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Abstract

The paper develops a new adversarial attack against deep neu-
ral networks (DNN), based on applying bio-inspired design to
moving physical objects. To the best of our knowledge, this
is the first work to introduce physical attacks with a moving
object. Instead of following the dominating attack strategy in
the existing literature, i.e., to introduce minor perturbations
to a digital input or a stationary physical object, we show
two new successful attack strategies in this paper. We show
by superimposing several patterns onto one physical object, a
DNN becomes confused and picks one of the patterns to as-
sign a class label. Our experiment with three flapping wing
robots demonstrates the possibility of developing an adver-
sarial camouflage to cause a targeted mistake by DNN. We
also show certain motion can reduce the dependency among
consecutive frames in a video and make an object detector
“blind”, i.e., not able to detect an object exists in the video.
Hence in a successful physical attack against DNN, targeted
motion against the system should also be considered.

Introduction

Current generation of artificial intelligence (AI) has been
very successful at complex tasks, such as image classifica-
tion, object recognition, or playing the board game Go. Un-
fortunately such forward thinking AI is not secured against
potential digital and physical attacks. This paper aims to de-
velop bio-inspired adversarial attack using moving physical
objects, which has not been considered so far.

Existing digital and physical attacks focus on adding mi-
nor perturbations to the clean samples/objects to fool DNN.
The digital attack algorithms mostly focus on generating
digital adversarial perturbations by solving an optimization
problem or using a generative model against one specific
DNN, e.g., (Kurakin et al. 2018). Digital attacks are further
divided into whitebox attacks, graybox attacks, and black-
box attacks, based on adversary’s knowledge about the tar-
get DNN. For example, Fast Gradient Sign Method (FGSM)
(Goodfellow, Shlens, and Szegedy 2015), a one-step white-
box attack, used the sign of the gradient of the cost function
to generate adversarial perturbations. Carlini and Wagner
(C&W) attack (Carlini and Wagner 2017) solved a box con-
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strained optimization problem to generate adversarial per-
turbations. Many digital attacks have been developed during
the past few years. Recent survey papers, e.g., (Yuan et al.
2019; Biggio and Roli 2018), provided a list of the digital
attacks.

Compared with digital attack algorithms, there are fewer
work on designing physical objects to break DNN. (Sharif
et al. 2016; Kurakin, Goodfellow, and Bengio 2017; Eykholt
et al. 2018; Athalye et al. 2018) are four examples. (Sharif
et al. 2016) designed eyeglass frames to allow a person
to avoid face detection. (Kurakin, Goodfellow, and Bengio
2017) printed out the digital adversarial images targeted on
Inception v3 classifier, and took a photo of the printouts
using a cellphone. They showed the cropped photo images
were also misclassified by Inception v3 classifier. (Eykholt
et al. 2018) showed that placing a few stickers on a stop sign
can cause it to be misclassified as other traffic signs. (Atha-
lye et al. 2018) created a 3D printed turtle that is misclas-
sified as a rifle, by adding a few color stripes on the shell.
These work also took the optimization approach with one
specific DNN in the optimization set-up, similar to the dig-
ital attack algorithms. Meanwhile they designed stationary
physical objects to fool a target DNN.

These attacks demonstrate a certain type of inherent vul-
nerability in DNN. It is important to understand the vulner-
abilities in DNN in order to robustify DNN. To the best of
our knowledge, this paper is the first work to design adver-
sarial attack using moving physical objects to fool DNNs.
Through our bio-inspired adversarial attack, we show there
exist more vulnerabilities in DNN, which suggests robusti-
fying DNN is a more difficult task than currently believed.

Bio-Inspired Adversarial Attack

Biological intelligence, not limited to human cognitive rea-
soning, covers a broad range of mechanisms to make liv-
ing organisms hidden from predators and prey, and adapt
to changing environments. Figure 1 shows hidden praying
mantises on plants. Praying mantis stay hidden due to their
camouflage coloration. When they move, they can still re-
main hidden because of the way they move. Praying mantis
coloration changes with the surroundings: those from dry ar-
eas are brown, whereas those from wet areas are green. They
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Figure 1: Praying Mantises as Leaf (left) and Flower (right)

remain motionless for a long time until a prey gets close.
When they do move, they move with a rocking motion mim-
icking a swaying plant in the wind. Learning from biological
intelligence (Floreano and Mattiussi 2008), we demonstrate
in this paper there are more powerful attacks against DNNs
using camouflage, not limited to only adding minor pertur-
bations on digital inputs or physical objects. Hence the cur-
rent generation of AI needs to significantly improve its capa-
bilities to face different types of attacks. Next we show our
bio-inspired adversarial attack against DNN.

Figure 2: Real Butterfly (left) and Robot (right)

Figure 3: Real Butterfly (left) and Robot (right)

Figure 4: Real Butterfly (left) and Robot (right)

Attack by Superposition of Multiple Patterns We have
three ornithopters (i.e., flapping wing robots) identical in
shape. The right panels in Figures 2, 3, 4 show the front,
the back, and the side of the robots. The original robot is
shaped as a bird, but has two pairs of wings, one pair with
color and the other pair transparent. The tail is similar to that
of a small aircraft.

t

Orange butterfly(233), robot(7)

White butterfly(182), robot(82)

Black butterfly(1), robot(195), bird(4), black cat(3)

Table 1: Classification Results from Re-trained Inception V3

We apply an adversarial camouflage to the robots by su-
perimposing the patterns copied from butterflies onto the
robots. Figure 3 is the robot showing the original color de-
sign, with only several black dots added on the wings. Fig-
ure 2 shows the robot with the body painted black and the
wings painted as orange with black stripes, resembling the
pattern on a butterfly. Figure 4 shows a robot painted as
black with a few white dots on the wings and the tail, re-
sembling a mostly black butterfly. Hence the three robots in
Figures 2, 3, 4 all become a superposition of three different
patterns – the head and the body resembling a bird, the tail
resembling a small aircraft, the wings resembling a butterfly.

We record them flying by flapping the wings using a Sony
DSC-RX10 digital camera with H.264 video encoder to pro-
duce mp4 files. Both the raw videos and the frames extracted
from the videos are analyzed. The extracted video frames’
resolution is 1920×1080. We extract video frames equally
spaced in time and use the state-of-the-art image classifica-
tion algorithm to label the selected video frames. First, the
video frames are directly labeled by the pre-trained Incep-
tion V3 image classifier (Szegedy et al. 2016), a deep con-
volutional neural network trained on images from ImageNet
1000 classes (Deng et al. 2009). Here we use the TensorFlow
implementation of Inception V3 to label the video frames
(TensorFlow Github Directory ).

The robots are not an exact match with the image classes
used in the training process for the pre-trained Inception V3.
Unsurprisingly, Inception V3 top one labeled class includes
different types of butterflies, necklace, sweatshirt, cramp-
fish, mask, quill pen, umbrella, bow-tie etc. None of the
video frames are recognized as bird which the robots are
created to be.

Next we retrain Inception V3 three times with 9 image
classes (Shao, Zhu, and Li 2014): 1) real bird; 2) real butter-
fly; 3) robot; 4) frog; 5) lion; 6) black cat; 7) white rat; 8)
fish; 9) jellyfish. In the robot class, when every time we re-
train Inception V3, we include the frames from two videos,
and use the frames from the third video as the test samples.

Table 1 shows the classification results from re-trained In-
ception V3. In total, the robot with orange pattern has 240
frames; the robot with white wing and black dots has 264
frames; and the robot with black wing and a few white dots
has 203 frames. The majority of the one with orange pattern,
233 frames out of 240, is labeled as butterfly. The majority
of the one with black wing and white dots, 195 frames out
of 203, is labeled as robot. Surprisingly, the result is split for
the one with white wing – 182 frames are labeled as butterfly
and 82 frames are labeled as robot.

To visualize how the frames from the robots and the im-
ages from other classes are grouped, we perform a principal
component analysis (PCA), including the frames from three
robots, and the images of real bird and real butterfly. Figure 5



Figure 5: PCA display of video frames from three robots and
images of real birds and butterflies.

shows that the real bird images and the real butterfly images
form two large and loose clusters, whereas the frames from
three robots form three small and tight clusters.

The results from the re-trained Inception V3 point to a
major vulnerability of DNN – when several patterns are su-
perposed on a object, DNN does not know for sure which
class the object belongs to. We can argue the robot with the
orange pattern is mostly labeled as butterfly because that is
a strong identifying feature, and the black robot is mostly
labeled as robot because the black paint highlights the shape
of the robot. For the white robot, it is the original design with
a few added black dots. Within the tightly clustered frames,
31% is labeled as robot and 69% labeled as butterfly. DNN
simply picks one pattern and assigns the class label. Unfor-
tunately we do not know which pattern would be picked by
DNN. Targeting the current generation of AI, camouflaging
a moving physical object is a successful adversarial attack,
as demonstrated by the robot with orange pattern. Introduc-
ing minor perturbations to a moving physical object does
cause some confusion from DNN, though not as successful
as a full body camouflage, shown by the white and the black
robots.

Attack by Motion We use the state-of-the-art object de-
tection system, You only look once (YOLO) V3, to iden-
tify the flying robot in three videos. YOLOv3 (Redmon and
Farhadi 2018) is a real time object detection system. It can

identify and label objects from both images and videos1.
YOLOv3 has a fully convolutional structure with 106 lay-
ers. Its structure allows it to detect objects of different sizes,
from small to large. If an object is detected in a video,
YOLOv3 places a bounding box around the object with la-
bel(s). YOLOv3 is able to assign multiple labels to one ob-
ject if it believes the object fits the descriptions. YOLOv3
can detect up to 9000 object classes. Note object detection,
among other applications, is one of the most important tasks
that must be done properly by autonomous driving systems
to avoid collisions.

The video output from YOLOv3 can be downloaded
here2. In two videos, YOLOv3 is “blind” – it cannot detect
any object at all. In one video with the mostly black robot,
YOLOv3 briefly identifies the tail as two remotes with prob-
abilities 0.71 and 0.61. Two bounding boxes focus on the
white dots on the tail. This happens during a brief period
that the black robot is flying with its back steadily facing the
camera.

We believe the flapping wing motion likely reduces the
dependency among the video frames. Hence the flapping
wing motion completely fools the object detector YOLOv3
in two videos, and succeeds most of the time in the third
video. During our experiment, we notice there exists other
similar motion to reduce the dependency among video
frames and make the object detector “blind”. For example, a
man rolls a kayak with a paddle. As the kayak floats down
the river and with the motion of the paddle, YOLOv3 cannot
detect the man.

Certain motion, when designed properly, is able to fool
the state-of-the-art object detector. Motion should be a crit-
ical part of a physical adversarial attack. Meanwhile we re-
alize that developing algorithms to pair certain motion with
a given object may be a more difficult task than developing
attacks by adding minor perturbations.

Figure 6: Class with the highest score is Clock 0.58, by
YOLOv3 trained on ImageNet 9000 classes.

When using YOLOv3 to label the extracted frames, it
places a bounding box around an object. Whereas Inception
V3 provides only probabilities for the top classes, the bound-
ing box from YOLOv3 allows us to examine why YOLOv3
makes a mistake with a frame/image. Figure 6 shows a la-

1https://pjreddie.com/darknet/yolo/
2https://www.stat.purdue.edu/∼xbw/bio-yolov3/



beled frame. YOLOv3 only detects part of the wings of the
white robot and labels that portion as a clock with score
0.58, due to the black dots painted on the wings. We no-
tice the bounding box focuses on the black dots. Depending
on which image classes are used in the training process of a
DNN based AI, it chooses one of the matching classes and
assigns it to the frame. Our experiments demonstrate that
DNN cannot tell which is the correct object class among
several matching classes. It is far less accurate than human
recognition facing a complex object.

Conclusion

Based on the success of the experiment, we demonstrate that
it is possible to design bio-inspired adversarial attack using
moving physical objects. Future work includes a targeted at-
tack to create the most effective camouflage. We believe for
an attack to be most powerful, it should not simply compute
a physical outfit targeting one specific AI. While attackers
can launch unpredictable attacks to break an AI, defender
can update and implement newer and more powerful learn-
ing algorithm at unpredictable times as well. Hence an ef-
fective physical attack must be able to break any AI systems,
both present and future ones, and allow both moving and sta-
tionary objects to avoid being detected. An adversarial cam-
ouflage could be based on the surrounding environment. If
an object operates in a complex environment, its physical
appearance should allow it to melt into the background. If
an object operates in a simple environment, its physical ap-
pearance can be designed to mimic a living organism.

At the same time, we realize there are objects with radi-
cally different appearances falling in one class, and there are
hidden objects that can only be detected based on the subtle
irregularities of its shape. AI needs to improve its capabil-
ities, beyond simply increasing the size of its training data,
to properly recognize and label such objects.

In our experiment, we use convolutional neural network
(CNN) based YOLOv3 to detect the flying robots in the
videos. YOLOv3 is not able to detect anything in the entire
video, i.e., bounding box not present throughout the video.
The flapping wing motion makes many frames blurry, and
the object keeps turning and showing different side of its
body in front of the camera. It may be the case that it is more
difficult to locate a dense region in a blurry image/frame.
Also a rapidly moving object makes it difficult to match the
frames with a ground truth object. For future work, we could
see if motion detection or frame control during the prepro-
cessing stage could help to mitigate the threat of certain mo-
tions.

Many other state-of-the-art object detection systems are
also based on the convolutional structure, such as R-
FCN (Dai et al. 2016) and RetinaNet (Lin et al. 2018).
Meanwhile currently most of the adversarial attacks and de-
fenses target CNN based systems. It would be interesting
to investigate whether Recurrent Neural Network (RNN)
based vision systems are more robust to rapid motions,
since RNN can go deep in the time domain. Note both
attacking and defending RNN need to take into account
of the sequential nature of the data (Papernot et al. 2016;

Rosenberg et al. 2019). Hence it is a different line of re-
search compared with attacking and defending CNN based
systems.
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