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Abstract — Estimation of quality of service param-
eters associated with large-scale computer and com-
munication networks is a problem of considerable im-
portance. In this paper, we consider estimation of
link-level loss probabilities based on active tomogra-
phy using multicast probing schemes. We formulate
a regression framework for the problem, develop and
study the properties of several types of least-squares
based estimators. These include ordinary, general-
ized, and iteratively reweighted least squares esti-
mators. We study the asymptotic and finite-sample
properties of these estimators. The first two are sim-
ple to compute while the last two are asymptotically
efficient. Computation of the variance-covariance ma-
trix and inference using these estimators are much
simpler computationally than those based on the MLE
and E-M algorithm.

I. INTRODUCTION

Quality of service (QoS) parameters associated with com-
puter and communications networks, such as link loss rates
and delays, are of considerable interest to both providers and
customers of network services. For example, it is now com-
mon for Internet service providers to offer a variety of service
levels to customers. Service level agreements specify perfor-
mance criteria that the network provider guarantees to satisfy.
Such QoS criteria can include the amount of bandwidth made
available to the customer and bounds on the maximum de-
lay; the latter are important for time sensitive applications,
such as Internet telephony and streaming applications. By us-
ing active and passive traffic measurement schemes, network
tomography is capable of assessing the performance of mod-
ern day networks as well as localizing anomalous behavior to
individual components and subnetworks [1, 4].

Large-scale network inference problems can be classified ac-
cording to the type of data collected and the parameters of
interest investigated. Figure 1 shows a computer network,
comprised of nodes (computer terminals, routers or even whole
subnetworks) and links that can be unidirectional or bidirec-
tional, depending on the problem context and the desired level
of abstraction. Messages are transmitted across the network
by sending packets of bits from a source to a destination node
along a path that usually passes through several other nodes.

The problem of inference in large scale networks involves
estimating QoS parameters from traffic measurements at a
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Fig. 1: A wired network comprised of computer terminals
and routers

limited subset of nodes. Vardi [9] was among the earliest to
study this problem and coined the term network tomography.
Over the last few years, two forms of network tomography
have been addressed in the literature: (1) link-level parameter
estimation (such as packet loss rates and delay distributions)
based on end-to-end, path-level traffic measurements and (2)
sender-receiver path-level traffic intensity estimation based on
link-level traffic measurements. The main drawback of the
latter approach is that it requires gaining access to a wide
range of routers and switches in an administratively diverse
network, which can be a difficult task.

In link-level parameter estimation, the traffic measure-
ments are obtained from active probing of the network. They
consist of counts of packets transmitted and received or time
delays between selected nodes, usually located on the periph-
ery of the network (e.g. the numbered shaded nodes in Figure
1). The goal becomes to infer the internal link loss rates and
delay distributions from end-to-end measurement collected
from appropriately designed probing experiments. [3] advo-
cated the use of multicast probing and stimulated much of the
current work in the area [1, 2, 5, 6]. Unlike unicast transmis-
sions, where each packet is sent from a source node to one and
only one receiver, in multicast transmissions the sender effec-
tively sends each packet to a group of subscribing receivers as
follows. At internal routing nodes where forking occurs (see
node 1 in Figure 1), the multicast packet is replicated and
sent along each branching path [10]. The key to multicast
transmissions for network tomography is that it introduces
dependencies between end-to-end losses/delays measured by
different receivers, which in turn enables inferences about (the
unobserved) network internal links characteristics.



Estimation of the link loss probabilities from multicast
schemes was studied by [3] who developed a clever algorithm
for computing the maximum likelihood estimator (MLE).
However, computation of the Fisher information matrix (in-
verse of the asymptotic variance-covariance matrix of the
MLE) is very involved and is difficult except in very small
network topologies. Thus, confidence intervals and other in-
ferences for the link loss probabilities are not easy to obtain.
The use of the E-M algorithm for computing the MLE is dis-
cussed in [11]. While this is a conceptually simple, iterative
algorithm that increases the likelihood at each iteration, it is
a linear algorithm and can be slow to converge. It also suf-
fers from the same computational problems for computing the
information matrix.

In this paper, we study least-squares based estimation of
internal link loss rates using multicast end-to-end measure-
ments. By using a different parameterization, we derive a re-
gression framework for this estimation problem. We propose
various least squares (LS) estimators and derive their asymp-
totic properties. The ordinary least squares (OLS) and (one-
step) generalized least squares (GLS) estimators are compu-
tationally easy to obtain. The GLS and iteratively reweighted
least squares (IRWLS) estimators are asymptotically fully ef-
ficient. The IRWLS estimator performs very similarly to the
MLE even in finite samples. Thus, we can exploit the advan-
tages of these methods to develop computationally efficient
methods of inference for very large networks.

We now introduce the modeling framework of the prob-
lem along with the necessary notation. Consider again the
network shown in Figure 1. Packets are sent from a source
(node {0}) to a set of destinations (nodes {4, 5,6, 7} following
the solid paths). The end-to-end (path-level) behavior of the
packets can be measured through a coordinated measurement
scheme between the sender and the receivers. The sender can
record whether a packet successfully reached its destination or
was dropped/lost along its path. However, the sender cannot
directly determine the specific link on which the packet is lost.

A physical network can be logically represented by a graph
G = (V, €) consisting of nodes v € V connected by edges/links
e € £. For the problem at hand, the subset of the network over
which active probing is performed is numbered according to a
canonical scheme, with the sender being denoted by {0} and
the remaining nodes 1,2, ..., while the links are assigned the
number of the connected node below it. The graph G = (V, )
represents the logical topology of the monitored portion of the
network. As in to [3], we investigate logical tree topologies
defined as follows: let 7 = (V,€) denote a tree with root
0 € V, a set of nodes V and a set of edges/links £. The root
node {0} € V corresponds to the source of the transmitted
packets. Let D(¢) = {j € V : (4,5) € £} denote the set of direct
descendants (children) of node 7. The set of nodes R C V
such that D(:) = 0, 7 € V (nodes without children) represents
the set of receivers. Let R = |R| denote the cardinality of
the receiver set. It is assumed that |D(¢)] = 2 for all ¢ €
VY —(RU{0}) (binary tree). Finally, let £ denote a layer of the
tree, that is comprised of all nodes whose shortest paths from
the root node {0} are exactly L edges. It assumed that |£| =
271 L = 1,2,--- (symmetric binary tree). In this paper,
we restrict attention to symmetric binary trees because their
regularity makes the exposition easier. The derived results
hold for any general tree topology, though (see [11]). Finally,
we denote by P(i, ) a path between nodes i and j, which is

comprised of a set of connected links. An example of a 3-layer
symmetric binary tree is given in Figure 2.
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Fig. 2: A 3-layer symmetric binary tree

We study inference under the following stochastic environ-
ment for the multicast measurements. Let X; = {X;(t); t =
1,2, - -}icv be a stochastic process taking values in {0,1}.
Suppose a probe packet t was sent to node ¢ from its parent
node. Then X;(t) = 1 indicates that the packet reached node
¢ and X;(t) = 0 that it did not. Since all packets originate
at the root node, we set Xo(t) = 1 for all t£. The link loss
probabilities are given by 1 — a; where a; = P(X;(t) = 1).
We further assume that the processes {X;, ¢ € V} are mu-
tually independent. Note that we observe only the outcomes
at receiver nodes r where Z.(t) = 1 if and only if all the
X (t)’s corresponding to path P(0,r) equal one. We can write
Zq(t) = HjEMT- X;(t) where M, is the set of all nodes in the
path P(0,7). This model is also analyzed in [3].

The paper is organized as follows. The regression formu-
lation of the link loss problem based on end-to-end multicast
measurements is presented in Section 2. The various LS es-
timation methods for the link loss rates are introduced and
their asymptotic properties are derived in Section 3. Finite
and large-sample efficiency comparisons of the various esti-
mators are presented in Section 4. The paper ends with some
concluding remarks.

II. LEAST SQUARES ESTIMATORS FOR LINK LoOSs
RATES AND THEIR PROPERTIES

As noted in Section 1, multicast end-to-end active prob-
ing corresponds to a multinomial experiment with 2% possible
outcomes O = {O;}, i = 1,...,2%, whose probabilities 7; are
functions of the link loss rates ;. We introduce next the
necessary notation for being able to describe our regression
model. First notice that there is a 1-1 correspondence be-
tween the canonical numbering of the receiver nodes R in the
logical tree topology and the set R = {1, ..., R}. For example,
in a 3-layer tree node 4 € R corresponds to the 1lst receiver in
R, while node 7 to the 4th node in R. Hence, the i** multi-
nomial outcome ©; is an R-tuple taking values in {0,1}%,
where a 1 in the 7* position indicates that the packet was
received by the corresponding receiver in R and a 0 that it
was not received. Hence, the outcome O = [1,1,1,0] implies
that the multicast packet was successfully transmitted only to
receivers 4,5 and 6, as shown in Figure 2. We denote by O;(r)
the r** position in the tuple; e.g. in the example above we
have O(1) = 1, while O(4) = 0.

Let A describe the event that

As = {at least receiver subset S successfully received packet}



, 8§ C R. Formally, event As is defined by
As = U;‘R:1oi1{0i(j):1: jesy, S C R.

It is easy to see that there are 2% — 1 such events. For nota-
tional convenience and coherence we will describe such events
by an R-tuple taking values in the set {1, +}%, where a 1 in the
r** position indicates that the packet was received by the cor-
responding receiver in R and a + that it may or may not have
been received. Thus, a multicast packet was certainly received
by at least receivers 1 and 2 in R for the event A = [1,1,+, 4],
while it was certainly received by at least receivers 2 and 4 for
the event A = [+,1,+,1]. Let 4s denote the probability of
event As. We have that

R
¥s = Z%’ H 1(0;(k)=1}-

i=1 kcS

For example the probability ¥([1,1,+,1]) = ~([1,1,1,1]) +
v([1,1,0,1]). Notice that the 4’s are also functions of the
underlying parameters of interest . In general, we can write

=27 (1)

for an appropriately defined binary matrix Z (an example of
Z for a 3-layer tree is given in Appendix A).

Let ¥ = log(j) and let 3 = log(&), where ¥ are the
method of moments estimates of the underlying quantities.
The method of moments estimates of the multinomial proba-
bilities are given by 4; = N;/N, with N the total number of
multicast probes used in the experiment and NN; the count of
the event O;.

We then have that

Y =XB+¢ (2)

where Y is a 2% — 1 column vector, X is a (2% —1) x (2R—1)
binary design matrix, E a 2R — 1 column vector of regression
coefficients and € a column vector of unknown error terms with
E(€) = 0 and E(e€') = V/N. The design matrix takes values
in the set {0,1}, with Z(3,5) = 1 for all links j that belong
to UrerP(0, k), such that R(k) = 1 (the packet reached the
k'™ receiver). The design matrix X for the 3-layer tree shown
in Figure 2 is given in Appendix B. The variance-covariance
matrix V has the following form

V = (diag(7)) 'S (diag(7))"",

where X(3,7) = % — %75, 4,7 = 1,...,2R — 1, with 4 corre-
sponding to the parameter given by an appropriate intersec-
tion of the events ¢ and j. For example, if 7 = [1,1,+,+] and
j = [+a 17 1) +] then k = [1) 17 17 +]

For example, the variance/covariance matrix V for a 2-layer
tree takes the following form:

V = diag(5) "' x V x diag(§) "

} Ya(l=v1) ma(l—74) 121 —741)
V=1 m11-7,4) 7+0—714) 71,1~ V1,474
1,11 = v+,1) 71— Y,+7+1 Y11= 1)

Remark IL.1 In [3] it is shown that the parameters & are
identifiable from the parameters of the multicast experiment
5. Equation 1 establishes a 1-1 correspondence between 5 and
? and therefore the link loss rates are also identifiable in the
present setting.

Proposition I1.1 The design matriz of a L-layer symmetric
binary tree for a multicast experiment is of full column rank.
Therefore, the link loss rates are estimable by least squares
methods.

The proof of this Proposition can be found in [11].
Given model 2, the simplest method of estimation is ordi-
nary least squares (OLS). The OLS estimator is given by

BOLS = (X’X)_IX’?-

This estimator is not iterative in nature and hence is easy
to compute. The only computationally demanding task is the
computation of the inverse of the X'X matrix. While the
dimension of X'X is (2R — 1) X (2R — 1), the dimension of
X itself is (2% — 1) x (2R — 1), so the number of rows grows
exponentially with the number of layers in the tree. However,
the matrix X has a special structure that can perhaps be
exploited to develop efficient methods for computing the OLS.
This and related computational issues will be studied in future
work.

It is easy to establish the following results from the linear
structure of the OLS estimator. Let ﬁo denotes the true value
of the parameter.

Proposition I1.2 The OLS estimators is strongly consistent
and asymptotically normal; i.e., as N — oo,

Bors = Bo a.s.

and .
2 - C
VN(Bors — Bo) =W,
where W is normally distributed random wvector with
zero mean and wvariance-covariance matriz given by

(X'X)'X'vX(X'Xx)™
Proof: It is easily seen that Y 170 almost surely and that

VN -Yo) = H

with H being a N(0, V) random vector since it is a linear func-
tion of the method of moments estimates of the multinomial
parameters. Then, a straightforward application of Slutsky’s
theorem [7] establishes the result. m

Remark I1.2 Notice that in the original scale, the limiting
variance-covariance matriz of Gors is given by
diag(@)(X'X) ' X'VX(X'X) diag(d).

The observations ¥ have unequal variances, so it is natu-
ral to consider the use of weighted least-squares to improve
their efficiency. However, we have to estimate the unknown
variance-covariance matrix. We will consider two different
methods of estimating it. The first is a one-step GLS esti-
mator which just plugs in the method of moment estimates
for the unknown variance-covariance matrix. This is given by

BGLS = (XIV?IX)AX’V?I?,

where V is based on plugging in the method of moments esti-
mates 7. Note that this is also a non-iterative estimator and
is easily computed. The only difficulty is the computation of
the inverse of X'V "'X. As we see below (and is also known
from the statistical literature), this one-step GLS estimator is



asymptotically as efficient as the MLE. However, the estimate
of V based on the method of moments can be inefficient in
finite samples. This is studied in the next section.

An alternative estimator that should behave similar to the
MLE both asymptotically and in finite samples is the IRWLS
estimator.

This has the same form as the GLS

but it is an iterative estimator where V is based on the pre-

vious iteration of the IRWLS estimator B and the iteration
is repeated until convergence. While this is somewhat more
demanding computationally than the MLE, the number of it-
erations required is much smaller. Our simulation results show
that estimates based on even a single iteration have good finite
sample properties.

Proposition I1.3 The GLS and IRWLS estimators are
strongly consistent, asymptotically normal, and fully efficient;
i.e.,

Bers/trwrs —Bo a.s.

and .
2 >\ L
\/N(BGLS/IRWLS —Bo) =G,

where G is a normally distributed random vector with zero
mean and variance-covariance matriz given by the inverse of
the Fisher information matriz I™ () = (X'V1X)™ "

Proof: Consistency and asymptotic normality follow by a
similar argument as above. It is established in [11] that
X'V7'X corresponds to the Fisher information matrix for
log(éMLE). Ill

As noted, the GLS/IRWLS estimates provide a computa-
tionally efficient alternative to the maximum likelihood esti-
mates that are obtained in [3] and the EM-algorithm [11].
For 3 and 4-layer tree topologies, our experience suggests that
the EM algorithm needs over 80 iterations to converge as op-
posed to 2-3 iterations required for the IRWLS estimator. Fur-
thermore, the derivation of the Fisher information matrix is
extremely cumbersome, while the calculation of X'V !X is
straightforward. Thus, confidence intervals and related infer-
ence problems are much more conveniently based on the LS
estimation schemes.

III. FINITE AND LARGE-SAMPLE EFFICIENCY
COMPARISONS

We begin with a simulation study of the finite-sample be-
havior of the various LS estimators. Although we have done
an extensive comparison of their behavior for 3 and 4-layer
trees, only selected results for the 4-layer tree are reported
here due to space limitations. The data were generated under
the independent Bernoulli loss model.

Figure 3 shows boxplots of the (Manhattan) distances be-
tween the true vector @ and its LS, GLS and IRWLS esti-
mates. Here and in the rest of this section, the IRWLS esti-
mates are based on only one iteration. All results are based
on 100 replications. The left four panels (top two and bot-
tom two) are based on 1,000 probes with all the link success
probabilities set to be the same and equal, respectively, to
0.7,0.8,.0.9 and 0.95. The right four panels show correspond-
ing results for 10,000 probes. It can be seen that the IRWLS

estimates perform the best and are quite superior to the OLS
and GLS estimates. It is somewhat surprising that the OLS
method outperforms the GLS. The main reason is that the es-
timated covariance matrix V based on the method of moments
can be unstable which leads to instability in the estimator it-
self. This can be seen in more detail when we discuss Figure
4. Note also from Figure 3 that the performance of the es-
timates is better for higher link success probabilities and for
larger probe size.
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Fig. 3: Boxplots of Manhattan distances between the true
link loss probability vector and its LS, GLS and IR~
WLS estimates for a 4-layer tree topology. Left 4
panels (top and bottom two) correspond to 1000
probe packets with all the link success probabili-
ties set equal to .7, .8, .95 and .9 respectively. The
right four panels (top and bottom two) correspond
to analogous results for 10,000 probes.

Figure 4 displays boxplots of the simulation results for a
representative element of & from each layer of a 4-layer tree
topology. The left four panels (top and bottom two) corre-
spond to the case where all the elements of & are set equal to
0.7; the right four to the case with 0.9. The results are based
on 100 replications of the multicast experiment with 10000
probes each. We can see that, in general, the GLS has less
variability than the OLS but that it can be biased in some
cases. As noted before, this can be attributed to the instabil-
ity in estimating the variance-covariance matrix. The IRWLS
estimate performs well overall even with one iteration. Note
also that the variability of all the estimates is smaller for the
upper links (i.e. a1 and a2) and larger for the lower ones (i.e.
as and ag). It is also smaller for larger success probabilities
(-9).

Figures 5 and 6 provide some insight into the asymptotic
efficiency of the LS estimator relative to the GLS/IRWLS es-
timators. As noted before, the GLS and IRWLS estimators
have the same asymptotic variance-covariance matrix. Our
experience (see [11]) suggests that similar behavior also holds
in finite samples provided the number of probes sent is fairly
large (e.g. larger than 5000 for a 4-layer tree). Figure 5
gives the ratio of the asymptotic variances of the OLS and
GLS/IRWLS estimators for representative elements of & (in
log-scale). The transmission success probabilities have been
set equal to one value for the top and bottom links of the tree
topology (i.e. @1 = ag = ... = a15) and to another value those
of the middle layer links (i.e. a2 = ... = ar). It can be seen
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that for small probabilities the GLS/IRWLS estimates are or-
ders of magnitude more efficient than the corresponding OLS
estimates, with the ratio becoming almost one for probabili-
ties very close to 1. A more detailed view is given in Figure
6, where the range of probabilities is restricted to the [0.8,1)
interval. We can see from this graph (the efficiency compar-
isons are now plotted in the original scale) that the efficiency
loss is twice as large for the OLS estimates for the upper link
parameters (i.e. ai and az). Moreover, the efficiency deteri-
orates rapidly when the successful transmission probabilities
become less than .9.
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Fig. 5: Ratios of variances (in log-scale) for select elements
of & and for different successful transmission prob-
abilities.

To get an overall measure of the relative efficiency, we can
use the ratio of determinants of the variance-covariance matri-
ces of the OLS and GLS estimators. This is shown in Figure 7
which demonstrates, to a large extent, a similar pattern as the
one discussed above for the variances. It is of practical interest
to assess the loss of efficiency as a function of computational
complexity, which is a topic of current research.

IV. CoNcLUSIONS AND FUTURE WORK

Ratios of OLS/GLS variances

Ratios of OLS/GLS variances
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Fig. 6: Ratios of variances (in log-scale) for select elements
of & and for different successful transmission prob-
abilities.

Ratios of determinants of OLS/GLS covariances (Iog-scale)

Fig. 7: Ratios of determinants of variance-covariance matri-
ces (in log-scale) for different successful transmission
probabilities.

This paper presents a regression framework for estimating a
network’s internal loss rates based on active probing and using
multicast end-to-end measurements. Various least squares es-
timators are introduced and their finite and asymptotic prop-
erties studied. The IRWLS estimator is asymptotically effi-
cient and inference based on the estimator is computationally
simple to implement. Empirical evidence based on extensive
simulations suggests that the OLS estimator has good perfor-
mance with respect to bias but is fairly inefficient compared
to the IRWLS estimator and is recommended only when the
number of probes is very large. The one-step GLS estimator is
a non-iterative scheme and is therefore also appealing. How-
ever, it can be biased when the number of probes is small to
moderate.

The results thus far have assumed that the link loss prob-
abilities are constant. In practice, however, it it more reason-
able to assume that they are random. Furthermore, most of
the current literature is based on the assumption of spatial



and temporal independence of the link loss behavior. Future
work will focus on estimation and inference for link loss prob-

Appendix B

The regression model for a 3-layer symmetric binary tree

with multicast measurements is given next:
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