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ABSTRACT
Many learning tasks such as spam filtering and credit card
fraud detection face an active adversary that tries to avoid
detection. For learning problems that deal with an active
adversary, it is important to model the adversary’s attack
strategy and develop robust learning models to mitigate the
attack. These are the two objectives of this paper. We con-
sider two attack models: a free-range attack model that per-
mits arbitrary data corruption and a restrained attack model
that anticipates more realistic attacks that a reasonable ad-
versary would devise under penalties. We then develop opti-
mal SVM learning strategies against the two attack models.
The learning algorithms minimize the hinge loss while as-
suming the adversary is modifying data to maximize the loss.
Experiments are performed on both artificial and real data
sets. We demonstrate that optimal solutions may be overly
pessimistic when the actual attacks are much weaker than
expected. More important, we demonstrate that it is pos-
sible to develop a much more resilient SVM learning model
while making loose assumptions on the data corruption mod-
els. When derived under the restrained attack model, our
optimal SVM learning strategy provides more robust overall
performance under a wide range of attack parameters.

Categories and Subject Descriptors
I.5.1 [Computing Methodologies]: Pattern Recognition—
Models; I.2.6 [Computing Methodologies]: Artificial In-
telligence —Learning

General Terms
Theory, Algorithms
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1. INTRODUCTION
Many learning tasks, such as intrusion detection and spam

filtering, face adversarial attacks. Adversarial exploits cre-
ate additional challenges to existing learning paradigms. Gen-
eralization of a learning model over future data cannot be
achieved under the assumption that current and future data
share identical properties, which is essential to the tradi-
tional approaches. In the presence of active adversaries,
data used for training in a learning system is unlikely to
represent future data the system would observe. The dif-
ference is not just simple random noise which most learning
algorithms have already taken into consideration when they
are designed. What typically flunk these learning algorithms
are targeted attacks that aim to make the learning system
dysfunctional by disguising malicious data that otherwise
would be detected. Existing learning algorithms cannot be
easily tailored to counter this kind of attack because there is
a great deal of uncertainty in terms of how much the attacks
would affect the structure of the sample space. Despite the
sample size and distribution of malicious data given at train-
ing time, we would need to make an educated guess about
how much the malicious data would change, as sophisticated
attackers adapt quickly to evade detection. Attack models,
that foretell how far an adversary would go in order to breach
the system, need to be incorporated into learning algorithms
to build a robust decision surface. In this paper, we present
two attack models that cover a wide range of attacks tai-
lored to match the adversary’s motives. Each attack model
makes a simple and realistic assumption on what is known
to the adversary. Optimal SVM learning strategies are then
derived against the attack models.

Some earlier work lays important theoretical foundations
for problems in adversarial learning [15, 6, 20]. However,
earlier work often makes strong assumptions such as un-
limited computing resource and both sides having a com-
plete knowledge of their opponents. Some proposes attack
models that may not permit changes made to arbitrary sets
of features [20]. In security applications, some existing re-
search mainly explores practical means of defeating learning
algorithms used in a given application domain [25, 19, 22].
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Meanwhile, various learning strategies are proposed to fix
application-specific weaknesses in learning algorithms [24,
21, 17], but only to find new doors open for future at-
tacks [10, 22]. The main challenge remains as attackers con-
tinually exploit unknown weaknesses of a learning system.
Regardless of how well designed a learning system appears
to be, there are always “blind” spots it fails to detect, lead-
ing to escalating threats as the technical strengths on both
sides develop. Threats are often divided into two groups,
with one group aiming to smuggle malicious content past
learning based detection mechanism, while the other trying
to undermine the credibility of a learning system by raising
both false positive and false negative rates [3]. The grey
area in between is scarcely researched. In this work, we set
ourselves free from handling application-specific attacks and
addressing specific weaknesses of a learning algorithm. Our
main contributions lie in the following three aspects:
• We develop a learning strategy that solves a general

convex optimization problem where the strength of the
constraints is tied to the strength of attacks.

• We derive optimal support vector machine learning
models against an adversary whose attack strategy is
defined under a general and reasonable assumption.

• We investigate how the performance of the resulting
optimal solutions change with different parameter val-
ues in two different attack models. The empirical re-
sults suggest our proposed adversarial SVM learning
algorithms are quite robust against various degrees of
attacks.

The rest of the paper is organized as follows. Section 2
presents the related work in the area of adversarial learning.
Section 3 formally defines the problem. Section 4 presents
the attack models and Section 5 derives the adversarial SVM
models. Section 6 presents experimental results on both
artificial and real data sets. Section 7 concludes our work
and presents future directions.

2. RELATED WORK
Kearns and Li [15] provide theoretical upper bounds on

tolerable malicious error rates for learning in the presence of
malicious errors. They assume the adversary has unbounded
computational resource. In addition, they assume the adver-
sary has the knowledge of the target concept, target distri-
butions, and internal states of the learning algorithm. They
demonstrate that error tolerance needs not come at the ex-
pense of efficiency or simplicity, and there are strong ties
between learning with malicious errors and standard opti-
mization problems.

Dalvi et al. [6] propose a game theoretic framework for
learning problems where there is an optimal opponent. They
define the problem as a game between two cost-sensitive op-
ponents: a naive Bayes classifier and an adversary playing
optimal strategies. They assume all parameters of both play-
ers are known to each other and the adversary knows the ex-
act form of the classifier. Their adversary-aware algorithm
makes predictions according to the class that maximizes the
conditional utility. Finding optimal solutions remains to be
computational intensive, which is typical in game theory.

Lowed and Meek [20] point out that assuming the adver-
sary has perfect knowledge of the classifier is unrealistic.
Instead they suggest the adversary can confirm the mem-
bership of an arbitrary instance by sending queries to the

classifier. They also assume the adversary has available an
adversarial cost function over the sample space that maps
samples to cost values. This assumption essentially means
the adversary needs to know the entire feature space to issue
optimal attacks. They propose an adversarial classifier re-
verse engineering (ACRE) algorithm to learn vulnerabilities
of given learning algorithms.

Adversarial learning problems are often modeled as games
played between two opponents. Brückner and Scheffer model
adversarial prediction problems as Stackelberg games [5]. To
guarantee optimality, the model assumes adversaries behave
rationally. However, it does not require a unique equilib-
rium. Kantarcioglu et al. [14] treat the problem as a sequen-
tial Stackelberg game. They assume the two players know
each other’s payoff function. They use simulated anneal-
ing and genetic algorithm to search for a Nash equilibrium.
Later on such an equilibrium is used to choose optimal set
of attributes that give good equilibrium performance. Im-
proved models in which Nash strategies are played have also
been proposed [4, 18].

Other game theoretic models play zero-sum minimax strate-
gies. Globerson and Roweis [11] consider a problem where
some features may be missing at testing time. This is related
to adversarial learning in that the adversary may simply
delete highly weighted features in malicious data to increase
its chance to evade detection. They develop a game theoretic
framework in which classifiers are constructed to be optimal
in the worst case scenario. Their idea is to prevent assign-
ing too much weight on any single feature. They use the
support vector machine model which optimally minimizes
the hinge loss when at most K features can be deleted. El
Ghaoui et al [9] apply a minimax model to training data
bounded by hyper-rectangles. Their model minimizes the
worst-case loss over data in given intervals. Other robust
learning algorithms for handling classification-time noise are
also proposed [16, 23, 7, 8].

Our work differs from the existing ones in several respects.
First of all, we do not make strong assumptions on what is
known to either side of the players. Second, both wide-
range attacks and targeted attacks are considered and in-
corporated into the SVM learning framework. Finally, the
robustness of the minimax solutions against attacks over a
wide range of parameters is investigated.

3. PROBLEM DEFINITION
Denote a sample set by {(xi, yi) ∈ (X ,Y)}ni=1, where xi is

the ith sample and yi ∈ {−1, 1} is its label, X ⊆ Rd is a d-
dimensional feature space, n is the total number of samples.
We consider an adversarial learning problem where the ad-
versary modifies malicious data to avoid detection and hence
achieves his planned goals. The adversary has the freedom
to move only the malicious data (yi = 1) in any direction by
adding a non-zero displacement vector δi to xi|yi=1. For ex-
ample, in spam-filtering the adversary may add good words
to spam e-mail to defeat spam filters. On the other hand,
adversary will not be able to modify legitimate e-mail.

We make no specific assumptions on the adversary’s knowl-
edge of the learning system. Instead, we simply assume there
is a trade-off or cost of changing malicious data. For exam-
ple, a practical strategy often employed by an adversary is
to move the malicious data in the feature space as close as
possible to where the innocuous data is frequently observed.
However, the adversary can only alter a malicious data point

1060



so much that its malicious utility is not completely lost. If
the adversary moves a data point too far away from its own
class in the feature space, the adversary may have to sacri-
fice much of the malicious utility of the original data point.
For example, in the problem of credit card fraud detection,
an attacker may choose the “right” amount to spent with a
stolen credit card to mimic a legitimate purchase. By doing
so, the attacker will lose some potential profit.

4. ADVERSARIAL ATTACK MODELS
We present two attack models—free-range and restrained,

each of which makes a simple and realistic assumption about
how much is known to the adversary. The models differ in
their implications for 1) the adversary’s knowledge of the in-
nocuous data, and 2) the loss of utility as a result of changing
the malicious data. The free-range attack model assumes
the adversary has the freedom to move data anywhere in
the feature space. The restrained attack model is a more
conservative attack model. The model is built under the in-
tuition that the adversary would be reluctant to let a data
point move far away from its original position in the feature
space. The reason is that greater displacement often entails
loss of malicious utility.

4.1 Free-Range Attack
The only knowledge the adversary needs is the valid range

of each feature. Let xmax.j and xmin.j be the largest and the

smallest values that the jth feature of a data point xi—
xij—can take. For all practical purposes, we assume both
xmax.j and xmin.j are bounded. For example, for a Gaussian
distribution, they can be set to the 0.01 and 0.99 quantiles.
The resulting range would cover most of the data points and
discard a few extreme values. An attack is then bounded in
the following form:

Cf (xmin.j − xij) ≤ δij ≤ Cf (xmax.j − xij), ∀j ∈ [1, d],

where Cf ∈ [0, 1] controls the aggressiveness of attacks.
Cf = 0 means no attacks, while Cf = 1 corresponds to
the most aggressive attacks involving the widest range of
permitted data movement.

The great advantage of this attack model is that it is suffi-
ciently general to cover all possible attack scenarios as far as
data modification is concerned. When paired with a learning
model, the combination would produce good performance
against the most severe attacks. However, when there are
mild attacks, the learning model becomes too“paranoid”and
its performance suffers accordingly. Next, we present a more
realistic model for attacks where significant data alteration
is penalized.

4.2 Restrained Attack
Let xi be a malicious data point the adversary aims to

alter. Let xti, a d-dimensional vector, be a potential target
to which the adversary would like to push xi. The adversary
chooses xti according to his estimate of the innocuous data
distribution. Ideally, the adversary would optimize xti for
each xi to minimize the cost of changing it and maximize
the goal it can achieve. Optimally choosing xti is desired,
but often requires a great deal of knowledge about the fea-
ture space and sometimes the inner working of a learning
algorithm [6, 20]. More realistically, the adversary can set
xti to be the estimated centroid of innocuous data, a data

point sampled from the observed innocuous data, or an ar-
tificial data point generated from the estimated innocuous
data distribution. Note that xti could be a rough guess if
the adversary has a very limited knowledge of the innocu-
ous data, or a very accurate one if the adversary knows the
exact make up of the training data.

In most cases, the adversary cannot change xi to xti as
desired since xi may lose too much of its malicious utility.
Therefore, for each attribute j in the d-dimensional feature
space, we assume the adversary adds δij to xij where

|δij | ≤ |xtij − xij |, ∀ j ∈ d.

Furthermore, we place an upper bound on the amount of
displacement for attribute j as follows:

0 ≤ (xtij − xij)δij ≤
(

1− Cδ
|xtij − xij |
|xij |+ |xtij |

)
(xtij − xij)2,

where Cδ ∈ [0, 1] is a constant modeling the loss of malicious
utility as a result of the movement δij . This attack model
specifies how much the adversary can push xij towards xtij
based on how far apart they are from each other. The term

1 − Cδ
|xtij−xij |
|xij |+|xtij |

is the percentage of xtij − xij that δij is

allowed to be at most. When Cδ is fixed, the closer xij is
to xtij , the more xij is allowed to move towards xtij per-
centage wise. The opposite is also true. The farther apart
xij and xtij , the smaller |δij | will be. For example, when
xij and xtij reside on different sides of the origin, that is,
one is positive and the other is negative, then no movement
is permitted (that is, δij = 0) when Cδ = 1. This model
balances between the needs of disguising maliciousness of
data and retaining its malicious utility in the mean time.
(xtij − xij)δij ≥ 0 ensures δij moves in the same direction
as xtij − xij . Cδ is related to the loss of malicious utility
after the data has been modified. Cδ sets how much mali-
cious utility the adversary is willing to sacrifice for breaking
through the decision boundary. A larger Cδ means smaller
loss of malicious utility, while a smaller Cδ models greater
loss of malicious utility. Hence a larger Cδ leads to less ag-
gressive attacks while a smaller Cδ leads to more aggress
attacks.

The attack model works great for well-separated data as
shown in Figure 1(a). When data from both classes are near
the separation boundary as shown in Figure 1(b), slightly
changing attribute values would be sufficient to push the
data across the boundary. In this case, even if Cδ is set to 1,
the attack from the above model would still be too aggres-
sive compared with what is needed. We could allow Cδ > 1
to further reduce the aggressiveness of attacks, however, for
simplicity and more straightforward control, we instead ap-
ply a discount factor Cξ to |xtij − xij | directly to model the
severeness of attacks:

0 ≤ (xtij − xij)δij ≤ Cξ
(

1−
|xtij − xij |
|xij |+ |xtij |

)
(xtij − xij)2,

where Cξ ∈ [0, 1]. A large Cξ gives rise to a greater amount
of data movement, and a small Cξ sets a narrower limit on
data movement. Combining these two cases, the restrained-
attack model is given as follows:

0 ≤ (xtij − xij)δij ≤ Cξ
(

1− Cδ
|xtij − xij |
|xij |+ |xtij |

)
(xtij − xij)2.
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(a) Data well separated
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Figure 1: Data well separated and data cluttered
near separating boundary.

5. ADVERSARIAL SVM LEARNING
We now present an adversarial support vector machine

model (AD-SVM) against each of the two attack models
discussed in the previous section. We assume the adversary
cannot modify the innocuous data. Note that this assump-
tion can be relaxed to model cases where the innocuous data
may also be altered.

5.1 AD-SVM against Free-range Attack Model
We first consider the free-range attack model. The hinge

loss model is given as follows:

h(w, b, xi) =

{
max
δi
b1− (w · (xi + δi) + b)c+ if yi = 1

b1 + (w · xi + b)c+ if yi = −1
s.t.

δi � Cf (xmax − xi)
δi � Cf (xmin − xi)

where δi is the displacement vector for xi, � and � denote
component-wise inequality.

Following the standard SVM risk formulation, we have

argmin
w,b

∑
{i|yi=1}max

δi
b1− (w · (xi + δi) + b)c+

+
∑
{i|yi=−1}b1 + (w · xi + b)c+

+µ||w||2

Combining cases for positive and negative instances, this
is equivalent to:

argmin
w,b

∑
i

max
δi
b1− yi(w · xi + b)− 1

2
(1 + yi)w · δic+

+µ||w||2

Note that the worst case hinge loss of xi is obtained when
δi is chosen to minimize its contribution to the margin, that

is,

fi = min
δi

1
2
(1 + yi)w · δi

s.t. δi � Cf (xmax − xi)
δi � Cf (xmin − xi)

This is a disjoint bilinear problem with resect to w and δi.
Here, we are interested in discovering optimal assignment to
δi with a given w. We can reduce the bilinear problem to the
following asymmetric dual problem over ui ∈ Rd, vi ∈ Rd
where d is the dimension of the feature space:

gi = max−
∑
j Cf

(
vij(x

max
j − xij)− uij(xminj − xij)

)
or
gi = min

∑
j Cf

(
vij(x

max
j − xij)− uij(xminj − xij)

)
s.t. (ui − vi) = 1

2
(1 + yi)w

ui � 0
vi � 0

The SVM risk minimization problem can be rewritten as
follows:

argmin
w,b,ti,ui,vi

1
2
||w||2 + C

∑
ib1− yi · (w · xi + b) + tic+

s.t. ti ≥
∑
j Cf

(
vij(x

max
j − xij)− uij(xminj − xij)

)
ui − vi = 1

2
(1 + yi)w

ui � 0
vi � 0

Adding a slack variable and linear constraints to remove
the non-differentiality of the hinge loss, we can rewrite the
problem as follows:

argmin
w,b,ξi,ti,ui,vi

1
2
||w||2 + C

∑
i ξi

s.t. ξi ≥ 0
ξi ≥ 1− yi · (w · xi + b) + ti
ti ≥

∑
j Cf

(
vij(x

max
j − xij)− uij(xminj − xij)

)
ui − vi = 1

2
(1 + yi)w

ui � 0
vi � 0

5.2 AD-SVM against Restrained Attack Model
With the restrained attack model, we modify the hinge

loss model and solve the problem following the same steps:

h(w, b, xi) =

{
max
δi
b1− (w · (xi + δi) + b)c+ if yi = 1

b1 + (w · xi + b)c+ if yi = −1
s.t.

(xti − xi) ◦ δi � Cξ
(

1− Cδ |x
t
i−xi|

|xi|+|xti|

)
◦ (xti − xi)◦2

(xti − xi) ◦ δi � 0

where δi denotes the modification to xi, � is component-
wise inequality, and ◦ denotes component-wise operations.

The worst case hinge loss is obtained by solving the fol-
lowing minimization problem:

fi = min
δi

1
2
(1 + yi)w · δi

s.t. (xti − xi) ◦ δi � Cξ
(

1− Cδ |x
t
i−xi|

|xi|+|xti|

)
◦ (xti − xi)◦2

(xti − xi) ◦ δi � 0

Let

eij = Cξ

(
1− Cδ

|xtij − xij |
|xij |+ |xtij |

)
(xtij − xij)2.
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We reduce the bilinear problem to the following asymmetric
dual problem over ui ∈ Rd, vi ∈ Rd where d is the dimension
of the feature space:

gi = max−
∑
j eijuij , or

gi = min
∑
j eijuij

s.t. (−ui + vi) ◦ (xti − xi) = 1
2
(1 + yi)w

ui � 0
vi � 0

The SVM risk minimization problem can be rewritten as
follows:

argmin
w,b,ti,ui,vi

1
2
||w||2 + C

∑
ib1− yi · (w · xi + b) + tic+

s.t. ti ≥
∑
j eijuij

(−ui + vi) ◦ (xti − xi) = 1
2
(1 + yi)w

ui � 0
vi � 0

After removing the non-differentiality of the hinge loss, we
can rewrite the problem as follows:

argmin
w,b,ξi,ti,ui,vi

1
2
||w||2 + C

∑
i ξi

s.t. ξi ≥ 0
ξi ≥ 1− yi · (w · xi + b) + ti
ti ≥

∑
j eijuij

(−ui + vi) ◦ (xti − xi) = 1
2
(1 + yi)w

ui � 0
vi � 0

6. EXPERIMENT
We test the AD-SVM models on both artificial and real

data sets. In our experiments, we investigate the robustness
of the AD-SVM models as we increase the severeness of the
attacks. We let xti be the centroid of the innocuous data
in our AD-SVM model against restrained attacks. We also
tried setting xti to a random innocuous data point in the
training or test set, and the results are similar. Due to space
limitations, we do not report the results in the latter cases.

Attacks on the test data used in the experiments are sim-
ulated using the following model:

δij = fattack(x−ij − xij)

where x−i is an innocuous data point randomly chosen from
the test set, and fattack > 0 sets a limit for the adversary
to move the test data toward the target innocuous data
points. By controlling the value of fattack, we can dictate
the severity of attacks in the simulation. The actual attacks
on the test data are intentionally designed not to match
the attack models in AD-SVM so that the results are not
biased. For each parameter Cf , Cδ and Cξ in the attack
models considered in AD-SVM, we tried different values as
fattack increases. This allows us to test the robustness of
our AD-SVM model in all cases where there are no attacks
and attacks that are much more severe than the model has
anticipated. We compare our AD-SVM model to the stan-
dard SVM and one-class SVM models. We implemented our
AD-SVM algorithms in CVX—a package for specifying and
solving convex programs [12]. Experiments using SVM and
one-class SVM are implemented using Weka [13].

6.1 Experiments on Artificial Dataset
We generate two artificial data sets from bivariate normal

distributions with specified means and covariance matrices.

Data in the first data set is well separated. The second
data set consists of data more cluttered near the separating
boundary. All results are averaged over 100 random runs.

6.1.1 Data Points Well Separated
Figure 2 illustrates the data distributions when different

levels of distortion are applied to the malicious data by set-
ting fattack to 0 (original distribution), 0.3, 0.5, 0.7, and 1.0.
As can be observed, as fattack increases, the malicious data
points are moved more aggressively towards innocuous data.
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Figure 2: Data distributions of the first data set
after attacks. fattack varies from 0 (no attack) to
1.0 (most aggressive). Plain “+” marks the original
positive data points, “+”with a central black square
marks positive data points after alteration, and “◦”
represents negative data.

Table 1 lists the predictive accuracy of our AD-SVM algo-
rithm with the free-range attack model, the standard SVM
algorithm, and the one-class SVM algorithm. AD-SVM
clearly outperforms both SVM and one-class SVM when it
assumes reasonable adversity (Cf ∈ [0.1, 0.5]). When there
is mild attack or no attack at all, AD-SVM with more ag-
gressive free-range assumptions (Cf ∈ [0.5, 0.9]) suffers great
performance loss as we expect from such pessimistic model.

Compared to the free-range attack model, the restrained
attack model works much more consistently across the entire
spectrum of the learning and attack parameters. Here Cδ
reflects the aggressiveness of attacks in our AD-SVM learn-
ing algorithm. Table 2 shows the classification results as Cδ
decreases, from less aggressive (Cδ = 0.9) to very aggressive
(Cδ = 0.1). Clearly, the most impressive results are lined
up along the diagonal when the assumptions on the attacks

1063



Table 1: Accuracy of free-range AD-SVM, SVM, and one-class SVM under data distributions shown in
Figure 2(a), 2(b), 2(c), 2(d), and 2(e). Cf increases as the learning model assumes more aggressive attacks.

fattack = 0 fattack = 0.3 fattack = 0.5 fattack = 0.7 fattack = 1.0

AD-SVM

Cf = 0.1 1.000 1.000 0.887 0.512 0.500
Cf = 0.3 1.000 1.000 0.997 0.641 0.500
Cf = 0.5 0.996 0.996 0.996 0.930 0.500
Cf = 0.7 0.882 0.886 0.890 0.891 0.500
Cf = 0.9 0.500 0.500 0.500 0.500 0.500

SVM 1.000 0.999 0.751 0.502 0.500
One-class SVM 1.000 0.873 0.500 0.500 0.500

Table 2: Accuracy of restrained AD-SVM, SVM, and one-class SVM under data distributions shown in
Figure 2(a), 2(b), 2(c), 2(d), and 2(e). Cδ decreases as the learning model assumes more aggressive attacks.

fattack = 0 fattack = 0.3 fattack = 0.5 fattack = 0.7 fattack = 1.0

AD-SVM
Cδ = 0.9 1.000 1.000 0.856 0.505 0.500
Cδ = 0.7 1.000 1.000 0.975 0.567 0.500

(Cξ = 1)
Cδ = 0.5 1.000 1.000 0.999 0.758 0.500
Cδ = 0.3 0.994 0.994 0.994 0.954 0.500
Cδ = 0.1 0.878 0.876 0.878 0.878 0.500

SVM 1.000 0.998 0.748 0.501 0.500
One-class SVM 1.000 0.873 0.500 0.500 0.500

made in the learning model match the real attacks. The
results of our AD-SVM in the rest of the experiments are
mostly superior to both SVM and one-class SVM too. This
relax the requirement of finding the best Cδ. Regardless
of what Cδ value is chosen, our model delivers solid perfor-
mance.

6.1.2 Data Cluttered Near Separating Boundary
Figure 3 illustrates the distributions of our second arti-

ficial data set under different levels of attacks. Malicious
data points can be pushed across the boundary with little
modification. We again consider both the free-range and
the restrained attack models. Similar conclusions can be
drawn: restrained AD-SVM is more robust than free-range
AD-SVM; AD-SVMs in general cope much better with mild
adversarial attacks than standard SVM and one-class SVM
models.

Table 3 lists the predictive accuracy of our AD-SVM algo-
rithm with the free-range attack model on the second data
set. The results of the standard SVM algorithm and the one-
class SVM algorithm are also listed. The free-range model is
overly pessimistic in many cases, which overshadows its re-
silience against the most severe attacks. For the restrained
attack model, since the two classes are not well separated
originally, Cξ is used (not combined with Cδ) to reflect the
aggressiveness of attacks in AD-SVM. A larger Cξ is more
aggressive while a smaller Cξ assumes mild attacks. Table 4
shows the classification results as Cξ increases, from less ag-
gressive (Cξ = 0.1) to very aggressive (Cξ = 0.9).

The restrained AD-SVM model still manages to improve
the predictive accuracy compared to SVM and one-class
SVM, although the improvement is much less impressive.
This is understandable since the data set is generated to
make it harder to differentiate between malicious and in-
nocuous data, with or without attacks. The model suffers
no performance loss when there are no attacks.
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Figure 3: Data distributions of the second data set
after attacks. fattack varies from 0 (none) to 1.0
(most aggressive). Plain “+”marks the original pos-
itive data points, “+” with a central black square is
for positive data points after alteration, and “◦” rep-
resents negative data.
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Table 3: Accuracy of free-range AD-SVM, SVM, and one-class SVM under data distributions shown in
Figure 3(a), 3(b), 3(c), 3(d), and 3(e). Cf increases as the learning model assumes more aggressive attacks.

fattack = 0 fattack = 0.3 fattack = 0.5 fattack = 0.7 fattack = 1.0

AD-SVM

Cf = 0.1 0.928 0.884 0.771 0.609 0.500
Cf = 0.3 0.859 0.848 0.807 0.687 0.500
Cf = 0.5 0.654 0.649 0.658 0.638 0.500
Cf = 0.7 0.500 0.500 0.500 0.500 0.500
Cf = 0.9 0.500 0.500 0.500 0.500 0.500

SVM 0.932 0.859 0.715 0.575 0.500
One-class SVM 0.936 0.758 0.611 0.527 0.500

Table 4: Accuracy of restrained AD-SVM, SVM, and one-class SVM under data distributions shown in
Figure 3(a), 3(b), 3(c), 3(d), and 3(e). Cξ increases as the learning model assumes more aggressive attacks.

fattack = 0 fattack = 0.3 fattack = 0.5 fattack = 0.7 fattack = 1.0

AD-SVM
Cξ = 0.9 0.932 0.860 0.719 0.575 0.500
Cξ = 0.7 0.930 0.858 0.717 0.576 0.500

(Cδ = 1)
Cξ = 0.5 0.935 0.860 0.721 0.578 0.500
Cξ = 0.3 0.931 0.855 0.718 0.577 0.500
Cξ = 0.1 0.933 0.858 0.718 0.575 0.500

SVM 0.930 0.856 0.714 0.574 0.500
One-class SVM 0.933 0.772 0.605 0.525 0.500

6.2 Experiments on Real Datasets
We also test our AD-SVM model on two real datasets:

spam base taken from the UCI data repository [2], and web
spam taken from the LibSVM website [1].

In the spam base data set, the spam concept includes ad-
vertisements, make money fast scams, chain letters, etc. The
spam collection came from the postmaster and individuals
who had filed spam. The non-spam e-mail collection came
from filed work and personal e-mails [2]. The dataset con-
sists of 4601 total number of instances, among which 39.4%
is spam. There are 57 attributes and one class label. We
divide the data sets into equal halves, with one half Tr for
training and the other half Ts for test only. Learning mod-
els are built from 10% of random samples selected from Tr.
The results are averaged over 10 random runs.

We took the second data set from the LibSVM website [1].
According to the website, the web spam data is the subset
used in the Pascal Large Scale Learning Challenge. All pos-
itive examples were kept in the data set while the negative
examples were created by randomly traversing the Internet
starting at well known web-sites. They treat continuous n
bytes as a word and use word count as the feature value
and normalize each instance to unit length. We use their
unigram data set in which the number of features is 254.
The total number of instances is 350,000. We again divide
the data set into equal halves for training and test. We use
2% of the samples in the training set to build the learning
models and report the results averaged over 10 random runs.

Table 5 and Table 6 show the results on the spam base
data set. AD-SVM, with both the free-range and the re-
strained attack models, achieved solid improvement on this
data set. Cδ alone is used in the restrained learning model.
Except for the most pessimistic cases, AD-SVM suffers no
performance loss when there are no attacks. On the other
hand, it achieved much more superior classification accuracy
than SVM and one-class SVM when there are attacks.

Table 7 and Table 8 illustrate the results on the web spam
data set. Unlike the spam base data set where data is well
separated, web spam data is more like the second artificial
data set. The AD-SVM model exhibits similar classification
performance as on the second artificial data set. The free-
range model is too pessimistic when there are no attacks,
while the restrained model performs consistently better than
SVM and one-class SVM and, more importantly, suffers no
loss when there are no attacks. We use Cξ alone in our
learning model. Which parameter, Cξ or Cδ, to use in the
restrained attack model can be determined through cross
validation on the initial data. Next subsection has a more
detailed discussion on model parameters.

6.3 Setting Cf , Cξ, and Cδ

The remaining question is how to set the parameters in
the attack models. The AD-SVM algorithms proposed in
this paper assume either a free-range attack model or a re-
strained attack model. In reality we might not know the
exact attack model or the true utility function of the at-
tackers. However, as Tables 1–8 demonstrate, although the
actual attacks may not match what we have anticipated,
our AD-SVM algorithm using the restrained attack model
exhibits overall robust performance by setting Cδ or Cξ val-
ues for more aggressive attacks. If we use the restrained
attack model, choosing Cδ ≤ 0.5 (Cξ ≥ 0.5) consistently re-
turns robust results against all fattack values. If we use the
free-range attack model in AD-SVM, we will have to set pa-
rameter values to avoid the very pessimistic results for mild
attacks. Hence choosing Cf ≤ 0.3 in general returns good
classification results against all fattack values.

As a general guideline, the baseline of Cf , Cδ or Cξ has
to be chosen to work well against attack parameters sug-
gested by domain experts. This can be done through cross-
validation for various attack scenarios. From there, we grad-
ually increase Cf or Cξ, or decrease in the case of Cδ. The
best value of Cf , Cδ or Cξ is reached right before perfor-
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Table 5: Accuracy of AD-SVM, SVM, and one-class SVM on the spambase dataset as attacks intensify. The
free-range attack is used in the learning model. Cf increases as attacks become more aggressive.

fattack = 0 fattack = 0.3 fattack = 0.5 fattack = 0.7 fattack = 1.0

AD-SVM

Cf = 0.1 0.882 0.852 0.817 0.757 0.593
Cf = 0.3 0.880 0.864 0.833 0.772 0.588
Cf = 0.5 0.870 0.860 0.836 0.804 0.591
Cf = 0.7 0.859 0.847 0.841 0.814 0.592
Cf = 0.9 0.824 0.829 0.815 0.802 0.598

SVM 0.881 0.809 0.742 0.680 0.586
One-Class SVM 0.695 0.686 0.667 0.653 0.572

Table 6: Accuracy of AD-SVM and SVM on spambase dataset as attacks intensify. The restrained attack
model is used in the learning model. Cδ decreases as attacks become more aggressive.

fattack = 0 fattack = 0.3 fattack = 0.5 fattack = 0.7 fattack = 1.0

AD-SVM
Cδ = 0.9 0.874 0.821 0.766 0.720 0.579
Cδ = 0.7 0.888 0.860 0.821 0.776 0.581

(Cξ = 1)
Cδ = 0.5 0.874 0.860 0.849 0.804 0.586
Cδ = 0.3 0.867 0.855 0.845 0.809 0.590
Cδ = 0.1 0.836 0.840 0.839 0.815 0.597

SVM 0.884 0.812 0.761 0.686 0.591
One-class SVM 0.695 0.687 0.676 0.653 0.574

Table 7: Accuracy of AD-SVM, SVM, and one-class SVM on webspam dataset as attacks intensify. The
free-range attack model is used in the learning model. Cf increases as attacks become more aggressive.

fattack = 0 fattack = 0.3 fattack = 0.5 fattack = 0.7 fattack = 1.0

AD-SVM

Cf = 0.1 0.814 0.790 0.727 0.591 0.463
Cf = 0.3 0.760 0.746 0.732 0.643 0.436
Cf = 0.5 0.684 0.649 0.617 0.658 0.572
Cf = 0.7 0.606 0.606 0.606 0.606 0.606
Cf = 0.9 0.606 0.606 0.606 0.606 0.606

SVM 0.874 0.769 0.644 0.534 0.427
One-class SVM 0.685 0.438 0.405 0.399 0.399

Table 8: Accuracy of AD-SVM, SVM, and one-class SVM on webspam dataset as attacks intensify. The
restrained attack model is used in the learning model. Cξ increases as attacks become more aggressive.

fattack = 0 fattack = 0.3 fattack = 0.5 fattack = 0.7 fattack = 1.0

AD-SVM
Cξ = 0.1 0.873 0.822 0.699 0.552 0.435
Cξ = 0.3 0.870 0.837 0.748 0.597 0.444

(Cδ = 1)
Cξ = 0.5 0.855 0.833 0.772 0.641 0.454
Cξ = 0.7 0.841 0.820 0.773 0.663 0.467
Cξ = 0.9 0.822 0.803 0.749 0.671 0.478

SVM 0.871 0.769 0.659 0.512 0.428
One-class SVM 0.684 0.436 0.406 0.399 0.400

mance deteriorates. Also note that it is sufficient to set only
one of Cξ and Cδ while fixing the other to 1. Furthermore,
Cf , Cδ and Cξ do not have to be a scalar parameter. In many
applications, it is clear some attributes can be changed while
others cannot. A Cf , Cδ/Cξ parameter vector would help
enforce these additional rules.

7. CONCLUSIONS AND FUTURE WORK
Adversarial attacks can lead to severe misrepresentation

of real data distributions in the feature space. Learning al-
gorithms lacking the flexibility of handling the structural

change in the samples would not cope well with attacks that
modify data to change the make up of the sample space. We
present two attack models and an adversarial SVM learning
model against each attack model. We demonstrate that our
adversarial SVM model is much more resilient to adversarial
attacks than standard SVM and one-class SVM models. We
also show that optimal learning strategies derived to counter
overly pessimistic attack models can produce unsatisfactory
results when the real attacks are much weaker. On the other
hand, learning models built on restrained attack models per-
form more consistently as attack parameters vary. One fu-
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ture direction for this work is to add cost-sensitive metrics
into the learning models. Another direction is to extend
the single learning model to an ensemble in which each base
learner handles a different set of attacks.
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