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1. Introduction

ABSTRACT

Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) are the two most com-
monly used analytical tools in metabolomics, and their complementary nature makes the combination
particularly attractive. A combined analytical approach can improve the potential for providing reli-
able methods to detect metabolic profile alterations in biofluids or tissues caused by disease, toxicity,
etc. In this paper, '"H NMR spectroscopy and direct analysis in real time (DART)-MS were used for the
metabolomics analysis of serum samples from breast cancer patients and healthy controls. Principal com-
ponent analysis (PCA) of the NMR data showed that the first principal component (PC1) scores could be
used to separate cancer from normal samples. However, no such obvious clustering could be observed in
the PCA score plot of DART-MS data, even though DART-MS can provide a rich and informative metabolic
profile. Using a modified multivariate statistical approach, the DART-MS data were then reevaluated by
orthogonal signal correction (OSC) pretreated partial least squares (PLS), in which the Y matrix in the
regression was set to the PC1 score values from the NMR data analysis. This approach, and a similar one
using the first latent variable from PLS-DA of the NMR data resulted in a significant improvement of the
separation between the disease samples and normals, and a metabolic profile related to breast cancer
could be extracted from DART-MS. The new approach allows the disease classification to be expressed
on a continuum as opposed to a binary scale and thus better represents the disease and healthy classi-
fications. An improved metabolic profile obtained by combining MS and NMR by this approach may be
useful to achieve more accurate disease detection and gain more insight regarding disease mechanisms
and biology.

© 2010 Elsevier B.V. All rights reserved.

as well as other targeted or global approaches are being exam-
ined intensely to evaluate their success in detecting metabolic

Metabolomics, along with the related areas of metabonomics
and metabolite profiling, is a powerful systems biology approach
which combines data-rich analytical techniques with chemo-
metrics for advanced investigations of metabolism in biological
systems [1-5]. Among the many promising applications in the field
of metabolomics, early detection of disease through the discov-
ery of new biomarkers is an attractive driving force for research
[6]. Metabolic profiling, in which quantitative information on a
limited set of metabolites is measured, and fingerprinting, where
the focus is on a broader pattern of metabolite signals, are two
frequently used approaches in metabolomics studies [7]. These
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perturbations for a variety of fundamental studies and important
applications.

Nuclear magnetic resonance (NMR) spectroscopy and mass
spectrometry (MS) are the two most commonly used analyti-
cal tools in metabolomics [6-11]. TH NMR spectroscopy is useful
in metabolomics studies primarily because it is quantitative and
highly reproducible, while MS provides much better sensitivity
and is more selective than NMR. An increasing number of stud-
ies are taking advantage of the complementary nature of both
methods [12-17]. While the NMR instrumentation used in the
field of metabolomics is relatively standard, a variety of MS instru-
ments and techniques are currently being applied in metabolomics.
In addition to the widely used methods of gas chromatogra-
phy (GC)-MS [18] and liquid chromatography (LC)-MS [19],
atmospheric sample introduction methods are being applied in
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metabolomics, including desorption electrospray ionization (DESI)
[16,20] and extractive electrospray ionization (EESI) [15,21].

DART (direct analysis in real time) is a newly developed
atmospheric ionization method that has extensive potential in
applications such as analyzing chemical reagents, drugs, metabo-
lites, and peptides [22-24]. The DART method requires no sample
separation prior to analysis and sampling is completed by sim-
ply dipping the closed end of a glass melting point capillary
tube into the serum. Another advantage of applying DART-MS in
metabolomics is that despite the presence of sodium and potas-
sium salts in serum the ionization method protonated metabolites
without production of either sodium- or potassium-adducts of
those same metabolites resulting in a simplified mass spectrum
with fewer ions to quantitate. These features make it reasonable
to anticipate that high throughput DART-MS analysis with inex-
pensive consumable samplers could be accomplished for numerous
biological applications [25].

In terms of data analysis, several recent metabolomics studies
have been reported that combine both NMR and MS techniques
using advanced statistical methods. Statistical heterospectroscopy
(SHY) and orthogonal partial least squares (O-PLS) algorithms have
been used to integrate profiles from different analytical platforms
[14,26]. Pan et al. applied Pearson correlation between NMR and
DESI-MS data sets to obtain a list of molecules associated with dif-
ferent inborn errors of metabolism (IEMs) [16]. Chen et al. [12]
improved the classification between healthy mice and mice with
lung cancer using a combined 3D score plot, with two princi-
pal component (PC) scores obtained from the DESI-MS data and
one PC score obtained from the NMR data. Since NMR and MS
generate unique metabolic profiles, the combination of these two
analytical tools using various statistical methods can provide new
metabolic insights as well as avenues for inquiry and development
in metabolomics.

A variety of multivariate statistical methods are currently in use
in the metabolomics field. Principal component analysis (PCA) is
a dimension reduction method based on identifying variance and
is probably the most widely used multivariate approach [27,28].
Consensus PCA (CPCA) performs PCA analysis on multiple blocks of
data measured on the same objects [29,30]. The bilinear statistical
approach of partial least squares discriminant analysis (PLS-DA) is
one of the most popular supervised methods used in metabolomics.
In PLS-DA, the X matrix contains the data variables, while the Y
matrix contains the class variable for which values are chosen to be
the class descriptor [31-33]. Orthogonal signal correction (OSC) is a
PLS-based data filtering technique that removes the information in
X matrix which is uncorrelated to the Y matrix, and consequently
a PLS model based on the now corrected X matrix may focus the
analysis more exclusively on the variable(s) of interest [34-36].
Orthogonal projection to latent structures [37] is an alternative
model. OSC-PLS and O-PLS have the same objective but achieve the
goal through different means. OSC-PLS uses an internal iterative
method to find orthogonal components and O-PLS is a modifi-
cation of non-linear iterative partial least squares (NIPALS) [38].
Cross-model validation is recommended to accurately estimate the
classification error rates of PLS models [30,39,40]. An extra layer of
validation is provided by cross-model validation. Hence the result
is a conservative estimate of the robustness of the model and its
expected performance from a new dataset.

In the present study, we propose an alternative to PLS-DA in
which we combine NMR and DART-MS data to discover potential
serum biomarkers for breast cancer. Instead of using a dummy Y
matrix, we select a more meaningful Y vector in the PLS regression,
using the first principal component from the PCA of the NMR data.
This proposed approach provides a continuous variable for the Y
matrix, instead of the binary dummy variable. To avoid uninter-
esting noise in generating the metabolic profile, an OSC-PLS model

was generated based on the DART-MS data regression against PC1
scores from the NMR data, which is believed to carry the most vari-
ation related to breast cancer (vida infra). Samples in each class
(control or breast cancer) no longer shared the same Y values.
Instead, the Y vector reflects both the variation between the two
classes and that within each class. The combination of these two
analytical techniques will likely have powerful capabilities in the
areas such as disease detection and biomarker discovery.

2. Methods
2.1. Sample collection

Commercial human serum samples from 30 healthy controls
and 27 breast cancer patients were purchased from Asterand
(Asterand, plc. Detroit, MI). All the serum samples were obtained
from female volunteers with ages ranging from 40 to 75 years
old, and were approximately age matched. A table summariz-
ing the clinical characteristics of the cancer patient is shown in
Supplemental Information Table S1. Samples from cancer patients
were obtained prior to therapy. Samples were de-identified at
Asterand. Samples were transported over dry ice to Purdue Uni-
versity and stored at —80 °C until measurements were conducted.

2.2. 'H NMR spectroscopy

Samples were prepared by mixing 400 wL serum with 300 L of
a 1.5 mM 3-(trimethylsilyl) propionic-(2,2,3,3-d4) acid sodium salt
(TSP) solution (in D,0), in which TSP was used as the frequency
standard (6=0.00 ppm). Sample solutions were vortexed for 60s
and centrifuged for 10 min at 7000 rpm. Aliquots of 580 wL were
transferred into standard 5 mm NMR tubes for NMR measurements.
A Bruker DRX 500 MHz spectrometer equipped with a room tem-
perature HCN probe was used to acquire 1D 'H spectra. Samples
were measured using a standard 1D CPMG (Carr-Purcell-Meiboom-
Gill) pulse sequence coupled with water presaturation. For each
spectrum, 32 transients were collected resulting in 32k data points
using a spectral width of 6000 Hz. An exponential weighting func-
tion corresponding to 0.3 Hz line broadening was applied to the
free induction decay (FID) before applying Fourier transformation.
After phasing and baseline correction using Bruker's XWINNMR
software, the processed data were saved in ASCII format for further
multivariate statistical analysis.

2.3. DART-MS spectroscopy

DART-MS experiments were carried out using a Finnegan LCQ
Classic quadrupole ion trap coupled with a DART ion source (Ion-
Sense, Boston, MA). For the DART ion source, helium gas was
introduced into the corona discharge chamber at 2.0Lmin~!.
The needle electrode was held at —3000V. The first DC-biased
electrode was held at 300V and the exit electrode at 150V.
The DART ion source was located 20 mm away from the mass
spectrometer inlet, which was held at a potential of 54V. Sam-
ples were positioned and held on a mechanized sliding arm,
which assured reproducible sample position within the ioniza-
tion stream. 100-fold diluted serum samples were examined
without any further sample pretreatment and each sample was
deposited directly to the bottom of a 1.5 mm OD x 90 mm long cap-
illary tube. The nitrogen gas in the DART ion source was heated
to 350°C. Data were acquired for 1 min to establish the back-
ground signal. The capillary, with the sample on its surface, was
then quickly moved into and through the desorption ionization
region immediately in front of the exit of the DART source and
between that exit and the atmospheric pressure inlet of the mass
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spectrometer. Spectra were acquired over a mass range of m/z
100-1000.

2.4. Data analysis

Each NMR spectrum was reduced to 800 frequency bins
(0.02 ppm bin size) using the R statistical package (version 2.2.1).
Spectral regions within the range of 0.94ppm to 10 ppm were
analyzed after deleting the region between 4.5 and 6.0 ppm that
contained the residual water peak and urea signal. DART-MS spec-
trawere analyzed with full (unit m/z) resolution. The data were then
imported into Matlab software (Mathworks, MA) installed with the
PLS toolbox (Eigenvector Research, Inc., version 4.0) for PCA and PLS
modeling and open source software R (version 2.2.1) for k-nearest
neighbor and binning.

Both NMR and DART-MS spectra were normalized (such that the
total intensity of each spectrum is equal to 1) and mean-centered
prior to PCA. PCA scores of NMR spectra alone did not show sepa-
rate clusters for control and cancer samples. Therefore, PLS-DA and
OSC-PLS-DA models were applied to the DART-MS spectra (normal-
ized and mean-centered), using a dummy Y matrix. We performed
cross-model validation to examine the classification error rates of
the models. An alternative model was then used to combine the
two datasets: the single-component Y matrix was chosen to be the
PC1 score from the NMR data, because it achieved a better sepa-
ration of the cancer and control samples than the PC1 score from
the DART-MS data. The X matrix was composed of the DART-MS
spectral data. Both X and Y matrices were normalized and mean-
centered prior to multivariate analysis using Matlab to ensure that
the PC1 values could be compared. PLS and OSC-PLS models were
fitted using the above Y and X matrices. Results from cross-model
validation were compared to the results from models using one
dataset only. A receiver operating characteristics (ROC) graph and
area under the ROC curve (AUC) were calculated for each model to
compare their performance.

3. Results and discussion
3.1. NMR and DART-MS spectra

TH NMR spectra of the serum samples from a healthy control
and a breast cancer patient are presented in Supplemental Fig.
S1a and b, respectively. It can be clearly seen that the aliphatic
region dominates both control and disease spectra. Compounds
identified in Fig. 1 include lactate (4.14ppm, q, 1.35ppm, d),
creatine (3.94 ppm, s, 3.04 ppm, s), methionine (3.86 ppm, t), glu-
cose (3.75ppm, m), glycine (3.57 ppm, s), myo-inositol/glycerol
(3.56 ppm), taurine (3.43 ppm, t, 3.25ppm, t), trimethylamine
oxide (TMAO)/betaine (3.27 ppm, s), acetone (2.25 ppm, s), alanine
(1.49 ppm, d), and hydroxybutyrate (1.17 ppm, d). Several metabo-
lites, such as taurine, acetone, alanine, and hydroxybutyrate, are
observed to have large variations between the two spectra in
Supplemental Fig. S1. Assignment of these metabolites was based
on the use of KnowltAll software (Bio-Rad Laboratories, Inc., Her-
cules, CA) and previous studies [41-44].

DART-MS spectra from the same two samples, healthy control
and breast cancer patient, are shown in Fig. 1a and b, respectively.
Many peaks are spread over a wide mass range (m/z 100-1000),
which demonstrates the ability of DART to ionize small metabolites
(typically <600 Da) as well as some larger molecules. Though there
are certain differences in a number of peak intensities, the DART-
MS spectra are quite similar, and in general there are no prominent
peaks which can be used to differentiate control and breast cancer
samples by visual comparison.
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Fig. 1. DART-MS spectra of the same serum samples from: (a) healthy control and
(b) breast cancer patient.

Furthermore one metabolite may produce several peaks and
introduce some correlation among the peaks. Multivariate data
analysis is thus necessary to extract subtle changes in the DART-MS
data set.

3.2. PCA results for individual NMR and DART-MS data

We selected 5 PCs for the NMR spectra which explained 86.1%
of the total variance. We then used a k-nearest neighbor classifier
to examine how many samples were misclassified using the five
principal components. The k-nearest neighbor classifier classifies
an object based on the majority vote of its k-nearest neighbors. The
value of kis chosen to minimize the number of misclassified objects.
With k=3 and using leave-one-out cross validation, there were 6
misclassified cancer samples and 3 misclassified control samples
(see Table 1). Fig. 2a presents the PC1 and PC2 scores of the NMR
spectra from the 57 human serum samples. In the score plot and
later in other figures, two ellipses indicate 95% confidence regions
for the normal and breast cancer samples individually. The 95% con-
fidence regions are centered at the mean values of each group. Their
size is determined by the variance of each group and the 95th per-

Table 1
Classification results.

Model Misclassified Misclassified
cancer samples control
total=27 samples

total =30

PCA (NMR) 6 3

PCA (DART) 7 6

PLS-DA (DART) 11 11

0OSC-PLS-DA (DART) 10 6

PLS-DA (NMR) 5 5

0SC-PLS-DA (NMR) 3 5

PC direct PLS-DA 5 6

PC directed OSC-PLS-DA 3 1

LV directed OSC-PLS-DA 1 2
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Fig. 2. Score plots from the results of PCA of (a) NMR and (b) DART-MS spectra of
the same 57 human serum samples. Open diamonds represent normal samples and
red solid diamonds represent breast cancer samples. Ellipses in the score plot of this
figure and all other figures illustrate the 95% confidence regions of the corresponding
groups.

centile of a chi-square distribution. One outlier (normal sample) is
observed along PC1 and another (cancer sample) along PC2 at the
95% confidence level.

The two groups are separated mainly along the PC1 direc-
tion, which carries 39.4% of the total variance in the NMR data.
However, there is no distinct boundary between the two groups.
In the corresponding loading plot (Supplemental Fig. S2), several
metabolites, such as taurine, lactate, glucose and several others
can be identified. These molecules are among those that have been
reported previously to be correlated with breast cancer develop-
ment [45-48].

We selected 6 PCs for the DART-MS spectra which explained
75.1% of the total variance. The k-nearest neighbor classifier with
k=5 and using leave-one-out cross validation returned 7 misclas-
sified cancer samples and 6 misclassified control samples (see
Table 1). The PC1 and PC2 score plot is shown in Fig. 2b. No
well-separated clusters could be identified from the PC1 and
PC2 scores which captured 62.5% of the total variance in the
DART-MS data. The poor classification observed is in agreement
with the observation that there is no obvious differentiation
when comparing individual normal and disease DART-MS spec-
tra.

3.3. PLS and OSC-PLS analysis of DART-MS spectra

For PLS-DA and OSC-PLS-DA models fitted to DART-MS spec-
tra alone, we used leave-one-out cross validation to select the
number of latent variables (LVs) based on the cross validation
prediction error sum of squares (PRESS) curve. (Q2, an important
predictive ability parameter, equals 1 minus the ratio of PRESS
and the total sum of squares, where the total sum of squares is
a constant.)

PLS-DA was then applied to the DART-MS spectra, and the score
plot is shown in Supplemental Fig. S3. To build the PLS-DA model,
the presence of breast cancer was used as the input for the Y-matrix
data (“1” for the presence of cancer and “0” for its absence). 5 LVs
were selected. The results of this analysis are similar to the PCA
results of Fig. 2b, in that there is no obvious improvement in the
separation between the two groups.

To assess the classification error of the PLS-DA model we per-
formed a 4-fold cross-model validation. In each trial 75% of the
samples (75% from each group) were used as calibration data
set and the remaining 25% as an independent test data set. The
calibration data set and the test data set were each normalized
and mean-centered separately. Leave-one-out cross-validation was
performed with the calibration data set to determine the number
of LVs for each fold and construct a model. The resulting model
was applied to the test data set to compute the predicted Y val-
ues. The above process was repeated 4 times so that every sample
served as an independent test sample once and only once. We
then used the predicted Y values produced by the 4-fold cross-
model validation to examine the classification error. The predicted
Y values obtained from the cross-model validation returned 11
misclassified cancer samples and 11 misclassified control sam-
ples.

Next, OSC-PLS-DA was applied to the DART-MS data to remove
the impact from potentially confounding factors such as diet, med-
ications, and environment. Although PCA and PLS-DA failed to
distinguish the cancer samples from normal, it is still possible that
the DART-MS data contains valuable biochemical information. The
OSC-PLS-DA model used the same dummy Y matrix as the PLS-
DA model. One component in the OSC filter was chosen to remove
the information in the X matrix that is uncorrelated to the class
information. The model was constructed using 3 LVs.

Fig. 3a shows the score plot for the above OSC pretreated PLS
model. Compared to the score plot from PCA (Fig. 2b) and PLS-DA
(Supplemental Fig. S3), samples in Fig. 3a were better separated
with reduced overlap along a diagonal direction between LV1
and LV2 directions. These results indicate that the OSC-processed
DART-MS spectra are correlated with breast cancer and the vari-
ations caused by other effects can be reduced. Fig. 3b shows the
weight plot from the OSC-PLS model, where Weight 1 corresponds
to the weight of LV1. Several breast cancer-related peaks can be
seen in the weight plot, including those at m/z=149, 369, 445, 575,
577, and 601 are labeled in Fig. 3b. Further MS/MS experiments are
needed to identify these metabolites.

Again we performed a 4-fold cross model validation. The pre-
dicted Y values performed better with control samples: there were
10 misclassified cancer samples and 6 misclassified control sam-
ples. The OSC-PLS-DA results give evidence for the presence of
metabolic differences that may be detected using DART-MS. Since
PLS can extract the maximum variance from two matrices and OSC
is effective in focusing the analysis more exclusively on the vari-
ation of interest, it is helpful to use the OSC filter prior to PLS
to combine the merits of both NMR and MS. Low-concentration
molecules can be examined using the DART-MS data as the X
matrix. One issue in the OSC-PLS analysis is to determine which
data should be chosen as the Y matrix. From the NMR PCA score plot
(Fig. 2a), the separation between breast cancer and normal samples



H. Gu et al. / Analytica Chimica Acta 686 (2011) 57-63 61

a x 10

8 Vﬁ
Normal Breast Cancer
: Bre
o |
4 ® 1o

¢
2 % 007\ :\

4
N 9 / VDN '3 &
2 % e
Lo ¢
“ < ¢ ¢ ¢
®
6
-8
-0.015 -0.01 -0.005 0 0.005 0.01 0.015
LV1
Weight 1
b er
wnwn
v
S
©
. RTOR W) ui. 1, lmm
WWHWU”T T o
100 20 300 00 500 600 700 800 200 1000

149

[’}
<
<

o
©
®

Fig. 3. OSC-PLS-DA results of the DART-MS data from 57 patient samples: (a) score
plot with symbols indicating the same sample types as Fig. 2; (b) weight plot for
LV1.

is mostly along PC1, in other words, the perturbation caused by
breast cancer could be mainly represented by the NMR PC1 scores.

3.4. PCdirected PLS: combined NMR and DART analysis

To take advantage of this correlation, OSC-PLS analysis was per-
formed by regression of DART-MS against the PC1 scores from PCA
of the NMR data, and the resulting score plot is shown in Fig. 4a.
4 LVs were selected. One component in the OSC filter was chosen
to be excluded to remove the information in the X matrix that is
uncorrelated to the response Y. It is evident that the classification in
Fig. 4a is significantly improved compared to that in the DART-MS
score plots in Fig. 2b (PCA), Supplemental Fig. S3 (PLS-DA) and even
Fig. 3a (OSC-PLS). In Fig. 4a, only one (normal) sample deviates (out-
side the 95% confidence region) from either confidence region. It is
interesting to notice that the classification in Fig. 4a is also better
than that in Fig. 2a (PCA score plot of NMR spectra), which indicates
that the metabolic profile extracted from the combination of NMR
and MS should be more informative and meaningful than that from
each individual analytical tool.

The peaks in the corresponding weight plot shown in Fig. 4b
contribute to the classification in Fig. 4a, and several of the impor-
tant peaks, at m/z 149, 217,299, 371, 445,577, and 601 are labeled.
Many, but not all of these are the same as those in the weight plots
after OSC-PLS-DA was performed on the DART-MS data alone. Col-
lision induced dissociation (CID) MS/MS confirmation experiments
are needed in order to identify the metabolites.
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Fig. 4. The OSC-PLS results of DART-MS spectra regressed against the PC1 scores of
NMR spectra: (a) score plot; (b) weight plot for LV1.

We then performed a 4-fold cross-model validation. The PC1
scores were computed from the NMR calibration data set with 75%
of the samples in each trial. Since the Y matrix was no longer binary,
we used the LV scores of the calibration data set as a training set to
classify the LV scores of the test data set using k-nearest neighbor
analysis. Cross-model validation resulted in 1 misclassified control
sample and 3 misclassified cancer samples (see Table 1).

To indicate the effectiveness of the OSC filter in excluding infor-
mation unrelated to PC1 scores of NMR spectra, the score plot of
common PLS (without the OSC filter) of DART-MS spectra regres-
sion against PC1 scores of NMR spectra is shown in Fig. S4. 8 LVs
were chosen for the common PLS model based on leave one out
cross validation PRESS. There is only a small change in the score
plot (Fig. S4) compared to the PCA score plot of DART-MS spectra
(Fig. 2b), along with a certain dimensional rotation that is probably
caused by the PLS regression. The classification in Fig. S4 is worse
than that in Fig. 4a, which indicates that the OSC-processed DART-
MS spectra are more correlated with breast cancer. There were 6
misclassified control samples and 5 misclassified cancer samples
based on cross-model validation.

Fig. 5 shows a ROC graph comparing the four PLS based models.
The ROC curve for one model is constructed by plotting the true
positive rate against the false positive rate. Then the ROC curves
for different models are superposed on the same graph to com-
pare their performance. Furthermore the area under the ROC curve
(AUCQ) is calculated for each model. The PC directed OSC pretreated
PLS model has the largest AUC (0.99), indicating its effectiveness to
separate the control and cancer classes.
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3.5. Further PCA analysis

We also implemented the Consensus PCA algorithm based on
the work by Westerhuis et al. [49] to combine information from
both datasets. We point out the fact that the DART-MS spectra have
many more variables than do the NMR spectra. However, the NMR
and DART-MS spectra were properly scaled in the analysis such that
DART-MS spectra did not dominate the results [49]. CPCA results
were worse than the results of simple PCA using one dataset. CPCA
explained a small percentage of the variance in each dataset using
6 PCs and the cancer and normal scores were highly overlapped.

NMR and DART-MS spectra may contain unique breast can-
cer related metabolic information not found in the other dataset.
Unfortunately we cannot separate cancer and normal samples and
confirm the selected peaks using one dataset alone. The proposed
model combines two datasets and uses PC1 scores of NMR data to
supervise model building. The resulting metabolic profile may not
be exhaustive but it provides important information for early breast
cancer detection.

It is worth mentioning that the algorithm used in this paper,
utilizing DART-MS spectra in the OSC-PLS regression against PC1
scores of NMR spectra, should have broader applicability and can
be extended in metabolomics studies to correlate any two spectro-
scopically orthogonal data sets, such as NMR, MS, and even Raman.
It is recommended to use PC(s) or LV(s) for the Y matrix to carry the
variance of interest from a quantitative and reproducible analytical
tool. It is also suggested that a limited number of PCs or LVs be used
for the Y matrix in the regression, and they might carry less than
the total variation in the corresponding spectra data. By this means,
systematic errors can be greatly reduced, and one can be assured
that only variations of interest are used especially when statistical
methods for orthogonal exclusion are applied.

3.5.1. Further PLS analysis of NMR spectra

We also constructed PLS-DA and OSC-PLS-DA models for the
NMR spectra alone using a dummy Y matrix. Again 4-fold cross-
model-validation was performed for both models. There were 5

misclassified control samples and 5 misclassified cancer samples
that resulted from the PLS-DA model, as well as 5 misclassified
control samples and 3 misclassified cancer samples from the OSC-
PLS-DA model (see Table 1). Although the performance of PLS-DA
models for NMR spectra using a dummy Y matrix alone is better
than that for DART spectra, we still observed some misclassified
samples.

The PLS analysis of the NMR spectra suggests an alternative Y
matrix. Instead of using the PC1 score of NMR spectra as Y matrix
to replace the dummy 0/1 Y matrix, we can use the LV1 score of the
PLS-DA model for NMR spectra or the LV1 score of the OSC-PLS-DA
model for NMR spectra as the Y matrix. We then have a LV directed
PLS-DA model along with a PC directed PLS-DA model.

Next we used LV1 score from OSC-PLS-DA model of NMR spectra
as the Y matrix and DART spectra as X matrix to construct the OSC-
PLS-DA model. The LV1 scores of the two classes have only minor
overlap. This turns out to also be a good choice for the Y matrix.
We performed 4-fold cross-model-validation again. There are 2
misclassified control samples and 1 misclassified cancer sample
(Table 1).

Given the very similar results, we recommend using the PC1
score of the NMR spectra over the LV1 score as Y matrix, because
the PC1 score is more robust than the LV1 score. This recommen-
dation assumes there is at least some visible separation along PC1
(or possibly PC2), otherwise the LV1 score would need to be used.
However, the LV1 score is subject to the individual user’s choice
for PLS-DA model, i.e. the number of LVs and whether to apply OSC
or not. Different users can have different LV1 scores from the same
dataset. LV1 score from a mis-specified model can potentially dam-
age the performance of the LV directed PLS-DA model. On the other
hand, different users will have the same PC1 score from a particu-
lar dataset. The classification results of two PCA analyses and 7 PLS
based models are compared in Table 1.

Regarding the mechanism for how our new method works, we
note that the binary class labels such as “cancer” and “control,” i.e.,
the true sample classifications, have no numerical meaning them-
selves. Using a 1 and 0 (or 1 and —1) to represent two classes has
become common practice because it seems there is no alternative
method to assign numerical values to the objects in two different
classes. However, given the continuum of disease states, it makes
sense thata continuous variable can instead be used to model breast
cancer, and this approach may provide an improved methodology
to describe the disease heterogeneity. Using a PC1 score or a LV1
score from one set of spectral data allows us to accurately evalu-
ate every object numerically. The approach is in essence similar to
the construction of support vector machine target function. In this
sense, a minor overlap is tolerated in the response Y to improve the
final classification result.

4. Conclusions

A new method for combining NMR and MS for metabolite stud-
ies that is based on the OSC-PLS regression is illustrated in this
paper. The use of complementary spectroscopies, in this case NMR
which is quantitative and reproducible and DART-MS which is
highly sensitive, is shown to improve classification. In this study,
according to the PLS and PCA results, DART-MS did not extract as
much variation related to breast cancer as did NMR. However, it was
shown that the DART-MS data could be used to separate the breast
cancer and normal samples in the score plot of OSC-PLS regres-
sion when the PC1 (or LV1) scores of the NMR data are used as
the Y matrix. Since an OSC filter is utilized, it is anticipated that
effects of other confounding factors on the spectra such as diet
and medication intake are also removed or reduced, and thus an
improved metabolic profile can be expected. The combination of
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these two analytical techniques will have powerful capabilities in
the areas such as disease detection and biomarker discovery. The
new approach allows the disease classification to be expressed on a
continuum as opposed to a binary scale and thus better represents
the disease and healthy classifications. Structural identification
of the DART-MS peaks is currently underway, but is beyond the
scope of the current paper. Finally, biochemical validation will be
highly useful to identify the mechanisms of breast cancer develop-
ment and provide further evidence for the validity of the obtained
metabolite species of interest. Follow-on metabolomics studies will
concentrate on the metabolite identification and on the aberrant
biological processes of breast cancer.
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