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1. Introduction

Machine learning algorithms have created the sensation of working with experts in an endless list of

fields—advertisers, detectives, doctors, chess masters, soccer players, loan creditors, salespeople,

entertainment critics, drivers, and even matchmakers. Machines with intelligence have dazzled the

human mind with what they can do with data, and how much better they are at it. These smart

algorithms can learn from our observations about the world and accomplish tasks that would appear

to be insurmountable hurdles to humans. However, machine learning algorithms may be terrible in

situations when the conditions are not right for them, for example, when they face an adversary.

In many applications, especially in cyber security, machine learning-based tools have to face

challenges from their natural opponents. For example, hackers may obfuscate their malicious code

to evade detection by machine learning-based anti-virus software, or spammers often disguise their

spam messages to defeat spam filters by inserting excerpts from daily newspapers. The following

two studies typify the kind of challenge machine learning algorithms face in real-world applications.

PDFrate is a machine learning-based PDF malware classifier available online. The classifier

is trained on 5,000 malicious PDF documents and over 100,000 benign documents using

random forest--an ensemble method that builds each of its individual trees on a random

subset of features. Despite the claim that the system has above 99 percent accuracy with a

less than 0.2 percent false positive rate [1], Šrndić and Laskov [2] successfully attack the

classifier by injecting dummy content into malicious PDF documents. They manage to

reduce the classification score from nearly 100 percent to approximately 33 percent. More

importantly, their work reveals that potential defense mechanisms are only effective if the

attack exactly matches the anticipated ones.

Facial recognition is another typical real-world application of machine learning algorithms

that may face adversarial attacks. Facial recognition technologies have broad applications in

access control, biometric identification, and surveillance. Their accountability has a great

impact on making security decisions in uncertain situations. Despite assurance of high

accuracy on normal facial images, Sharif et al. [3] demonstrate how fragile a machine

learning-based facial recognition system can be when facing adversarial attacks. By adding

a simple eyeglass frame, actress Reese Witherspoon is misclassified as actor Russell

Crowe.

2. Vulnerabilities of Machine Learning Algorithms

The strategy of the adversaries is to force these machine experts to step out of their comfort zones.

Here’s how. Machine learning algorithms are trained on a set of collected data and are expected to

perform well when competing in an arena with the same conditions. However, the adversaries can

turn the tables by modifying the data, either at training time (when models are built) or test time

(when machine learning models are deployed). In either case, machine learning algorithms are

trained on data of one distribution, but tested on a different data distribution. When this happens, the

performance of machine learning algorithms starts to derail. Figure 1 illustrates an example of how

things can go wrong when an adversary strikes by modifying the input to a support vector machine

(SVM)--a machine learning algorithm that outputs a hyperplane that separates two classes of data

with a maximum margin.

Books

Adversarial reasoning:

computational approaches to

reading the opponent's mind Kott, A;
McEneaney, W. M. (Eds.), 2007

Conferences and Workshops

ACM Workshop on Artificial

Intelligence and Security (AISec):

annual workshop for security,
privacy, AI and machine learning
researchers. AISec 2016 especially
focused on learning in
game-theoretic adversarial
environments, among other topics.

Neural Information Processing

Systems (NIPS) 2016 Workshop on

Adversarial Learning: workshop
focused on adversarial training, in
which “a set of machines learn
together by pursuing competing
goals.”

Data Science for Cyber-Security

Conference (DSCB): upcoming
conference (September 2017) with a
focus on cutting-edge research on
data science in cyber-security
applications, including machine
learning, big data analytics for
network modeling, and forensics, as
well as other similar topics.

Videos

Adversarial data mining: big data

meets cyber security – Part 1

Kantarcioglu, M.; Xi, B. ACM CCS

2016

Reviews

Game theory with engineering
applications
Bauso D.,  SIAM, 2016.

Adversarial reasoning
Kott A., McEneaney W.,  Chapman
& Hall/CRC, 2006.

Computing Reviews, the leading online review ser... http://www.computingreviews.com/hottopic/hotto...

1 of 4 08/08/2017 10:54 AM



Figure 1: Adversarial attacks against a support vector machine on a two-dimensional dataset. The red squares

represent malicious samples, and the green dots are benign samples. The green squares are malicious samples

modified by the adversary. The blue line is the decision boundary of the support vector machine.

In Figure 1, on the left we show a normal machine learning task where the goal is to classify

samples into two classes. On the right, we show how modified malicious samples (marked as green

squares) pass screening by the SVM classifier.

All standard learning algorithms are vulnerable to adversarial attacks because they are all built on

the i.i.d. assumption, that is, training and test data are independently and identically distributed.

Uncertainty created by adversaries in the input to machine learning algorithms adds doubt to the

“knowledge” they have learned. In the presence of adversaries, the optimal solutions a learning

algorithm produces become vulnerable and may be harnessed by the adversaries to defeat the

learning algorithm. Adversaries can “poison” a small set of training samples to mislead the learning

algorithm if they have the ability to access the training data. For example, Battista Biggio et al. [4]

studied poisoning attacks against SVMs. They inject a specially crafted training sample into the

training set to maximally increase the loss incurred on a separate validation dataset. In reality, for a

learning system to voluntarily accept a poisoned training sample, a chain of scenarios would have to

unfold: adversaries gaining privileges to access the training set, attacks going unnoticed when

tested against the clean validation dataset, and adversaries having the ability to control the labeling

of the poisoned sample. Without these necessary conditions that allow for modifying the training

data, many adversaries are more interested in disguising their malicious samples at test time to

evade detection by the learning system. Adversarial attacks are most commonly encountered in

security sensitive and economically driven domains. This class of learning problems where

resilience to adversarial attacks is critical is known as adversarial learning.

Deep learning, a popular topic in the recent development of machine learning, is not spared from

poor performance when it faces adversarial attacks. For example, Christian Szegedy et al. [5] show

that deep neural networks are prone to slight perturbations on the input data. In their experiment,

deep neural networks failed to correctly classify mildly perturbed images that humans have no

difficulty classifying accurately. Ian Goodfellow et al. [6] present a perturbation technique that

modifies all input dimensions of a sample by a small quantity in the direction of the fast gradient sign

they computed. Nicolas Papernot et al. [7] also present algorithms for crafting adversarial samples.

They show that their algorithms are able to reliably compute adversarial samples that can fool a

deep neural network with a 97 percent success rate. More important, they only modify 4.02 percent

of the input per sample on average. It is worth noting that all of the attacks on deep neural networks

discussed here assume a white-box scenario in which the adversary knows everything about the

trained deep neural networks including the structure and all of the parameters. Mahmood Sharif et

al. [3] have demonstrated initial success under the black-box scenario where the adversary can only

query trained deep neural networks to get scores for the candidate samples. Their algorithm

iteratively searches for the qualified candidate by applying particle swarm optimization, a heuristic

and stochastic optimization algorithm that mimics the behavior of a swarm of birds.

3. Adversarial Learning

To build a robust learning system for adversarial situations, we have to take into account not only

the rigor of learning algorithms in the presence of malicious attacks, but also the mathematical

model of adversarial conflict. We define adversarial learning as follows:

Adversarial learning is the study of robust machine learning algorithms developed to effectively

counter various adversarial attacks.

A taxonomy of adversarial attacks against machine learning algorithms has been created according

to the attacker’s capability, the type of security violation, and the attacker’s intent [8]:

Causative vs. exploratory attacks: causative attacks misguide learning through training data,

while exploratory attacks exploit classification-time errors without affecting training.

Integrity vs. availability attacks: integrity attacks cause misclassification of malicious

instances (false negatives), and availability attacks sabotage the reliability of learning by

causing misclassification of benign instances (false positives).

Targeted vs. indiscriminate attacks: targeted attacks focus on misclassification of a specific

instance, while indiscriminate attacks cause reduced predictive accuracy on a pool of

instances.

In general, adversarial learning algorithms robust to adversarial attacks should be able to recognize
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various deceptions, think as the enemy by modeling adversarial conflict, and predict the adversary’s

intent.

4. Countermeasures Against Adversarial Attacks

Adversarial learning can be naturally modeled as a two-player game between a learning system and

an adversary. When one player’s gain is the other player’s loss, they are said to play a zero-sum

game. A zero-sum game is a strictly competitive game in which two players have completely

opposing preferences. A simple example of a typical zero-sum game is the well-known children’s

game Rock-Paper-Scissors.

In earlier stages of research, adversarial learning is often modeled as a zero-sum game. In the

game, the learner needs to come up with a strategy to achieve the greatest average payoff by

carrying out a worst-case analysis, in which the learner assumes the adversary knows his strategy

and will play optimally against it. Then, the learner’s worst-case loss is minimized over all possible

data points in conformity with predefined constraints. For example, Amir Globerson and Sam

Roweis [9] solve an optimal SVM learning problem to deal with malicious feature deletion on test

data. They search for the zero-sum minimax strategy that minimizes the hinge loss of the SVM.

Laurent El Ghaoui et al. [10] present a minimax strategy for a similar problem in which training data

is bounded by hyper-rectangles. Our earlier work also fits in this line of research [11]. We present a

minimax strategy for input data constrained by two attack models. The attack models are defined in

terms of the adversary’s capabilities of modifying data. Our solutions minimize the worst-case loss

corresponding to the two attack models. Michael Brückner and Tobias Scheffer [12] also studied

static prediction games in which they assume both players commit to their strategies simultaneously

and search for a unique Nash equilibrium solution. Cost-sensitive opponents have also been studied

by Nilesh Dalvi and his colleagues [13] in a game between a classifier and an adversary. Given a

cost function that estimates the cost of transforming an instance, the adversary transforms an

instance for which the cost is minimized.

In many real applications, the adversarial learning problem is more appropriately modeled as a

sequential game between two players. First, one player takes initiatives to maximize the threat to its

opponent, and then the opponent answers by deploying the most effective countermeasures. One

player must commit to its strategy before the other player responds. The advantage the responding

player has is partial or complete information of the first player. The responding player can therefore

play its optimal strategy against its opponent. This type of game is known as a Stackelberg game in

which the first player is the leader and its opponent is the follower.

Adversarial learning research in this area falls into two categories, depending on who plays the role

of the leader: the learner or the adversary. In our earlier work [14], we solve for a Stackelberg

equilibrium using simulated annealing to discover an optimal set of attributes to build machine

learning models. Similar work has also been done by Wei Liu and Sanjay Chawla [15]. The

difference between their research is that the former assumes both players know each other’s payoff

function, while the latter relaxed the assumption and only the adversary’s payoff function is required.

In both cases, the adversary is the leader whose strategies are stochastically sampled while the

learner is the follower that searches for an equilibrium given its knowledge about the adversary.

In other settings, the learner is more likely to commit to a strategy before the adversary takes its

actions. The adversary’s response is optimal given that it has some knowledge about the classifier’s

strategy. For example, email service providers usually have spam filters installed on the server side

before providing services to the end user. Sophisticated spammers would obtain firsthand

knowledge about the statistical tools implemented in the spam filters before sending out massive

amounts of spam. This can be done by probing spam filters with a plentiful supply of carefully

crafted email messages. These messages are specifically designed for detecting the decision

boundaries of the spam filters. Example solutions to this type of Stackelberg game are presented by

Michael Brückner and Tobias Scheffer [16]. They define a Stackelberg prediction game in which the

learner minimizes its loss knowing that the adversary is playing its optimal strategy. The adversary’s

strategy is optimal if it is among the solutions that minimize the adversary’s loss given the learner’s

strategy.

In more realistic settings, there are possibly many adversaries of various unknown types. For

example, in email spam filtering, some spammers are interested in the successful delivery of spam

contents to the end user, while others attempt to flood the network by performing denial-of-service

attacks; some spammers try to corrupt both training and test data at high costs, while others choose

to alter only test data at a much lower cost; some spammers can modify both spam and legitimate

email, while others have fewer privileges and are not entitled to access legitimate email. It is hard to

implement a spam filter with a single predictive model to effectively counter every possible type of

adversary. Therefore, a single leader in Stackelberg games may have to face many adversaries of

different types. Praveen Paruchuri and his colleagues [17] present a single-leader-single-follower

(SLSF) Bayesian Stackelberg game to model interactions between a security agent and a criminal of

an uncertain number of types. The security agent has only one type and must commit to its strategy

first and stick with it. The criminal plays its best strategy given knowledge about the security agent’s

strategy. They solve the Stackelberg game as a mixed integer linear programming problem. In our

recent work [18], we study a single-leader-multiple-followers (SLMF) game between a learner and

multiple adversaries. We consider a malicious data modification problem where adversaries may

use different strategies to corrupt the test data. We present a nested Stackelberg game framework

to handle both data corruption and unknown types of adversaries. The game framework consists of

a set of SLSF Stackelberg games and an SLMF Bayesian Stackelberg game. The low-level SLSF

Stackelberg game takes into consideration that training and test data are not necessarily identically

distributed in practice. The top-level Bayesian Stackelberg game consists of one learner and
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multiple adversaries of various types. When there are adversaries of multiple types, instead of

settling on one learning model by playing a pure strategy, it is more practical for the learner to play a

mixed strategy consisting of a set of learning models with assigned probabilities. The optimal

solution to the Bayesian Stackelberg game introduces randomness to the solution, and hence

increases the difficulty of attacking the underlying learning algorithms.

5. Concluding Remarks

An important note is that adversarial learning often becomes an arms race between the learner and

the adversary as the competition continues. One player’s improvement is often followed by a more

sophisticated countermeasure from the other player. Solving the problem would lead to constant

model improvement or update given that the adversary’s attack strategies are inexhaustible. Initial

results indicate that building machine learning models using useful attributes that are hard to modify

for the attacker is a good starting point. Still, it remains as an open problem whether a silver-bullet

solution exists to stop such seemingly never-ending competition.
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