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ABSTRACT
Gaussian mixture models are an important tool in Bayesian
decision theory. In this study, we focus on building such
models over statistical database protected under differential
privacy. Our approach involves querying necessary statis-
tics from a database and building a Bayesian classifier over
the noise added responses generated according to differential
privacy. We formally analyze the sensitivity of our query set.
Since there are multiple methods to query a statistic, either
directly or indirectly, we analyze the sensitivities for differ-
ent querying methods. Furthermore we establish theoretical
bounds for the Bayes error for the univariate (one dimen-
sional) case. We study the Bayes error for the multivariate
(high dimensional) case in experiments with both simulated
data and real life data. We discover that adding Laplace
noise to a statistic under certain constraint is problematic.
For example variance-covariance matrix is no longer positive
definite after noise addition. We propose a heuristic method
to fix the noise added variance-covariance matrix.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Multivariate statistics;
H.2.7 [Database Management]: Database Administra-
tion—Security, integrity, and protection; H.2.8 [Database
Management]: Database Applications—Statistical data-
bases

General Terms
Algorithms, Experimentation, Security

Keywords
Differential Privacy, Statistical Databases, Mixture Models,
Classification

1. INTRODUCTION
Mixture models are widely used, theoretically mature tools

in statistical pattern recognition and pattern classification
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[2, 7]. The basic assumption behind mixture models is that
the data are obtained by sampling a population consisting
of several distinct sub-populations with their own distribu-
tions. Gaussian mixture models refer to the case where each
model follows multivariate normal (Gaussian) distribution.

Mixture models are suitable for both unsupervised learn-
ing (e.g., clustering using the Expectation Maximization al-
gorithm) and supervised learning (e.g., classification using
the Bayes’ decision rule). In this study, we assume that
the records of an input data set belongs to different cate-
gories and focus on the classification task. Various studies
have established tight bounds on Bayes classification error
such as the Chernoff and Bhattacharyya bounds. We inves-
tigate the problem of building Gaussian mixture models in a
privacy-preserving environment and try to establish similar
bounds under differential privacy as the privacy protection
mechanism.

Building Gaussian mixture models over a specific data set
requires obtaining the mean vector and the covariance ma-
trix for each class/category. This is often a straightforward
task. However, when the data set in question contains sen-
sitive information, special care has to be taken. Consider
the following motivating scenario. A medical researcher be-
lieves that a certain disease (e.g., diabetes mellitus) can be
diagnosed based on a series of attributes (e.g., blood pres-
sure, weight, height, blood sugar, etc.) that is assumed to
follow multivariate normal distribution and is recorded for
every patient admitted to a hospital. The researcher would
like to build a Gaussian mixture model and empirically test
this belief using the resulting classifier. Yet, the hospital
database contains highly sensitive information (e.g., disease
history of the patient) and should prevent direct access to
the data, even for research purposes.

Instead of granting direct access, the data users (i.e., the
researcher in our example) are provided with a sanitized
view of the database containing private information1. Var-
ious alternative privacy protection mechanisms have been
suggested for producing a sanitized view. Among the first
were anonymization methods such as k-anonymity [14], �-
diversity [12], and t-closeness [11]. Anonymization methods
try to break the association between data records and in-
dividuals by grouping together similar records. Once the
groups are formed, through generalization, suppression or
partitioning [15] a sanitized version of the data set is re-
leased to the data user. Most definitions of anonymity (e.g.,

1Unless the data are distributed across multiple parties,
methods based on Secure Multi-party Computation (SMC)
do not apply here.
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k-anonymity, �-diversity, etc.) differ in the way the groups
are formed.

Anonymization methods protect privacy only against ad-
versaries with certain background information. Dwork proves
in [3] that every privacy protection mechanism is vulnerable
to some kind of background knowledge and“bad disclosures”
might occur regardless of participation into the attacked
database. Therefore, Dwork suggests that instead of tailor-
ing privacy definitions against different types of background
knowledge, one should minimize the risk of disclosure that
arises from participation into a database. This notion is cap-
tured by the differential privacy protection mechanism [3].
Differential privacy restricts the access to a statistical inter-
face, where users can only issue aggregate statistical queries
to the database and the responses are perturbed with ran-
dom noise. The magnitude of the noise depends on the pri-
vacy parameter (e.g., ε in ε-differential privacy) and sensitiv-
ity of the set of queries. Sensitivity is a function of the query
set and not the database. As shown in [16], computing the
sensitivity is NP-hard.

In this paper, we develop a privacy preserving method
of building a Bayesian classifier for the mixture of Gaus-
sian models. This is achieved by modeling the underlying
database as a statistical database protected with differential
privacy against disclosures, and querying necessary statis-
tics from the database to build the classifier over the noisy
responses. Main contributions of this work are as follows:

1. Sensitivity of statistical queries are formally analyzed.
More accurate or exact bounds for sensitivity are es-
tablished.

2. For the univariate (one dimensional) Gaussian case,
we establish theoretical bounds on Bayes error un-
der differential privacy based on the Bhattacharyya
bound [2].

3. We show the applicability of our methods and examine
the Bayes error for the multivariate (high dimensional)
Gaussian case through experiments, using both simu-
lated data and real-world data.

4. We propose a heuristic method to fix the noise added
variance-covariance matrix, which is no longer posi-
tive definite and cannot be directly used in building a
Bayesian classifier.

The rest of the paper is organized as follows. We for-
mally define the problem in Section 1.1 and provide a brief
overview of differential privacy as a protection mechanism
in Section 1.2. Related work in the area is discussed in
Section 2. In Section 3, we calculate the sensitivity of var-
ious query sets that retrieve necessary statistics from the
database. Since the exact value of sensitivity depends on
the number of records, our calculation is in terms of the
database size. Then, in Section 4, we establish theoretical
bounds on the Bayes error under differential privacy as the
privacy protection mechanism. Section 5 gives experimental
results and finally Section 6 concludes our discussion and
presents future directions of research.

1.1 Problem Definition
Let D = {A1, · · · , Ad} be a d-dimensional database such

that the domain Dom(Ai) of each attribute Ai, i = 1, ..., d,
is continuous and bounded. For the analysis of sensitivity in

Section 3, we assume that each domain is normalized to the
range [0, 1] to simplify the expression of sensitivity. Assume
the database D is comprised of n records. Without loss of
generality, we assume that D is represented as a relation.
Then the value of attribute Ai of record xk, k = 1, ..., n, is
denoted by xk[Ai].

We are interested in building mixture of Gaussian models
over databases D that fit the above description. When pri-
vacy is not a concern, this is a straightforward task. Without
delving into too much details of Gaussian mixture models,
let us restrict the discussion to the following: one only needs
to compute the expected values of each attribute Ai and the
variance-covariance matrix Σ:

Σij = cov(Ai, Aj) = E[(Ai − μi)(Aj − μj)],

where μi = E(Ai). More details follow in Section 4.
In our definition of the problem, we consider a database D

that contains privacy-sensitive information that is protected
through differential privacy. This provides us with a sta-
tistical database interface. The interface answers aggregate
queries only (e.g. count, sum etc.) and to each response
adds random noise [3, 5]. In what follows, we briefly review
differential privacy and analyze the sensitivities of certain
queries.

1.2 Differential Privacy
Given a set of queries Q = {Q1, ..., Qq}, differential pri-

vacy adds Laplace noise with λ magnitude to the true re-
sponse. Magnitude λ is determined by two parameters: pri-
vacy parameter ε and query set sensitivity S(Q). Here, ε is
assumed to be set by the data curator (i.e. the party that
holds the database D). Sensitivity S(Q), on the other hand,
is a function of the query set Q.

Sensitivity of a query set is defined over all possible pairs
of databases that differ in only one record, referred to as
sibling databases.

S(Q) = max
∀ sibling databases D1,D2

qX
i=1

|QD1
i − QD2

i | (1)

That is, sensitivity of Q is the maximum difference in the
total L1 norm that a single record update can possibly cause
in the query responses. Notice that the definition is inde-
pendent of the original database D.

Once ε and S(Q) are known, λ can be set such that λ ≥
S(Q)/ε to facilitate uninterrupted querying2. The rest is
straightforward. In response to each query Qi, the database
first computes the result QD

i over all records in D and then
adds Laplace noise to obtain the noisy response RD

i :

RD
i = QD

i + r, (2)

where r ∼ Laplace(λ). Obviously, the key to designing accu-
rate differential privacy mechanism is to minimize the sen-
sitivity S(Q). In our problem definition, the query set Q
is already fixed. However, there are multiple methods to
query a statistic. Therefore we examine the sensitivities for
different query approaches separately.

2If Q is not available ahead of the time and therefore S(Q)
cannot be computed, λ will be fixed heuristically. In such
scenarios, the database must keep track of the sensitivity of
the queries answered so far. If the pre-specified sensitivity
threshold λ is exceeded, the database simply stops respond-
ing.
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2. RELATED WORK
Gaussian mixture models are classical models that are

widely used in practice [2, 7]. Despite their popularity in
practice, so far, privacy issues related to building mixture
models have received little attention. Merugu et al. propose
in [13] that instead of perturbing original data to protect
privacy, in distributed settings, statistical information de-
scribing mixture models can be released. The basic idea is
to generate data samples based on mixture models and run
data mining tasks over the samples. However, as discussed
by Kantarcioglu et al. in [9], releasing (non-perturbed) two-
class mixture models might violate individual privacy. Our
approach is motivated by the results of [9].

Privacy preserving data mining has been studied exten-
sively in recent years. Initial works in the area consisted
mostly of two approaches: 1) perturbation methods (e.g.,
random noise addition method by Agrawal et al.[1]); 2)
anonymization methods (e.g., k-anonymity method proposed
by Sweeney [14]) that yield a sanitized version of the orig-
inal data set. However, successful attack strategies against
proposed solutions in both directions necessitated new def-
initions of privacy and anonymity. For example, Kargupta
et al. shows in [10] that the random noise added according
to [1] could be problematic since “in many cases the original
data can be accurately estimated from the perturbed data”.
Similarly, �-diversity [12] presents an attack scenario against
k-anonymity definition of [14] based on lack of diversity over
sensitive attributes. Such vulnerabilities have lead to the
definition of differential privacy [3]. Dwork proves in [3] that
for every privacy definition, there exists some background
knowledge that results in disclosure of sensitive information
and therefore violation of individual privacy. Consequently,
a new and much stronger privacy definition that minimizes
the risk of disclosure irrespective of attendance to a database
is proposed, namely, differential privacy.

Differential privacy [3] models the database as a statistical
database that only responds to statistical queries and adds
to the responses random noise, whose magnitude is propor-
tional to the privacy parameter ε and the sensitivity of the
query set. Here, sensitivity is a function of the query set
and not the database in question.

Various different formulations of differential privacy have
been suggested. Initial definitions of sensitivity operate over
sibling data sets that have the same size but differ in only
record (i.e., one data set can be mapped to another by up-
dating only one record) [3, 5]. Some later studies consider
insertion of a new record when defining sibling data sets [4].
The distinction between the two approaches might appear
minor. However, for most query sets, the prior definition
asks for sensitivity computations twice that of the later. We
follow [3] in our sensitivity computations.

Sensitivity calculations of many important functions are
analyzed in [5], including some statistics used in this paper
as well. However, the bounds achieved by [5] are admittedly
crude. Dwork et al. calculate the sensitivity of querying the
mean vector as 2γ/n, where n is the number of records in
the database and γ = maxx ||v(x)||1 (i.e., the maximum L1

norm of any record). We establish the exact sensitivity on
the same query, which equals to one half of the previously
established bound: d/n, where d represents the dimension-
ality (i.e., the number of attributes)3. Similarly, [5] crudely

3We assume that all domains are normalized to the range

calculates the sensitivity of the variance-covariance matrix
Σ. Here, we provide a complete, more formal analysis of
the sensitivity of the query retrieving Σ, and establish much
tighter bounds.

Privacy preserving classification with differential privacy
as the underlying privacy protection mechanism has received
little attention so far. In [6], Friedman et al. presented
a method of ID3 classification that builds a decision tree
through recursive queries retrieving the information gain
across an attribute and the partitioning mechanism. A dif-
ferent solution to ID3 classification by Jagannathan et al. [8]
builds multiple random decision trees using sum queries. In
this study, we present a Bayes classifier based on Gaussian
mixture models by querying the mean vector and the co-
variance matrix for each class category. To the best of our
knowledge, we are the first to explore Bayes error for Gaus-
sian mixture models in detail under differential privacy as
the protection mechanism.

3. SENSITIVITY AS FUNCTIONS OF SAM-
PLE SIZE AND DIMENSIONALITY

Assume two sibling databases D1 and D2 have n records
each, and they differ by one record. Next we establish the
sensitivity of queries given sample size n and d attributes. [5]
provided upper bounds for the sensitivity of querying mean
and variance-covariance matrix. [5] defined γ = max||x′||1.
Since all the attributes are normalized to [0, 1], γ = d in our
setting. [5] showed that the sensitivity of directly querying
the mean is smaller than or equal to 2d/n, and the sensitivity
of querying the variance-covariance matrix is smaller than
or equal to 8d2/n. In this section we obtain the exact sensi-
tivity of directly querying the mean, and indirectly through
querying sum and sample size, or indirectly querying the
median, which is the mean for symmetric distributions. We
also obtain a much tighter upper bound for querying the
variance-covariance matrix.

We notice there are multiple ways to query a statistic.
For example, the value of sample mean can be obtained in-
directly through the sample median for any symmetric dis-
tribution. The sample mean can also be obtained through
the sum divided by the sample size. Users can attempt var-
ious methods to query a statistic and to reduce sensitiv-
ity. We discuss the different sensitivities associated with the
different methods to query a statistic in this section. The
following summarize the findings in this section:

1. The sensitivity of directly querying mean is d/n, which
decreases with increasing sample size n.

2. The sensitivity of directly querying sum is d, not af-
fected by the sample size n, so is the sensitivity of
directly querying median.

3. Notice mean can be obtained indirectly through query-
ing median for symmetric distributions, or through
querying sum and sample size. These two indirect
query methods for mean have sensitivity not affected
by sample size.

[0,1], therefore having the value of γ to be fixed, γ = d.
This is a trivial task if the domains are bounded, which has
to be the case since differential privacy requires a bounded
domain.
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4. Directly querying variance has sensitivity between 1
n
−

1
n2 and 3

n
− 3

n2 , so does directly querying covariance.
Directly querying variance-covariance matrix (upper
triangle only) has sensitivity between ( 1

n
− 1

n2 )d(d +

1)/2 and ( 3
n
− 3

n2 )d(d + 1)/2.

3.1 Directly Querying Mean and Sum
We examine the sensitivity of directly querying the mean

and the sum. These two statistics are closely related. One
can be solved from another. Yet the sensitivity for querying
these two statistics are quite different.

Theorem 3.1. Assume we have two sibling databases and
each has n records, i.e. |D1| = |D2| = n, where sample size
n ≥ 1. Let Q = {Mean1, ..., Meand}, where d ≥ 1. Hence

S(Q) = d/n.

Proof: Let Mean
(n−1)
i be the mean of Ai over the common

n − 1 records shared by D1 and D2. Let the unique record
in D1 be x1 and the unique record in D2 be x2. Then the
mean values of Ai in D1 and D2 are

Mean
(n),1
i =

(n − 1) × Mean
(n−1)
i + x1[Ai]

n
,

Mean
(n),2
i =

(n − 1) × Mean
(n−1)
i + x2[Ai]

n
.

We have

|Mean
(n),1
i − Mean

(n),2
i | =

|x1[Ai] − x2[Ai]|
n

.

Then we have

max{D1,D2}
Pd

1 |Mean
(n),1
i − Mean

(n),2
i |

=
“
max{D1,D2}

Pd
i=1 |x1[Ai] − x2[Ai]|

”
/n

= d/n = S(Q).

When all the d attributes in the x1 and x2 differ by 1, we
reach the maximum, which determines the sensitivity.

Theorem 3.2. Assume we have two sibling databases and
each has n records, i.e. |D1| = |D2| = n, where sample size
n ≥ 1. Let Q = {Sum1, ..., Sumd}, where d ≥ 1. Hence

S(Q) = d.

Proof: Let Sum
(n−1)
i be the sum of attribute Ai over the

common n − 1 records shared by D1 and D2. Again let the
unique record in D1 be x1 and the unique record in D2 be
x2. Then the sum of Ai in D1 and D2 are

Sum
(n),1
i = Sum

(n−1)
i + x1[Ai],

Sum
(n),2
i = Sum

(n−1)
i + x2[Ai].

When all the d attributes in the x1 and x2 differ by 1, we
have

max{D1,D2}
Pd

1 |Sum
(n),1
i − Sum

(n),2
i |

= max{D1,D2}
Pd

i=1 |x1[Ai] − x2[Ai]|
= d = S(Q).

The two theorems do not rely on the distribution of Ai

over the interval [0, 1]. The sensitivity of Q = {Mean1,
..., Meand} improves linearly as the sample size n increases
given a fixed d. It requires the sample size to be much larger
than the dimensionality, n >> d, to have a small sensitivity.
On the other hand increasing the sample size n will not
improve the sensitivity of Q = {Sum1, ..., Sumd}, which is
determined solely by dimensionality.

Since sensitivity is defined over all possible sibling data-
bases with all possible sample sizes, the following corollary
establishes the overall sensitivity of directly querying the
mean.

Corollary 3.1. Let Q = {Mean1, ..., Meand}, where
d ≥ 1. S(Q) = d, for all possible pairs of sibling databases.

Proof: Following Theorem 3.1, when we set n=1, we obtain
the maximum change of L1 norm over all possible sibling
databases. The problem can be solved in a more straight-
forward fashion. Note Meani has minimum value 0 and
maximum value 1. Let D1 and D2 each contains 1 record.
x1 = �0 and x2 = �1. Then D1 has the minimum Meani

∀i = 1, ..., d and D2 has the maximum Meani ∀i = 1, ..., d.
The maximum L1 difference is d = S(Q).

3.2 Directly Querying Median
For Gaussian distribution, or in general any symmetric

distribution, median equals to mean. However the sensitiv-
ity of directly querying the median is quite different than
that of directly querying the mean. The sensitivity of di-
rectly querying the median of d attributes is a constant d,
same as directly querying the sum, regardless of sample size
n.

Theorem 3.3. Let Q = { Median1, ..., Mediand }, such
that Mediani retrieves the median of attribute Ai. Hence
the overall sensitivity for for all possible pairs of sibling
databases is:

S(Q) = d.

Proof: First consider one attribute Ai. Since attribute Ai

is normalized to interval [0, 1], the minimum value of the
median is 0 and the maximum is 1. Therefore, it is sufficient
to show that there is a pair of sibling databases (D1, D2)
such that the response to Mediani shifts by 1.

Let database D1 have 2m + 1 records, m ≥ 0, where

xj [Ai] =

j
0, if 1 ≤ j ≤ m + 1
1, otherwise.

Construct database D2 by changing the value of xm[Ai] from
0 to 1. Notice the response to Mediani over D1 is 0, while
it is 1 over D2, which achieves the maximum L1 difference.

For Q = {Median1, ..., Mediand}, similarly we let D1

have

xj =

j
�0, if 1 ≤ j ≤ m + 1
�1, otherwise.

Construct database D2 by changing the value of xm+1 from
�0 to �1. Hence the responses to the query over D1 and D2

achieve the maximum difference in L1 norm. We conclude
S(Q) = d, ∀n ≥ 1.
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3.3 Indirectly Querying Mean
There are multiple ways of estimating a statistic. For

example, querying the median is equivalent to querying the
mean for any symmetric distribution. Another choice is to
issue two queries, one for sum and the other for sample size.

Theorem 3.4. Assume we have two sibling databases and
each has n records, i.e. |D1| = |D2| = n, where sample size
n ≥ 1. Let Q = {Sum1, ..., Sumd, SampleSize}, where
d ≥ 1. Hence S(Q) = d.

Proof: The query for sample size has sensitivity 0, since
both D1 and D2 have the same sample size. Then we only
need to consider the sensitivity of Sumi. Similar to the
proof of Theorem 3.2, we obtain S(Q) = d.

3.4 Directly Querying Variance and Covari-
ance

Next we examine the sensitivity of directly querying vari-
ance, covariance, and the whole variance-covariance matrix.
We establish much tighter bounds for the sensitivity in this
section.

Theorem 3.5. Assume we have two sibling databases and
each has n records, i.e. |D1| = |D2| = n, where sample
size n ≥ 2. Without loss of generality let Q = {V ar1} for
attribute A1. Then

1

n
− 1

n2
≤ S(Q) ≤ 3

n
− 3

n2
.

Proof: Assume x3, ..., xn+1 are the n − 1 common records
shared by the two databases D1 and D2. Let x1 be the
unique record in D1 and x2 be the unique record in D2.
Here we estimate the sample variance as the following:

V ar1 =
1

n

nX
i=1

(xi[A1] − x̄[A1])
2 =

Pn
i=1 x2

i [A1]

n
− x̄2[A1].

Let V ari
1 be the sample variance of database Di, i = 1, 2.

Then we have

V ar1
1 − V ar2

1

=

"Pn+1
i=3 x2

i [A1] + x2
1[A1]

n
− (

Pn+1
i=3 xi[A1] + x1[A1]

n
)2
#

−
"Pn+1

i=3 x2
i [A1] + x2

2[A1]

n
− (

Pn+1
i=3 xi[A1] + x2[A1]

n
)2
#

= (x2
1[A1] − x2

2[A1])(
1

n
− 1

n2
)

+
2(x2[A1] − x1[A1])(

Pn+1
i=3 xi[A1])

n2

When xi[A1] = 0, i = 3, ..., n+1, x1[A1] = 1, and x2[A1] =
0, we have

V ar1
1 − V ar2

1 =
1

n
− 1

n2
.

This is a lower bound for S(Q).
On the other hand we have

|V ar1
1 − V ar2

1| ≤
˛̨̨
˛(x2

1[A1] − x2
2[A1])(

1

n
− 1

n2
)

˛̨̨
˛

+

˛̨̨
˛̨2(x2[A1] − x1[A1])(

Pn+1
i=3 xi[A1])

n2

˛̨̨
˛̨

We obtain an upper bound by letting every component on
the right hand side of the above inequality reach their max-
imum individually.

max|V ar1
1 − V ar2

1| ≤ 1 × (
1

n
− 1

n2
) +

2 × 1 × (n − 1)

n2

=
3

n
− 3

n2

Therefore we have

1

n
− 1

n2
≤ S(Q) ≤ 3

n
− 3

n2
.

Theorem 3.6. Assume we have two sibling databases and
each has n records, i.e. |D1| = |D2| = n, where sample size
n ≥ 2. Without loss of generality let Q = {Cov1,2} for
attributes A1 and A2. Then

1

n
− 1

n2
≤ S(Q) ≤ 3

n
− 3

n2
.

Proof: Again assume x3, ..., xn+1 are the n − 1 common
records shared by the two databases D1 and D2. Let x1 be
the unique record in D1 and x2 be the unique record in D2.
The sample covariance is the following:

Cov1,2 =
1

n

nX
i=1

(xi[A1] − x̄[A1])(xi[A2] − x̄[A2])

=

Pn
i=1 xi[A1]xi[A2]

n
− x̄[A1]x̄[A2].

We have the difference as

Cov1
1,2 − Cov2

1,2

=

Pn+1
i=3 xi[A1]xi[A2] + x1[A1]x1[A2]

n

− (

Pn+1
i=3 xi[A1] + x1[A1]

n
) × (

Pn+1
i=3 xi[A2] + x1[A2]

n
)

−
Pn+1

i=3 xi[A1]xi[A2] + x2[A1]x2[A2]

n

+ (

Pn+1
i=3 xi[A1] + x2[A1]

n
) × (

Pn+1
i=3 xi[A2] + x2[A2]

n
)

Cleaning up the above expression we have

Cov1
1,2 − Cov2

1,2

= (x1[A1]x1[A2] − x2[A1]x2[A2]) (
1

n
− 1

n2
)

− (x1[A1] − x2[A1])

 Pn+1
i=3 xi[A2]

n2

!

− (x1[A2] − x2[A2])

 Pn+1
i=3 xi[A1]

n2

!

Let xi[A1] = xi[A2] = 0 for i = 3, ..., n + 1, x1[A1] =
x1[A2] = 1, and x2[A1] = x2[A2] = 0. We have Cov1

1,2 −
Cov2

1,2 = 1/n − 1/n2. Hence this is a lower bound of S(Q).
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We also have

|Cov1
1,2 − Cov2

1,2|
≤ |x1[A1]x1[A2] − x2[A1]x2[A2]| ( 1

n
− 1

n2
)

+ |x1[A1] − x2[A1]|
˛̨̨
˛̨
Pn+1

i=3 xi[A2]

n2

˛̨̨
˛̨

+ |x1[A2] − x2[A2]|
˛̨̨
˛̨
Pn+1

i=3 xi[A1]

n2

˛̨̨
˛̨

Let every component reach their maximum values, we have

max|Cov1
1,2 − Cov2

1,2| ≤ (
1

n
− 1

n2
) +

n − 1

n2
+

n − 1

n2

=
3

n
− 3

n2
.

Therefore we have

1

n
− 1

n2
≤ S(Q) ≤ 3

n
− 3

n2
.

For large sample size n, the above result shows the sen-
sitivity of a single variance or a single covariance decreases
as O(1/n). Next we consider querying the whole variance-
covariance matrix.

Theorem 3.7. Assume we have two sibling databases and
each has n records, i.e. |D1| = |D2| = n, where sample
size n ≥ 2. Without loss of generality let Q = {Σ} for d
attributes. We consider only the upper triangle. Then

(
1

n
− 1

n2
)
d(d + 1)

2
≤ S(Q) ≤ (

3

n
− 3

n2
)
d(d + 1)

2
.

Proof: Again assume x3, ..., xn+1 are the n − 1 common
records shared by the two databases D1 and D2. Let x1 be
the unique record in D1 and x2 be the unique record in D2.
We follow the thread in the above two theorems. Then we
have

|Q1 − Q2|

=

d−1X
k=1

dX
l=k+1

|(x1[Ak]x1[Al] − x2[Ak]x2[Al])(
1

n
− 1

n2
)

− (x1[Ak] − x2[Ak])

 Pn+1
i=3 xi[Al]

n2

!

− (x1[Al] − x2[Al])

 Pn+1
i=3 xi[Ak]

n2

!
|

+
dX

k=1

|(x2
1[Ak] − x2

2[Ak])(
1

n
− 1

n2
)

− 2(x1[Ak] − x2[Ak])

 Pn+1
i=3 xi[Ak]

n2

!
|

When x3 = ... = xn+1 = �0, x2 = �0, and x1 = �1, we have

the above sum equal to ( 1
n
− 1

n2 ) d(d+1)
2

. This forms a lower

bound of S(Q). We also have

|Q1 − Q2|

≤
d−1X
k=1

dX
l=k+1

{ |x1[Ak]x1[Al] − x2[Ak]x2[Al]| × (
1

n
− 1

n2
)

+ |x1[Ak] − x2[Ak]| ×
˛̨̨
˛̨
Pn+1

i=3 xi[Al]

n2

˛̨̨
˛̨

+ |x1[Al] − x2[Al]| ×
˛̨̨
˛̨
Pn+1

i=3 xi[Ak]

n2

˛̨̨
˛̨ }

+
dX

k=1

{ |x2
1[Ak] − x2

2[Ak]| × (
1

n
− 1

n2
)

+ 2|x1[Ak] − x2[Ak]| × |
Pn+1

i=3 xi[Ak]

n2
| }

Let each component reach their maximum values (i.e. x3 =

... = xn+1 = �1), we have

max|Q1 − Q2| ≤ (
3

n
− 3

n2
)
d(d + 1)

2
.

Hence we establish an upper bound for S(Q) too. Combining
the lower and upper bounds we have:

(
1

n
− 1

n2
)
d(d + 1)

2
≤ S(Q) ≤ (

3

n
− 3

n2
)
d(d + 1)

2
.

We obtain a much tighter bound for querying the variance-
covariance matrix. The above result indicates that in or-
der to reduce sensitivity for querying the whole variance-
covariance matrix, we need the sample size to be much larger
than d2, n >> d2. Next as what we do for directly querying
the mean, we can obtain an upper bound for the maximum
change in L1 norm for querying the variance-covariance ma-
trix for all possible sibling databases with all possible sample
sizes. The following establishes an upper bound for the over-
all sensitivity of directly querying the variance-covariance
matrix.

Corollary 3.2. Let Q = {Σ}, where Σ retrieves the
variance-covariance matrix. S(Q) ≤ 3d(d + 1)/8.

Proof: We let n = 2 in the upper bound specified by The-
orem 3.7. We then obtain the overall upper bound for all
possible sample size: S(Q) ≤ 3d(d + 1)/8.

The primary reason behind high overall sensitivity in Corol-
laries 3.1 and 3.2 calculations is the small sample size of the
databases. Even though any databases that will be used to
build Gaussian mixture models would contain thousands if
not millions of records, by definition sensitivity is calculated
over all possible sibling databases.

3.5 Multiple Querying Methods for A Statis-
tic and The Effect on Sensitivity

Different methods to issue the queries for the same statis-
tic are associated with very different sensitivity values. To
obtain the sample mean, we can query the median instead
if the attribute is from a symmetric distribution, or we can
query the sum and the sample size. Based on the above
theorems, we discover that querying the median or the sum
together with sample size has sensitivity d, which is not af-
fected by sample size n. Directly querying the mean has
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sensitivity d/n, fast approaching 0 as sample size increases.
Some indirect queries can result in high sensitivity.

There are also alternative methods to issues a set of queries
to construct variance, covariance, and a variance-covariance
matrix, instead of directly querying the statistics. For ex-
ample, for attribute A1, we can query the sums and the
sample size, i.e.

Pn
i=1 xi[A1],

Pn
i=1 x2

i [A1], and n. Another
method is to query the means, i.e. (

Pn
i=1 xi[A1])/n and

(
Pn

i=1 x2
i [A1])/n. We then construct the variance from the

sums or the means. However querying the sums and query-
ing the means have very different sensitivity values.

While working with differential privacy, we usually try to
come up with query methods that will perturb the results
as little as possible. However, most accurate results need
not be computed with query sets of smaller sensitivities.
Comparing the direct query for mean in Corollary 3.1 and
the indirect query in Theorem 3.4, we observe the indirect
query is more resilient to noise. Any positive or negative
noise with magnitude larger than 1 completely disguise the
mean value retrieved by direct querying (as in Corollary 3.1).
Yet Laplace distribution has support over (−∞,∞). The
conclusion we would like to draw is that, directly querying
a statistic may not always be the best idea, especially for
databases with small sample size.

Later in simulation we assume databases have relatively
large sample size and we apply sensitivity values of directly
querying the mean and variance-covariance matrix, after ad-
justing for the range.

4. BAYES ERROR OF GAUSSIAN MIXTURE
MODELS UNDER DIFFERENTIAL PRI-
VACY

Let D = {A1, . . . , Ad, W} be a database of n records,
where W represents a binary class attribute with the domain

Dom(W ) = {w1, w2},
and each attribute Ai, 1 ≤ i ≤ d represents a continuous
attribute with the domain Dom(Ai) = R.

Our purpose is to build a classifier using D that, given
a non-classified record in terms of a d-dimensional feature
vector x ∈ Rd, assigns a class value to x such that the
probability of mis-classification

P (error|x) =

j
P (w1|x) if x ∈ w2

P (w2|x) if x ∈ w1

is minimized. The following Bayes’ decision rule describes
one such classifier:

Assign w1 if P (w1|x) > P (w2|x) ; otherwise assign w2.
(3)

Here, the probabilities P (wi|x) can easily be calculated based
on Bayes’ theorem:

P (wi|x) =
p(x|wi)P (wi)

p(x)
.

The specific case where p(x|wi) has multivariate normal
(Gaussian) density is known as the “mixture of Gaussian
models” problem and it has been studied extensively due to
its tractability [2]. For each class value wi, the mean μi and
the covariance matrix Σi of the distribution of p(x|wi) ∼
N(μi, Σi) are estimated from the data set D. Based on the
parameters of these distributions, the feature space Rd can

be partitioned into possibly disconnected decision regions
Ri such that x ∈ Ri implies x will be classified as wi.

The Bayes error is calculated by integrating the probabil-
ity of incorrect decision(s) over decision regions. For binary
classification, this implies [2]:

Bayes Error = P (x ∈ R1, w2) + P (x ∈ R2, w1)

= P (x ∈ R1|w2)P (w2) + P (x ∈ R2|w1)P (w1)

=

Z
R1

p(x|w2)P (w2)dx +

Z
R2

p(x|w1)P (w1)dx

In mixture of Gaussian models, such error can be bounded
from above using the Chernoff bound or the Bhattacharyya
bound as explained in [2]. Among these two approaches, the
Chernoff bound is never looser than the Bhattacharyya but
computationally more complex.

Our purpose is to calculate similar error bounds for pri-
vacy preserving Gaussian mixture models. Specifically, data
set D will act as a statistical database that only responds
to aggregate queries about the records. Using differential
privacy as the underlying privacy protection mechanism, all
responses to the queries will be perturbed with independent
Laplace noise L(0, λ), where λ ≥ S(Q)/ε is the magnitude
of the added noise, S(Q) is the sensitivity of the query set
issued to the database (as defined in [3]) and ε is the privacy
parameter.

In order to build a Gaussian mixture model, the query set
Q including the following statistical information has to be
issued to the database D:

• The number of records in D (sensitivity of this query
is 0),

• The distribution of class values / categories (i.e., P (w1)
and P (w2)),

• For each category, parameters of the multivariate Gaus-
sian distribution (i.e., p(x|wi)) in terms of μi and Σi.

4.1 Truncated Gaussian Distribution
Differential privacy works well for bounded variables. For

unbounded variables one extremely large or small record has
the ability to cause an extremely large change in any statis-
tic queried and inflate the sensitivity. However Gaussian
distribution has support over the entire real line. Assume
we truncate a Gaussian variable to interval [μ − kσ, μ + kσ]
and the original Gaussian variable X ∼ N(μ, σ2) has density
f(x). The truncated Gaussian variable has density:

I{μ−kσ≤x≤μ+kσ}(x)
f(x)

Z(k) − Z(−k)
,

where Z(·) is the cumulative distribution function of the
standard normal variable, and Iμ−kσ≤x≤μ+kσ(x) is an in-
dicator function. If we choose sufficiently large k, Z(k) −
Z(−k) is almost 1, and the truncated Gaussian variable and
the genuine Gaussian variable have almost identical prop-
erties, such as density, mean, variance etc. We notice a
Gaussian variable has probability 0.999999998 to fall into
the bounded interval [μ− 6σ, μ + 6σ]. Therefore in the sim-
ulation study we choose k = 6.

4.2 One Dimensional Bayes Error Bound
We can obtain an upper bound for the one dimensional

Bayes error with Gaussian mixture models under differential
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privacy for binary classes. Assume class ω1 ∼ N(μ1, σ
2
1)

and class ω2 ∼ N(μ2, σ
2
2). Further assume class ω1 has n1

records and class ω2 has n2 records. First note the Bhat-
tacharyya bound [2] states that

Bayes Error ≤
p

P (ω1)P (ω2)e
−K , (4)

where

K =
1

4

μ2
1 + μ2

2 − 2μ1μ2

σ2
1 + σ2

2

+
log(σ2

1 + σ2
2)

2
− log(4σ2

1σ2
2)

4
. (5)

Considering the Laplace noises added to the queries of mean
and variances in each class, we have the following theorem.

Theorem 4.1. The Gaussian mixture models are as spec-
ified above. Assume under differential privacy the query re-
sponses are the sample means and the sample variances plus
independent Laplace noises:

μ̂1 = x̄1 + r1, μ̂2 = x̄2 + r2, σ̂2
1 = S2

1 + r3, σ̂2
2 = S2

2 + r4.

Since there are multiple ways to query a statistic, we simply
assume the independent Laplace noises ri ∼ L(0, λi) for a
general result. We have for 0 < p < 1,

P (KL(p) < K < KU (p)) = p8,

and

Pr(Bayes Error <
p

P (ω1)P (ω2)e
−KL(p)) ≥ p8,

where

KU (p) =P2
i=1{μi +

q
σ2

i
ni

Z(1 − p
2
) − λi log(1 − 2| 1−p

2
|)}2

4{P2
i=1

σ2
i

ni
χ2

ni−1(
p
2
) +

P4
i=3 λi log(1 − 2| 1−p

2
|)}

−
Q2

i=1{μi −
q

σ2
i

ni
Z(1 − p

2
) + λi log(1 − 2| 1−p

2
|)}2

2{P2
i=1

σ2
i

ni
χ2

ni−1(1 − p
2
) −P4

i=3 λi log(1 − 2| 1−p
2

|)}

+
log{P2

i=1

σ2
i

ni
χ2

ni−1(1 − p
2
) −P4

i=3 λi log(1 − 2| 1−p
2

|)}
2

−
log{4Q2

i=1[
σ2

i
ni

χ2
ni−1(

p
2
) + λi+2 log(1 − 2| 1−p

2
|)]}

4
,

and

KL(p) =P2
i=1{μi −

q
σ2

i
ni

Z(1 − p
2
) + λi log(1 − 2| 1−p

2
|)}2

4{P2
i=1

σ2
i

ni
χ2

ni−1(1 − p
2
) −P4

i=3 λi log(1 − 2| 1−p
2

|)}

−
Q2

i=1{μi +

q
σ2

i
ni

Z(1 − p
2
) − λi log(1 − 2| 1−p

2
|)}2

2{P2
i=1

σ2
i

ni
χ2

ni−1(
p
2
) +

P4
i=3 λi log(1 − 2| 1−p

2
|)}

+
log{P2

i=1

σ2
i

ni
χ2

ni−1(
p
2
) +

P4
i=3 λi log(1 − 2| 1−p

2
|)}

2

−
log{4Q2

i=1[
σ2

i
ni

χ2
ni−1(1 − p

2
) − λi+2 log(1 − 2| 1−p

2
|)]}

4
.

Z(r) is the r quantile of the standard normal distribution.
χ2

n−1(r) is the r quantile of χ2
n−1. λ log(1 − 2| 1−p

2
|) and

−λ log(1− 2| 1−p
2

|) are p/2 and (1− p/2) quantile of Laplace
distribution L(0, λ).

Proof: Since both classes follow Gaussian distribution, we
have the following distribution for the sample means and the
sample variances:

x̄1 ∼ N(μ1,
σ2

1

n1
),

x̄2 ∼ N(μ2,
σ2

2

n2
),

n1S
2
1

σ2
1

=

Pn1
i=1(x1,i − x̄1)

2

σ2
1

∼ χ2
n1−1,

n2S
2
2

σ2
2

=

Pn2
i=1(x2,i − x̄2)

2

σ2
2

∼ χ2
n2−1.

Note the sample means and the sample variances are in-
dependent. Also note we add independent Laplace noises
ri ∼ L(0, λi),

μ̂1 = x̄1 + r1, μ̂2 = x̄2 + r2, σ̂2
1 = S2

1 + r3, σ̂2
2 = S2

2 + r4.

With probability p (for example p = 0.90, 0.95, etc.), we
have:

μi −
s

σ2
i

ni
×Z(1− p

2
) < x̄i < μi +

s
σ2

i

ni
×Z(1− p

2
), i = 1, 2,

σ2
i

ni
× χ2

ni−1(
p

2
) < S2

i <
σ2

i

ni
× χ2

ni−1(1 − p

2
), i = 1, 2,

λi log(1 − 2|1 − p

2
|) < ri < −λi log(1 − 2|1 − p

2
|), i = 1 − 4,

where Z(1 − p/2) is the (1 − p/2) quantile of the stan-
dard normal distribution, χ2

ni−1(r) is the r quantile of χ2
ni−1

(r = p/2 or 1− p/2), and λi log(1− 2| 1−p
2

|) and −λi log(1−
2| 1−p

2
|) are p/2 and (1−p/2) quantile of Laplace distribution

L(0, λi).
In Equation 5, plugging in the bounds of the sample means,

the sample variances, and the Laplace noises, we have:

Pr(KL(p) < K < KU (p)) = p8,

where KL(p) and KU (p) are specified in the main theorem.
Because Pr(KL(p) < K) ≥ p8, we have

Pr(Bayes Error <
p

P (ω1)P (ω2)e
−KL(p)) ≥ p8.

The proof is based on genuine Gaussian distributions.
Bhattacharyya bound can be applied to truncated Gaus-
sian distribution [2] and we can obtain useful information
if k is sufficiently large. We are not able to develop the-
oretical results for multivariate Gaussian distribution. We
obtain information for high dimensional Bayes error through
experiments in the next section.

5. EXPERIMENTAL EVALUATION
In order to evaluate the performance of Gaussian mixture

models learned from data under differential privacy, we have
conducted extensive experiments. Since our goal is to un-
derstand how differential privacy affects the Bayes error of
Gaussian mixture models, we try to avoid introducing other
types of errors. Clearly, one of the issues with using Gaus-
sian mixture models in practice is that such models may not
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represent the underlying data accurately. To sidestep this
issue, and make sure that we do not have additional errors
due to modeling real data distribution inaccurately, we gen-
erated data sets from known Gaussian mixture parameters.
The parameters are estimated from real life data in one ex-
periment, and synthetic in the rest. Later on, we use these
data sets for our experiments. By using such generated data
sets, we ensure that we do not introduce errors due to wrong
model selection.

Each reported experiment is repeated five times using the
following steps:

1. Given the parameters of the Gaussian mixture models,
we generate training sets of increasing sample sizes.

2. Since differential privacy requires bounded attribute
values, we truncate the generated training samples us-
ing μ ± 6σ confidence intervals for every attribute.

3. Using the truncated training data set, pre-specified ε
value, and the sensitivity values computed after ad-
justing for the actual range of every attribute, we add
Laplace noise to the mean and variance-covariance ma-
trix of each Gaussian component. One issue we have to
deal with in our experiments is the fact that after noise
addition, the variance-covariance matrix cease to be a
positive definite matrix. In order to make sure that
the privacy properties of the Laplace noise addition
are protected, we employ the following heuristic pro-
cessing on the noise added variance-covariance matrix
M :

(a) Copy the noise added upper triangle of the matrix
M to lower triangle to make M symmetric.

(b) Using eigenvalue decomposition, represent M as
V × D × V ′ where V is an orthogonal matrix of
eigenvectors and D is a diagonal matrix of eigen-
values. If any of the values in D is negative, re-
place it with the minimum positive eigenvalue of
the matrix. 4

(c) Repeat step (b) until we obtain a positive definite
matrix. 5

4. We generate a separate test data set of size 50,000
using the original parameters without the noises, and
report the effectiveness of the Gaussian mixture mod-
els using the Laplace noise added parameters. Mean-
while, we report the effectiveness of the regular Gaus-
sian mixture models based on the parameters learned
from the truncated training data sets. Test data set of
size 50,000 is chosen to make sure that the estimated
Bayes errors are as accurate as possible.

5.1 Experimental Results
In our first set of experiments, the Gaussian mixture dis-

tributions have the following parameter values.

4Please note that a symmetric matrix is positive definite iff
all the eigenvalues are positive.
5This problem could be represented as the following opti-
mization problem: Given M , find M ′ such that M ′ is sym-
metric positive definite and s(M, M ′) is minimum for some
distance metric s. We leave the exploration of such opti-
mization problem as a future work.
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Figure 1: Bayes error versus training set size for
ε = 0.1.

μ1 = [1.8, 3.2, 3.8, 6, 5.5],

Σ1 = diag{0.36, 1.21, 3.24, 5, 76, 0.64},
μ2 = [0.5, 1, 1.5, 2.5, 3.5],

Σ2 = diag{2.56, 0.64, 4.00, 1.44, 0.16}.
The mixing probability is 0.7. We tested different ε values
ranging from 0.01 to 0.1. For the training data set size,
we have conducted experiments with 500, 1000, 2000, 4000,
8000, 16000, and 32000. For this Gaussian mixture, all the
models built with ε less than 0.1 resulted in Bayes errors
more than 0.3. Please note that predicting everything as
class one has a Bayes error 0.3. For these reasons, we do not
report the experiments with ε values less than 0.1. In all of
our experiments with different training data sets, Bayes er-
ror without noise addition was less than 0.01. In Figure 1, we
show the Bayes error rates for different training set sizes for
fixed ε = 0.1. As the results indicate, even for large training
set sizes the Bayes error is more than 0.1. If we compare this
with 0.01, the Bayes error from estimated parameters with-
out noise addition, this result indicates that directly adding
noise to variance-covariance matrix may cause significantly
larger Bayes error.

In another set of experiments, we want to understand the
joint effect of correlated attributes, dimensionality, and the
training set size. In each of these experiments, the first
Gaussian component has the identity covariance matrix with
mean �0. For the second Gaussian component, we fixed the
mean vector to �1. For covariance matrix Σ, we set Σi,i =
σ and Σi,j = Σj,i = 0.5 × σ for various σ values. As a
reference, we report the Bayes error rates without the noise
addition for different σ values for training set size 500 in
Table 1. We would like to stress that this is the worst case
for the scenarios without noise addition, since Bayes error
will be smaller as the training set size increases. The results
for Gaussian Mixture models under differential privacy are
reported in Figures 2, 3, 4, and 5. The results indicate that
for training samples of sizes less than 16000, the Bayes error
caused by differential privacy is prohibitively high. Again
these results suggest that differential privacy needs to be
applied to large data sets with large ε values to provide useful
results.

Finally, we used the Parkinson data set from the UCI
Machine learning repository. We computed the mean and
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Figure 2: Bayes error versus training set size for
ε = 0.1, 5 dimensional Gaussian mixture.
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Figure 3: Bayes error versus training set size for
ε = 0.1, 10 dimensional Gaussian mixture.

covariance matrix of each class in the Parkinson data set
and used these parameters in our experiments. In all of the
experiments, we set ε = 0.1. For the Parkinson data set, a
classifier that put all the records into the majority class has
Bayes error 0.2462. Unfortunately, all the Gaussian mixture
models with different sample sizes under differential privacy
have Bayes error around 0.24. On the other hand, in non-
differentially private case, the Bayes error is less than 0.01.
The above results suggest that direct noise addition to Gaus-
sian mixture parameters could cause significant distortion.

6. SUMMARY
In this article we examine sensitivities of various statistics

queried from a statistical database, and the performance of
Bayesian classifier using the noise added mean and variance-
covariance matrix. In the process we identify an interesting

dimension v.s. σ 1 2 3 4 5
5 0.18 0.22 0.20 0.17 0.14
10 0.12 0.19 0.16 0.12 0.09
15 0.10 0.18 0.15 0.09 0.06
20 0.08 0.18 0.14 0.08 0.05

Table 1: Bayes Error for increasing dimensionality
and σ values for fixed training set size 500.
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Figure 4: Bayes error versus training set size for
ε = 0.1, 15 dimensional Gaussian mixture.
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Figure 5: Bayes error versus training set size for
ε = 0.1, 20 dimensional Gaussian mixture.

issue associated with random noise addition: The variance-
covariance matrix without the added noise is positive defi-
nite. However simply adding noise can only return a sym-
metric matrix, which is no longer positive definite. Con-
sequently the query result cannot be used to construct a
Bayesian classifier. We implement a heuristic method to re-
pair the noise added matrix to achieve positive definiteness
in the experiments.

This is a general issue for random noise addition. Adding
noise to a statistic under certain constraint may return query
results that no longer satisfy the constraint. The query re-
sults need to be further modified in order to be used in
subsequent studies. An interesting question is how to pro-
vide query results that are helpful for subsequent studies
while safely protecting database participant’s privacy. Each
constrained statistic may need an algorithm to achieve its
original properties after noise addition.
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