination is increased by
making observations on restricted compound sets. Changes
in diet at 24-h intervals led to predictable changes in the
spectral data. Principal component analysis was used to
separate the rats into groups according to their different
dietary regimens using the full NMR, EESI-MS data or
restricted sets of peaks in the mass spectra corresponding
only to metabolites found in the urea cycle and metabo-
lism of amino groups pathway. By contrast, multivariate
analysis of variance from the score plots showed that
metabolites of purine metabolism obscure the classifica-
tion relative to the full metabolite set. These results
suggest that it may be possible to reduce the number of
statistical variables used by monitoring the biochemical
variability of particular pathways. It should also be pos-
sible by this procedure to reduce the effect of diet in the
biofluid samples for such purposes as disease detection.

The field of metabolomics1 is becoming increasingly important
in the understanding of biological processes given that metabolic
changes are observed in a variety of diseases, such as diabetes,2

breast cancer,3 coronary heart disease,4 and inborn diseases.5,6

One rapidly growing area of metabolomics is its application to
nutritional research, including the understanding of individual
variability in nutritional requirements and the development of
individually customized nutrition.7,8 Mass spectrometry (MS) and
nuclear magnetic resonance (NMR) have proven to be powerful
analytical tools in metabolomics analysis, especially when com-
bined with multivariate statistical analyses.9,10 A few studies to date
have been performed that combine both analytical techniques with
statistical analysis.6,11 Together, these methods can be used to
distinguish the effects of diet, age, gender, diurinal variation, and
genetic strain on the metabolic profile of biofluid samples.12-15

Due to their high sensitivity, high-throughput characteristics
and applicability to complex mixtures, mass spectrometric meth-
ods have demonstrated promise in metabolomics.16-18 For ex-
ample, we recently demonstrated that desorption electrospray
ionization (DESI) MS can be used effectively for metabolomics
research with little or no sample preparation.6,19 DESI is an
ambient ionization technique that combines features of electro-
spray ionization (ESI) and desorption ionization to permit analysis
directly from a surface with virtually no sample preparation.20 This

* To whom correspondence should be addressed. (Raftery) Tel: (765) 494-
6070. Fax: (765) 494-6070. E-mail: raftery@purdue.edu. (Cooks) Tel: (765) 494-
5262. Fax: (765) 494-9421. Email: cooks@purdue.edu.

† Department of Physics, Purdue University.
‡ Department of Chemistry, Purdue University.
§ Department of Statistics, Purdue University.
⊥ Bioanalytical Systems, Inc.

(1) Nicholson, J. K.; Connelly, J.; Lindon, J. C.; Holmes, E. Nat. Rev. Drug
Discovery 2002, 1, 153-161.

(2) Wang, C.; Kong, H. W.; Guan, Y. F.; Yang, J.; Gu, J. R.; Yang, S. L.; Xu, G.
W. Anal. Chem. 2005, 77, 4108-4116.

(3) Whitehead, T. L.; Kieber-Emmons, T. Prog. Nucl. Magn. Reson. Spectrosc.
2005, 47, 165-174.

(4) Brindle, J. T.; Antti, H.; Holmes, E.; Tranter, G.; Nicholson, J. K.; Bethell,
H. W. L.; Clarke, S.; Schofield, P. M.; McKilligin, E.; Mosedale, D. E.;
Grainger, D. J. Nat. Med. 2002, 8, 1439-1444.

(5) Constantinou, M. A.; Papakonstantinou, E.; Benaki, D.; Spraul, M.; Shulpis,
K.; Koupparis, M. A.; Mikros, E. Anal. Chim. Acta 2004, 511, 303-312.

(6) Pan, Z.; Gu, H.; Talaty, N.; Chen, H. W.; Hainline, B. E.; Cooks, R. G.; Raftery,
D. Anal. Bioanal. Chem. 2006, in press.

(7) German, J. B.; Roberts, M. A.; Watkins, S. M. J. Nutr. 2003, 133, 4260-
4266.

(8) Gibney, M. J.; Walsh, M.; Brennan, L.; Roche, H. M.; German, B.; van
Ommen, B. Am. J. Clin. Nutr. 2005, 82, 497-503.

(9) Lindon, J. C.; Holmes, E.; Nicholson, J. K. Prog. Nucl. Magn. Reson. Spectrosc.
2001, 39, 1-40.

(10) Wagner, S.; Scholz, K.; Donegan, M.; Burton, L.; Wingate, J.; Volkel, W.
Anal. Chem. 2006, 78, 1296-1305.

(11) Crockford, D. J.; Holmes, E.; Lindon, J. C.; Plumb, R. S.; Zirah, S.; Bruce, S.
J.; Rainville, P.; Stumpf, C. L.; Nicholson, J. K. Anal. Chem. 2006, 78, 363-
371.

(12) Plumb, R.; Granger, J.; Stumpf, C.; Wilson, I. D.; Evans, J. A.; Lenz, E. M.
Analyst 2003, 128, 819-823.

(13) Bell, J. D.; Sadler, P. J.; Morris, V. C.; Levander, O. A. Magn. Reson. Med.
1991, 17, 414-422.

(14) Moser, V. C.; Phillips, P. M.; McDaniel, K. L.; Marshall, R. S.; Hunter, D.
L.; Padilla, S. Toxicol. Sci. 2005, 86, 375-386.

(15) Phipps, A. N.; Stewart, J.; Wright, B.; Wilson, I. D. Xenobiotica 1998, 28,
527-537.

(16) Flad, T.; Tolson, J. Anal. Bioanal. Chem. 2005, 381, 24-27.
(17) Vaidyanathan, S.; Jones, D.; Broadhurst, D. I.; Ellis, J.; Jenkins, T.; Dunn,

W. B.; Hayes, A.; Burton, N.; Oliver, S. G.; Kell, D. B.; Goodacre, R.
Metabolomics 2005, 1, 243-250.

(18) Villas-Boas, S. G.; Mas, S.; Akesson, M.; Smedsgaard, J.; Nielsen, J. Mass
Spectrom. Rev. 2005, 24, 613-646.

(19) Chen, H. W.; Pan, Z.; Talaty, N.; Cooks, R. G.; Raftery, D. Rapid Commun.
Mass Spectrom. 2006, 20, 1577-1584.

Anal. Chem. 2007, 79, 89-97

10.1021/ac060946c CCC: $37.00 © 2007 American Chemical Society Analytical Chemistry, Vol. 79, No. 1, January 1, 2007 89
Published on Web 11/21/2006



feature has given rise to numerous biological applications of the
technique.21-23

A new spray ionization technique, extractive electrospray
ionization (EESI), which has promising applications, has been
developed. EESI is related to DESI, but was developed for the
direct analysis of trace compounds in the solution phase, especially
when complex mixtures are of interest.24 The method is also
related to an electrospray experiment reported by Fenn and
Fursteneau in which compounds present on particulates in air
were detected by electrosraying a solvent.25 DESI utilizes one
spray source, in contrast to EESI, which is a direct solution
analysis method and utilizes two spray sources, eliminating the
use of a surface on which the analyte is first collected. One spray
source nebulizes the sample while the other provides charged
solvent droplets. The two spray sources used are angled with
respect to each other and to the mass spectrometer inlet to
introduce the analyte of interest directly to the source.26 During
EESI, the sample and solvent are continuously introduced into
the source, making rapid analysis possible. Varying the angles of
the spray sources affects the sensitivity and long-term stability of
the technique.24 No sample preparation is required for this
method, and stable signals have been observed for as long as 7 h
for raw urine,24 a feature that is beneficial for metabolomics
analysis, since large numbers of samples can be analyzed suc-
cessively, each in a short period of time.

1H NMR spectroscopy has been widely used to study the
metabolic variation in biofluid samples, and its capabilities for
metabolomics are well established.9,27 It is a rapid, quantitative
method used to extract metabolic information from a sample with
minimal or no preparation.19,28,29 Thousands of peaks resulting
from a large collection of metabolites can be simultaneously
displayed in the NMR spectra. The challenge of analyzing spectra
of complex metabolite mixtures that may contain hundreds of
NMR-detectable compounds can be addressed by processing the
data using multivariate statistical methods.

A variety of these statistical methods have proven useful for
the analysis of complex biofluids. Principal component analysis
(PCA) is often used because it provides an effective unsupervised
method to differentiate (but by itself not to further describe) the
chemical changes in biofluids. PCA is a dimension-reduction
technique that transforms correlated variables into a smaller
number of orthogonal variables called principal components
(PCs).30,31 Each spectrum is represented by a single point in a

score plot with the PCs as the coordinate axes. Similar spectra
will be clustered together, and different spectra will be separated
along at least one PC axis. The loading plot contains the
information about compounds that contribute to the separation.
For further analysis of the compounds within the loading plot,
the Pearson correlation may be applied to determine the degree
to which variables are related to one another.32 Values range from
+1 to -1, indicating positive and negative correlations, respec-
tively. The identification and validation of metabolite species may
possibly lead to the rapid identification of biomarkers of disease
in appropriate situations.30,33

Although much concern has been focused on the extraction
and analysis of samples, studies on the effects of the diet of
subjects during the sample collection period are also vitally
important, since diet is known to play a major role in metabolomics
research.7,15,34 Previous research demonstrates that diet has
remarkable effects on urinary composition, and significant changes
in hippuric acid, succinate, citrate, and N-methylnicotinamide are
often observed.13,15,34,35 In the current study, we show that changes
in the diet of rats can be easily observed using PCA and monitored
most clearly by examining compounds formed by specific meta-
bolic pathways. Some pathways, such as the urea cycle and
metabolism of amino groups (UCMAG) are quick to follow
changes in diet. As a result, this presents an opportunity to focus
the metabolic analysis on specific pathways.

MATERIALS AND EXPERIMENTS
Animal Study and Sample Collection. To assess the influ-

ence of diet variations, urine samples were obtained from four
male BALB/c rats for three consecutive days. The rats were
acclimated for a period of 4 days before experiments were initiated.
Each rat was housed in a metabolism cage with free access to
water and rotated daily through the three diets: overnight fast,
normal diet (Harlan Teklad 2018 Vegetarian Rodent Diet, 18%
protein and 5% fat), and turkey cat food diet (Marsh Gourmet
Sliced Turkey in Gravy, Marsh Supermarkets; stored in a
refrigerator throughout the course of the study) in a different
order for each rat. In total, 12 urine samples were collected and
stored at -80 °C until NMR and MS analysis was performed. Rats
were treated according to protocols approved by a local Institu-
tional Animal Care and Use Committee.

Sample Preparation and Instrumentation for NMR Stud-
ies. A Bruker DRX 500-MHz spectrometer equipped with a room-
temperature HCN probe was used to acquire one-dimensional 1H
spectra. Samples were prepared by mixing 300 µL of undiluted
rat urine with 300 µL of 0.5 M potassium phosphate buffer solution
(pH 7.4) containing 10 mM of 3-(trimethylsilyl)propionic-(2,2,3,3-
d4) acid sodium salt (TSP) in D2O, which was used as the
frequency standard (δ ) 0.00). Water peaks were suppressed
using a standard 1D-NOESY (nuclear Overhauser effect spectros-
copy) pulse sequence coupled with water presaturation. For each
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spectrum, 32 transients were collected, resulting in 32k data points
using a spectral width of 6000 Hz. An exponential weighting
function corresponding to 0.3-Hz line broadening was applied to
the free induction decay before applying Fourier transformation.

After phasing and baseline correction using Bruker’s XWIN-
NMR software, NMR spectral regions were binned to 1000 buckets
of equal width to remove the errors resulting from the small
fluctuations of chemical shifts due to pH or ion concentration
variations. Cloarec and co-workers have recently reported an
alternative approach that utilizes the full-resolution data to improve
the interpretability of statistical results, although it relies on the
supervised statistical method, O-PLS-DA (orthogonal projection
on latent structure discriminant analysis).36 The spectral region
from 4.5 to 6 ppm was removed to eliminate the variations in the
water resonance suppression as well as the urea signal. Each
spectrum was normalized by the integration of the whole spec-
trum. Noise effects were reduced for the datasets by an iterative
(threshold-based) approach. All remaining regions were imported
into Pirouette software (v. 3.11; InfoMetrix, Woodinville, WA),
where mean-centered PCA was performed.

Instrumentation for Extractive Electrospray Ionization
Mass Spectrometry Studies. EESI-MS experiments were carried
out using a Thermo Finnigan LCQ (San Jose, CA) mass spec-
trometer coupled with a home-built EESI source.24 The two
sprayers were set in such a manner that both the angle between
the sample nebulizer and MS inlet (R) and the angle between
the two sprayers (â) were equal to 90°; this was found to minimize
carryover of the urine samples. One hundred-fold-diluted urine
samples were examined without any further sample pretreatment.
Samples were infused at a rate of 1 µL/min by a syringe pump
into the sample nebulizer and dispersed under ambient conditions.
The spray solvent (methanol/water/acetic acid, 45:45:10) was
infused by another syringe pump at an infusion rate of 5 µL/min.
Charged solvent droplets were guided into the sample cloud so
that analytes could be extracted into the solvent. The resulting
droplets were directed into the atmospheric interface of the mass
spectrometer, where evaporation of the solvent yielded analyte
ions for MS analysis. All MS spectra were recorded for exactly
1.5 min and converted into txt format for further statistical
processing.

To confirm the structures of those compounds that best
differentiated the spectra, collision-induced dissociation (CID) was
performed in the positive ion detection mode of EESI-MS. To
obtain CID spectra, a window of 1.0 m/z units was used to isolate
the parent ions, and 25-35% (manufacturer’s units) collision
energy was applied. To reduce the instability of EESI mass spectra
and demonstrate the reproducibility of the technique, five replicate
spectra were collected sequentially for each sample.

Similar to the procedure used for the analysis of NMR spectra,
the mass spectral region between m/z 100 and 400 was reduced
to 1000 buckets of equal width. The data were normalized by
integration of each spectrum prior to statistical analysis using
Pirouette software. For pathway analysis, mean-centered PCA was
applied to 42 compounds known to be associated with the purine
metabolism and 19 related to UCMAG with m/z values ranging
from 100 to 400. The presence of these compounds in urine

samples was confirmed by CID experiments, relevant literature,
or the METLIN metabolite database.37

Principal Component Analysis. The variability in the spectral
profiles was studied by PCA and by multivariate analysis of
variance (MANOVA). To give a simple qualitative measurement
of the separation of the urine samples, we first applied a
multivariate normal model to the scores from the PCA results
using the p-value. Wilks’ lambda (Λ),31 which in this study is an
indicator of the strength of the dietary effect, was also calculated
for each full score plot and every two clusters in the score plot.
The Wilks’ Λ was used as the level of discrimination since the
p-values used to test the null hypothesis in MANOVA was <0.01
for all score plots. Because Wilks’ Λ values do not require a normal
distribution assumption, which is difficult to verify for this sample
size, it is likely to be a more appropriate measure of clustering
than p-values. Wilks’ Λ values <0.1 will indicate a stronger
treatment effect and, thus, better clustering. In the current study,
MANOVA analysis was performed using the R program (version
R 2.2.0).

RESULTS AND DISCUSSION
The effect of diet on metabolic composition of rat urine was

determined using PCA of 1H NMR and EESI-MS spectra. Figures
(36) Cloarec, O.; Dumas, M. E.; Trygg, J.; Craig, A.; Barton, R. H.; Lindon, J. C.;

Nicholson, J. K.; Holmes, E. Anal. Chem. 2005, 77, 517-526. (37) http://metlin.scripps.edu/.

Figure 1. Typical 1H NMR spectra of urine from rats with different
diets: (a) normal diet (b) overnight fast (c) turkey diet.
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1 and 2 depict typical 1H NMR and EESI-MS spectra and illustrate
the pronounced variation among the spectra from the three diets.
For both techniques, the spectra share common features but are
still unique to each diet. Application of PCA to each spectrum
will identify which metabolites are most influential in causing the
observed variations among the spectra.

As shown in Figure 1, 1H NMR spectra show a large number
of isolated and overlapped peaks caused by the hundreds of
metabolites present in the samples. The three spectra in Figure
1 illustrate the chemical shifts of metabolites that are responsible
for the distributions in the score plots of PCA results. In the 1H
NMR spectra, the aliphatic regions are dominated by peaks from
trimethylamine oxide (TMAO), taurine, creatinine, glucose, suc-

cinate, dimethylamine and R-ketoglutarate, whereas hippurate and
phenylalanine generate large resonances visible in the aromatic
region. These assignments are based on previous work reported
in the literature.5,38 There is a larger variation in the aliphatic
region than in the aromatic region; therefore, it is anticipated that
the aromatic region has a smaller effect on the statistical
classification.

Compared to the NMR spectra, the EESI mass spectra show
more variations among the three types of samples. For example,
changes in intensities of peaks that are provisionally assigned for
creatinine (m/z 114), alloxan (m/z 143), gluconic acid (m/z 197),
and 3-hydroxykynurenine (m/z 225) are significant in Figure 2.
For instance, the intensity of the gluconic acid signal, m/z 197,
changes by a factor of almost 8 (from 2195, 2254, 343, arbitrary
units) for the normal, overnight fast, and turkey diets, respectively.
Figure 3 illustrates this variance in peak intensity for gluconic
acid and three other metabolites prominent in each spectrum for
the different diets. In Figure 3, the urine of rats treated with the
turkey diet have higher ion abundances for alloxan and 3-hydrox-
ykynurenine, whereas peaks for gluconic acid are lower for the
turkey diet as compared to the other two diets. Moreover, for
glucose, the difference between rats with different diets is much
smaller than for the other compounds. These results are also
confirmed by PCA results presented later. The variation between
rats fed the same diet is also indicated in Figure 3 by the size of
the corresponding error bars. Overall, these variations among the
individual rats are relatively small, with the largest variation being
observed for alloxan in the turkey and normal diets and gluconic
acid in the normal diet and overnight fast.

Assignments of peaks that showed pronounced variations in
intensities as well as those specific to the purine metabolism and
the UCMAG were confirmed through tandem mass spectrometry
experiments. Figure 4 illustrates typical EESI tandem mass spectra
recorded by CID spectra for the four compounds in Figure 3. The
CID data were collected at collision energies ranging from 25 to
35% with a methanol/water/acetic acid (45:45:10) spray solvent
in the positive ion mode. For example, the presence of protonated
alloxan was confirmed with a standard alloxan solution, which
showed fragment ions with m/z 143, 126, 114, and 84, correspond-
ing to losses of C4H3O4N2 (protonated parent ion), OH, COH, and
NHCOHNH, respectively.

PCA Results of 1H NMR Spectra. To display the quantitative
metabolite variations due to diet and obtain a more accurate
analysis, PCA was performed using the full, processed 1H NMR
spectra. As shown in Figure 5a, PCA separated the 12 rat urine
samples into three groups according to the dietary treatments in
the score plot of PC1 versus PC2. The first two PCs explain more
than 90% of the total variance. Figure 5b illustrates this variation
in 1-D loading plots of PC1 and PC2 resulting from the NMR
spectra. The variation within the score plot can be attributed to
the alterations of metabolite resonance signals in the NMR spectra.
From the two loading plots, the species that are most responsible
for differentiation in the NMR spectra are creatinine (3.05 s),
glucose (3.42 t, 3.54 dd), 2-oxoglutarate (2.45 t, 3.01 t), TMAO
(3.26 s), and taurine (3.28 t, 3.43 t), which contribute strongly to

(38) Feng, J. H.; Li, X. J.; Pei, F. K.; Chen, X.; Li, S. L.; Nie, Y. X. Anal. Biochem.
2002, 301, 1-7.

Figure 2. Typical EESI-MS data. Mass spectra collected using LCQ
on 100-fold-diluted rat urine samples and methanol/water/acetic acid
(45:45:10) spray solvent. (a) normal diet, (b) overnight fast, and (c)
turkey diet.
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the aliphatic region. Additional, smaller changes are seen in the
aromatic region.

Wilks’ Λ values presented in Table 1 represent the quality of
the separation or clustering for the score plot of Figure 5a. The
Λ value for spectra within a cluster is 1, since the same diet
treatment is being evaluated. Since Λ values are <0.1 for the
remaining comparisons, it is reasonable to claim that the clas-

sification in the score plot is of good quality. Two terms are
important for the calculation of Λ values: one is the variation
among spectra in each cluster; another is the difference among
clusters. The former is determined by many factors, such as
health, interaction between rats, and the reproducibility of the
instrument. However, this term is expected to be small because
the rats chosen were of the same strain and were allowed to

Figure 3. Plots of intensities of a small set of compounds in EESI-MS of different samples: alloxan (m/z 143), 3-hydroxykyurenine (225),
gluconic acid (m/z 197), and glucose (m/z 181). See Figure 2 for spectra.

Figure 4. Typical EESI tandem mass spectrometry data. CID was used to record product ion spectra collected in the positive ion mode with
a collision energy ranging from 25 to 35% using methanol/water/acetic acid (45:45:10) spray solvent in the LCQ mass spectrometer. Samples
were diluted 100-fold to conserve sample. (a) Alloxan (CID m/z 143), (b) 3-hydroxykyurenine (CID m/z 225), (c) gluconic acid (CID m/z 197),
and (d) glucose (CID m/z 181).

Analytical Chemistry, Vol. 79, No. 1, January 1, 2007 93



interact throughout the study, thus minimizing metabolic differ-
ences due to gut microflora.39 In addition, the process of acquiring
and processing the data is kept consistent during the study. The
latter term, variation between clusters, is expected to be the most
influential to the observed classification in the score plot, which
we assume is determined by the different dietary regimens. The
small error bars seen in Figure 3 add further evidence that these
effects are relatively small, as compared to the observed diet
effects.

PCA Results of Extractive Electrospray Ionization Mass
Spectra. PCA was carried out using the EESI mass spectral data
over the m/z range of 100-400. Five replicate measurements were
performed for each sample. In Figure 6a, good reproducibility is
indicated; each cluster contains 20 spectra. The reproducibility is
evident as the five spectra for each sample are clustered tightly
together to give the appearance of fewer data points. Improved
classification is obtained when compared with the score plot of
the NMR spectra (Figure 5a). Table 2 gives Λ values for the score
plot of the EESI mass spectral data. It is found that Figure 6a has
a somewhat tighter cluster when the same diet is evaluated and
there is better separation between different diets than Figure 5a,
which is evident by the smaller Λ values. The high-quality
separation of diets in Figure 6a explains the large differences
observed for EESI mass spectra of urine samples from rats fed
different diets.(39) Robertson, D. G. Toxicol. Sci. 2005, 85, 809-822.

Figure 5. Results of mean-centered PCA results for NMR data of
rat urine samples: (a) score plot with an overall Λ ) 0.005 and (b)
loading plots for PC1 and PC2.

Table 1. Wilks’ Λ for Score Plot Based on NMR
Spectraa

turkey diet normal diet overnight fast full plot

turkey diet 1 0.091 0.024 0.005
normal diet 0.091 1 0.047
overnight fast 0.024 0.047 1

a See Figure 5a for score plot.

Figure 6. Plots of mean-centered PCA results for EESI-MS data
of rat urine samples recorded using methanol/water/acetic acid as
spray solvent with five measurements for each sample: (a) score
plot illustrating reproducibility of the EESI technique and separation
of diets with an overall Λ ) 0.001 and (b) loading plots for PC1 and
PC2.
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The molecules that contribute most to the differences in
spectral patterns were determined using the same methodology
as that used for 1H NMR, and these data are presented in Figure
6b and Supporting Information Figure S1. The principal com-
pounds that show variations in MS include glucose (m/z 181),
creatinine (m/z 114), alloxan (m/z 143), gluconic acid (m/z 197),
cystine (m/z 240), 3-hydroxykynurenine (m/z 225), γ-L-glutamyl-
cysteine (m/z 251), and carnosine (m/z 227). The concentrations
of alloxan, 3-hydroxykynurenine, and 5-dihydro-1H-imidazole-5-
carboxylate are higher in urine samples from rats on the turkey
diet than from rats on the other two diets; conversely, the
concentration of urinary gluconic acid is lower from rats on the
turkey diet. However, for glucose, the loading value for PC1 is
small compared to its PC2 value; thus, the effect of PC2 is not
negligible, even though PC2 contains only 7% of the total variance
in the spectra (PC1 explains 85%). The results are in agreement
with those presented in Figure 3; spectra for the turkey diet show
higher intensities for ions corresponding to alloxan and 3-hydrox-
ykynurenine and lower intensities for gluconic acid, as indicated,
whereas the differences among the three diet regimens for glucose
are blurred. NMR and EESI-MS give similar clustering. However,
with the exception of glucose and creatinine, they select for
different information due to their differences in sensitivity,
selectivity, and detection method. These differences are also
complicated by spectral overlaps that are different for the two
techniques. However, the results here indicate that the PCA of
NMR data and EESI mass spectral data could be cross-validated
in terms of classification.

PCA of Compounds in the Urea Cycle and Metabolism of
Amino Groups and Those Related to Purine Metabolism. The
effect of the three diets was further examined by monitoring
compounds associated with specific metabolic pathways. Metabolic
pathways are composed of a series of chemical reactions occurring
in living systems to generate certain compounds. The concentra-
tions of enzymes that catalyze these reactions can be changed at
the gene level by changes induced by diet.40 All the reactants for
the pathway reactions come from food intake, either directly or
indirectly. As a result, we might expect that metabolites in some
pathways will more strongly express differences induced by diet
intake than those associated with other pathways. We have
focused on purine metabolism and the UCMAG for this analysis.

A question one might ask is whether the metabolites in an
individual pathway are correlated to each other. The Pearson
correlation can be used to address this question.30,32 The Pearson
correlation was calculated for each pair of metabolites identified
by MS in each of the two metabolic pathways (19 compounds for
UCMAG and 42 for purine metabolism) across the set of 12 urine
samples. As is shown in Figure 7, the Pearson correlation matrices
indicate that most of the compounds within each of these two
metabolic pathways are highly and positively correlated, and this
is especially so for metabolites that are directly linked by enzymes
in the pathway. Correlation values above 0.9 are not uncommon.
Interestingly, there are several places where there is a negative
correlation, and these indicate the possibility of a change in
enzymatic activity that couples two negatively correlated metabo-
lites.

Figure 8a shows the PCA results for those compounds present
in the UCMAG that are responsible for ions with m/z 100-400.
In the score plot (Figure 8a), there are three clusters that follow
the diet regimens, similar to the classification that results from
the full spectrum analysis. The Wilks’ Λ for the reduced score
plot (Figure 8a) is summarized in Table 3. It is shown that the

(40) Eder, K.; Flader, D.; Hirche, F.; Brandsch, C. J. Nutr. 2002, 132, 3400-
3404.

Figure 7. Pearson correlation among (a) 19 molecules related to the UCMAG (urea cycle and metabolism of amino groups), and (b) 42
molecules related to purine metabolism. The scale indicates the range of correlations observed.

Table 2. Wilks’ Λ for Score Plot Based on EESI- Mass
Spectraa

turkey diet normal diet overnight fast full plot

turkey diet 1 0.010 0.009 0.001
normal diet 0.010 1 0.035
overnight fast 0.009 0.035 1

a See Figure 6a for score plot.
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clustering is of good quality, although Λ values are slightly higher
than for the analysis using the full mass spectra. The loading plot
(Figure S1a) illustrates that creatinine, guanidinoacetate, and
5-dihydro-1H-imidazole-5-carboxylate are the main compounds that
contribute to the classification seen in the score plot. These results
suggest that 19 metabolites in the UCMAG are enough to express
most of the variations in metabolic profiles caused by different
diets.

Figure 8b shows the PCA results for 42 compounds that are
related to purine metabolism and that give ions with m/z 100-
400. In the score plot (Figure 8b), only rats on the turkey diet
are separated, whereas the data points representing the overnight
fast and normal diet are mixed. Compared to Figures 6a and 8a,
Figure 8b gives the worst separation, because Λ values in Table

4 are larger than 0.1. For example, the level of discrimination
between overnight fast and normal diet is 0.48. One point worth
noting here is that even the p-value for purine metabolism is <0.01,
which indicates that the mean values for samples representing
the different groups are well-separated. The compounds that
strongly influence the separation between diets were identified
using the loading plot (Figure SI1b). 5-Dihydro-1H-imidazole-5-
carboxylate, xanthosine, and allantoin can separate the turkey diet
from the other two diets somewhat, but the normal diet and
overnight fast diets cannot be differentiated by PCA.

The present study suggests that metabolites of the UCMAG
are more affected by diet as compared to metabolites of purine
metabolism. Excess nitrogen is converted to urea and removed
from the human body by dominant reactions in the UCMAG.41,42

Animals cannot transform atmospheric nitrogen into forms that
can be used by the body, and thus, diet is the main source for
amino acids containing nitrogen, which is important in formation
of tissues. Currently, dietary alteration is being applied as a clinical
treatment for diseases caused by urea cycle defects,43 as well as
for a number of genetic metabolic diseases.6 Purine metabolism
involves the synthetic process of purine and pyrimidine nucle-
otides.41,44 Indeed, the nutritional requirement for nucleotides is
mostly relieved by nucleotide sources within the body; thus, it is
expected and found that diet will have much less effect on the
concentrations of compounds related to purine metabolism.

CONCLUSION
In this study, we have demonstrated (1) the effect of diet on

metabolites in purine metabolism and the urea cycle that center
on the metabolism of amino groups, (2) the ability of EESI-MS to
serve as an analytical tool for metabolomics analysis, and (3) the
PCA results of NMR data and EESI mass spectral data can be
cross-validated. Rats of identical species fed with the same diet
are clustered together whereas different treatments are separated
when PCA is applied to the full NMR and MS spectra. MS in
combination with NMR is a promising tool for discovering and
quantifying metabolites in biofluid samples. In this study, the PCA
of EESI-MS and full 1H NMR spectra gave similar clusters
according to the diet treatments. EESI yields reproducible results
with good clustering, which demonstrates that EESI has promising
applications for metabolomic analysis. Depending on the type or
amount of the sample, either EESI or DESI can be picked for the
particular metabolomics application. DESI has proved successful

(41) Berg, J. M.; Tymoczko, J. L.; Stryer, L. Biochemistry, 5th ed.; W. H. Freeman
and Company: New York, 2001.

(42) Mori, M.; Gotoh, T.; Nagasaki, A.; Takiguchi, M.; Sonoki, T. J. Inherited
Metab. Dis. 1998, 21, 59-71.

(43) Leonard, J. V. J. Pediatr. 2001, 138, S40-S44.
(44) Zöllner, N. P. o. t. N. S., 41, 329-342.

Figure 8. Score plots of mean-centered PCA results of EESI-MS
data monitoring compounds in (a) the UCMAG and (b) purine
metabolism. (a) Score plot of the UCMAG compounds illustrating tight
clustering and good separation based on diet using compounds in
the UCMAG illustrating the significant effect of diet. Overall Λ ) 0.003.
(b) Score plot of purine metabolism compounds illustrating poor
clustering and separation based on diet using compounds in purine
metabolism. Overall Λ ) 0.106.

Table 3. Wilks’ Λ for Score Plot Based on PCA of 19
Compounds from the Urea Pathwaya

turkey diet normal diet overnight fast full plot

turkey diet 1 0.020 0.019 0.003
normal diet 0.020 1 0.093
overnight fast 0.019 0.093 1

a See Figure 8a for score plot.

Table 4. Wilks’ Λ for Score Plot Based on PCA of 42
Compounds from the Purine Metabolisma

turkey diet normal diet overnight fast full plot

turkey diet 1 0.104 0.107 0.106
normal diet 0.104 1 0.478
overnight fast 0.107 0.478 1

a See Figure 8b for score plot.
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in analyzing dried spots of blood, urine, and tissues to differentiate
diseased and normal samples.6,19

Diet is an important factor that is necessary to consider in
metabolomics research. From a more specific analysis, we find
that performing PCA on different metabolic pathways indicates
that diet affects the UCMAG more than it does purine metabolism.
Chemical variations caused by diet are well-expressed by the
UCMAG. Significant variations were observed in creatinine,
guanidinoacetate, 5-dihydro-1H-imidazole-5-carboxylate, xanthosine,
and allantoin. This approach may be useful for tailoring metabo-
lomic analyses to specific metabolic pathways, and may also
suggest a method to control the influence of diet in future
metabolomics studies.

This paper also shows that the influence of diet can be
observed by PCA in NMR and EESI mass spectra after 24 h.
Although diets can be varied, in clinical applications, some
variability of subjects, including age or heredity, cannot be
eliminated. The distortion caused by these factors can be

significant and make statistical analysis less certain. Focusing on
a specific pathway may reduce the number of compounds needed
for statistical analysis and perhaps limit the effect of diet and
hopefully some other potential factors.
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