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Summary 
 

Many real world applications, ranging from spam filtering to intrusion detection, are facing 
malicious adversaries who actively transform the objects under their control to avoid detection. Data mining 
techniques are highly useful tools for cyber defense, since they play an important role in distinguishing the 
legitimate from the destructive. Unfortunately, traditional data mining techniques are insufficient to handle 
such adversarial problems directly. The adversaries adapt to the data miner's reactions, and data mining 
algorithms constructed based on a training dataset degrades quickly. Our proposed adversarial data mining 
framework addresses the challenges posed by malicious adversaries. In this survey article, we discuss the 
theory, the techniques, and the applications of our proposed adversarial data mining framework. We model 
the adversarial data mining applications as a Stackelberg game, with an emphasis on the sequential actions 
of the adversary and the data miner, allowing both parties to maximize their own utilities. We analyze the 
equilibrium behavior of both parties under our proposed game theoretic framework, which offers insight into 
the long term effectiveness of a defensive algorithm. Furthermore we apply the equilibrium information to 
cost sensitive attribute selection. We then derive adversarial support vector machine models against an 
adversary whose attack strategy is defined under general and reasonable assumptions. We investigate how 
the performance of the resulting solutions changes under different attack models. The empirical results 
suggest that our adversarial support vector machine algorithms are robust against various degrees of attacks.  
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1 Introduction  
 
 Data mining techniques such as clustering and classification have wide applications in real-world 
problems. However traditional data mining techniques follow a major implicit assumption that the current 
data and the future data share the same properties. When this assumption is satisfied, a data mining 
algorithm developed using the current observed data performs well with the future data. Unfortunately this 
assumption no longer holds in an adversarial environment where data miner faces malicious active 
adversaries. Examples of such adversarial applications are spam filtering, intrusion detection, advance 
persistent threat detection etc. Unlike in a static environment, the attack instances are controlled by 
malicious adversaries who actively transform the objects under their control to avoid detection. For example, 
in spam filtering, spammers increase the length of spam emails and insert “good” words to make the spam 
emails resemble the legitimate emails and pass spam filters. Performance of traditional data mining 
techniques deteriorates quickly when facing active adversaries. To address these challenges, we need to 
develop resilient and robust data mining techniques in an adversarial environment to distinguish the 
legitimate objects from the attack objects.  
 The challenges we face from the active adversaries are different from the concept drift problem, 
because the adversaries launch targeted attacks and maliciously change the properties of the objects under 
their control to maximize their payoff. One approach facing malicious adversaries is to be protected against 
the worst case scenario, i.e. the minimax solution. The drawback of the minimax solution is that they are too 
pessimistic because they do not consider the adversary's utility function and their potential motives. 
 This survey article summarizes our previous work in adversarial data mining. We model the 
adversarial data mining applications as a two player Stackelberg game, where the data miner and the 
adversary make sequential moves, and each player aims to maximize its own utility. Our approach is not to 
stay ahead of the adversary by constantly adapting to the adversary’s actions. We focus on a data mining 
algorithm’s long term performance, i.e. its equilibrium performance. At an equilibrium, neither player has an 
incentive to change its action. Based on a data mining algorithm’s equilibrium performance, we are able to 
carry out cost sensitive attribute selection. Our game theoretic framework is general, where the zero-sum 
game and the corresponding minimax solution is a special case under our framework.  
 The article is organized as follows: In Section 2, we describe our game theoretic framework for the 
adversarial data mining applications, and the stochastic search algorithm we use to find the equilibrium 
information. The equilibrium information measures the long term effectiveness of a data mining algorithm. 
We then use the equilibrium information to perform cost sensitive attribute selection. In Section 3 we extend 
our basic model, and present our adversarial support vector machine algorithms. Section 4 concludes the 
survey article.   
  
1.1 Related Work 
 

Dalvi et al. [3] propose a game theoretic framework for adversarial problems where there is an 
optimal opponent. They define the problem as a game between two cost-sensitive opponents: a Naïve Bayes 
classifier and an adversary playing optimal strategies. They assume all parameters of both players are known 
to each other and the adversary knows the exact form of the classifier. Their adversary-aware Naïve Bayes 
classifier makes constant automatic adjustments according to the adversary’s expected actions. 

Lowed and Meek [12] point out that assuming the adversary has perfect knowledge of the classifier 
is unrealistic. Instead they suggest the adversary can confirm the membership of an arbitrary instance by 
sending queries to the classifier. They also assume the adversary has available an adversarial cost function 
over the sample space that maps samples to cost values. This assumption essentially means the adversary 
needs to know the entire feature space to issue optimal attacks. They propose an adversarial classifier 
reverse engineering algorithm to learn the vulnerabilities of given learning algorithms. 

Adversarial data mining problems are often modeled as games played between two opponents. We 
summarize our work in this area in this survey article (based on Kantarcioglu et al. [8]). We model the 
problem as a sequential Stackelberg game. As we discuss in details below, we assume the two players know 
each other's utility function. A stochastic search algorithm is used, such as simulated annealing and genetic 
algorithm, to search for an equilibrium. Later on such equilibrium is used to choose optimal set of attributes 
that give good equilibrium performance. After [8], Bruckner et al. [2] also model adversarial prediction 
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problems as Stackelberg games. However, their formulation assumes that the data miner is the leader and the 
adversary is the follower in the game. Compared with [2], in [8], we let the data miner be the follower. 
Furthermore our formulation can be generalized, and the data miner can have the option to take an action 
that does not optimize its utility but instead punishes the adversary at its own expense. Improved models in 
which Nash strategies are played have also been proposed [1, 10]. Other game theoretic models play zero-
sum minimax strategies. Globerson and Roweis [7] consider a problem where some features may be missing 
at testing time. This is related to adversarial data mining in that the adversary may simply delete highly 
weighted features in malicious data to increase its chance to evade detection. They develop a game theoretic 
framework in which classifiers are constructed to be optimal in the worst case scenario. Their idea is to 
prevent assigning too much weight on any single feature. They use the support vector machine model which 
optimally minimizes the hinge loss when at most K features can be deleted. El Ghaoui et al [6] apply a 
minimax model to training data bounded by hyper-rectangles. Their model minimizes the worst-case loss 
over data in given intervals. Other robust learning algorithms for handling classification-time noise are also 
proposed [9, 10, 11, 13]. 

In a follow-up work [14], discussed in Section 3, we show how to build robust support vector 
machine classifiers without making strong assumptions on what is known to either side of the players. In our 
SVM models, both wide range attacks and targeted attacks are considered and incorporated into the SVM 
framework. We discuss the details of our adversarial SVM models in Section 3. 
 
2 A Game Theoretic Framework 
 
2.1 Adversarial Stackelberg Game 
 
 Assume the “good” class Sg consists of the legitimate objects and the “bad” class Sb consists of the 
attack objects. The “bad” class Sb is controlled by one or several adversaries. Our basic game theoretic 
model formulates the adversarial data mining applications as a two class problem. Data miner measures q 
attributes from an object, X=(X1, X2, ..., Xd). Assume each class has a probability density function fi(X), i = 

g or b. Assume pi is the proportion of each class in the overall population, i = g or b. We have pg + pb = 1. 
The overall population is a mixture of two classes, with the density function  
 
 f(X) = pg fg(X) + pb fb(X) .  
 
 The adversary transforms the objects under its control to avoid detection, applying transformation T 
to the attack objects. The transformed “bad” class has a new density function fTb(X). We assume the 
proportions of two classes, pg and pb, stay the same under attack. This assumption can be easily relaxed and 
adopted into our basic model if an attack significantly increases the number of attack objects. When an 
attack object is misidentified as a legitimate object, it generates a profit for the adversary. On the other hand, 
transformation of an attack object suffers from a penalty. For example, by purchasing links a website can 
increase its search ranking. The cost of purchasing links is a form of penalty to its profit. The ultimate 
penalty for the website is to be removed from the search index if it is caught doing so. Following many real-
world applications, the adversary and the data miner often take the following sequential actions: 
 

1. Given the initial overall distribution with the density function f(X), the adversary chooses a 
transformation T from its strategy space S, which is the set of all feasible transformations, and 
applies the transformation T to the objects under its control.  
 

2. After observing the transformation T, the data miner sets parameter values for a data mining 
algorithm and creates a defensive rule h(X).   

 
 Let L(h,g) and L(h,b) be the regions where the objects are identified as legitimate or not respectively. 
We allow each player to have their own utility function. Let ug(T,h) denote the data miner’s utility function, 
such as –C(T,h) where C(T,h) is the misclassification cost. Let g(T,X) be the profit generated by a 
transformed attack object when it is misidentified as legitimate. The utility function for the adversary is 
defined as the expected value of the profit generated by a misidentified transformed attack object.  



5 

 

 
 ub(T,h) =  ∫L(h,g)  g(T,X)fTb(X) dX . 
 
 We use a Stackelberg game with two players to model the adversary and the data miner’s sequential 
actions. We define the Adversarial Stackelberg Game as follows. 
 
Adversarial Stackelberg Game G=(N,H,P,ub,ug): 
N = {adversary, data miner}. Set of sequences H = { ∅, (T), (T,h) } s.t. T ∈ S, and h ∈ C, where S and C are 
the strategy spaces for the adversary and the data miner respectively. Function P assigns a player to each 
sequence in H: P(∅ )=adversary and P((T))=data miner. There is a corresponding function A that assigns a 
strategy space to each sequence in H: A(∅ ) = S, A((T)) = C, and A((T,h)) = ∅. Payoff functions ub and ug 

are defined as above.  
 
 We assume the adversary knows which data mining algorithm is used and which attributes are being 
measured by the data miner. Furthermore we assume each player knows the other’s utility function. Hence 
the players have perfect information in the game. We assume both are rational players. Hence each player 
wants to maximize their own utility. Therefore a sub-game perfect equilibrium of the Adversarial 
Stackelberg Game can be expressed as follows.  
 Let hT(X) be the data miner’s best defensive rule against transformation T. Let L(hT,g) be the region 
where the objects are identified as legitimate under the defensive rule hT(X). The adversary gain W(T) of 
applying transformation T is the expected value of the profit generated by a misidentified transformed attack 
object under the data miner’s best defensive rule against T.  
 
 W(T) = ub(T,hT) = ∫L(hT,g)  g(T,X)fTb(X) dX .  
 
A sub-game perfect equilibrium is ( Te, hT

e ), where  
 
 Te  = argmax T	∈ S W(T) .  
 
 When an equilibrium is reached, obviously neither player has the incentive to change its action. 
When the strategy space is compact and the adversary gain is continuous, there exists a solution for the 
optimization problem. If the two players’ utility functions have this relationship, ub(T,h) =  -ug(T,h), the 
Adversarial Stackelberg Game becomes a zero-sum game. Hence our game theoretic framework is more 
general and is able to handle the minimax solution as well.   

 Compared with previous work, in our model, the type of data mining algorithm and the set of 
attributes chosen by the data miner is an initial step that is not directly modeled in our game theoretic 
framework. Actually the data miner has an advantage by this initial choice. Being able to choose the type of 
data mining algorithm and the set of attributes means ultimately the data miner controls the rule of the game. 
When the equilibrium payoff for the data miner is unsatisfactory, the data miner is able to change the rule of 
the game by  

 
1) increasing the penalties for certain attributes;  
2) selecting a different set of attributes;  
3) switching to another data mining algorithm.  

 
2.2 Search for An Equilibrium  

 
 It is straight forward to see from the above expression that we cannot obtain an explicit expression 
of a sub-game perfect equilibrium even under a simple distribution such as Gaussian mixture. We therefore 
use computational algorithms to search for an equilibrium.  
 The first step is to be able to evaluate the adversary gain given a transformation. Given a 
transformation T, we can generate transformed attack objects based on the observed data, and use the 
generated objects to re-train the data mining algorithm with the chosen set of attributes to obtain the optimal 
defensive rule against the transformation, hT(X). We then use Monte Carlo integration to evaluate the 
adversary gain W(T) for the transformation T. The adversary gain can be written as 



6 

 

 
 W(T) =  ∫  IL(hT,g)(X)  g(T,X)fT

b(X) dX , 
  
where IL(hT,g)(X) is an indicator function. It equals to 1 if an attack object is not identified by the defensive 
algorithm, and 0 otherwise. We generate m transformed attack objects under transformation T, examine 
which ones can successfully pass the optimal defensive rule hT(X). Each unidentified attack object generates 
a profit for the adversary according to g(T,X). The average of the profits from the unidentified attack objects 
is an estimate of the adversary gain W(T). Increasing m will increase the accuracy of the estimated adversary 
gain.  
 Next we use a stochastic search algorithm to find an equilibrium of the Adversarial Stackelberg 
game. Any stochastic search algorithm with good properties will serve the purpose. In [14], we used the 
simulated annealing algorithm to search for an equilibrium. Simulated annealing algorithm is able to 
converge to a global optimum. The algorithm goes through a slow cooling process and settles down at the 
lowest energy state when the computation budget is unlimited. The simulated annealing algorithm is as 
follows.  

 
- Set parameters TempMin, TempMax, reduction rate R (0<R<1), sample size N  
- Let Tc be the starting transformation with evalc = W(Tc)  
- Let Tg be the best transformation in the search so far with evalg = W(Tg) 
- Tg = Tc and W(Tg) = W(Tc) 
- TempCurrent = TempMax 

 
- WHILE  TempCurrent >= TempMin  DO 
 FOR i = 1 to N DO 
  Randomly select Tn in the neighborhood of Tc  

  Let evaln = W(Tn)   
    IF evaln > evalc  THEN 
     Tc = Tn , evalc = evaln 
     IF  evalg < evaln  THEN 
       Tg = Tn , evalg = evaln 
     END IF 
    ELSE IF  rand(0,1) <= exp{(evaln-evalc)/TempCurrent}  THEN 
     Tc = Tn , evalc = evaln 
    END IF 
  END FOR 
  TempCurrent = TempCurrent × R 

- END WHILE 
       
 An Adversarial Stackelberg game may have multiple equilibria. The adversary receives the same 
maximum adversary gain at each equilibrium, but the data miner may see different payoffs. Theoretically we 
should run a stochastic algorithm multiple times and examine the data miner’s worst and best equilibrium 
payoffs.  
 
2.3 Equilibrium Performance and Attribute Selection  
 
 A data mining algorithm’s initial success cannot guarantee its good performance against active 
adversaries. The data miner needs a proper criterion to measure a defensive algorithm’s long term 
performance. There are three quantities that can potentially serve as such a measure. 
 

1) Adversary’s equilibrium transformation; 
2) Adversary’s equilibrium gain; 
3) Data miner’s equilibrium payoff. 
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 We believe a data mining algorithm’s long term success should be measured from the data miner’s 
perspective. When the adversary significantly alters the attack objects to make them similar to the legitimate 
objects, the unidentified attack objects then become harmless. As long as the data miner does not suffer from 
major damages, it might tolerate a few unidentified attack objects. For instance, we still receive a lot of spam 
emails today. A defensive algorithm is put in place mainly to prevent the data miner from suffering 
significant damages. Hence we choose the data miner’s equilibrium payoff to measure a defensive 
algorithm’s long term effectiveness.  
 Often there are a number of attributes that can be measured from an object. A data mining algorithm 
may monitor only a few of them. Data miner’s equilibrium payoff can then be used to select the best subset 
of attributes. Notice many factors interact with each other to determine the attributes’ equilibrium 
performance. Below is an example. Consider a data mining algorithm that monitors only one attribute, and 
there are three attributes available. Assume the profit function of a transformed attack object is the following.  
 
 g(T,X) = max(1 – a|T-1(X)-X|, 0) .  
  
X is the transformed value, and T-1(X) is the original one. |T-1(X)-X| measures the extent of transformation. a 
is the penalty per unit transformation. The maximum profit generated by an unidentified attack object is 1, 
and it decreases linearly due to transformation. The minimum profit is 0.  
 Further assume the “good” and the “bad” class each follows a Gaussian distribution. fi(X), is the 
density function of N(μi, σ2i), i = g or b. Assume two classes are of the same size, pg = pb = 0.5. Let T be a 
real number and the value of a transformed attribute is simply T(X) = T×X. Under transformation T, fT

b(X) 
is the density of N(T×μb, T2×σ2b).  
 Data miner uses a Bayesian classifier to detect the attack objects. Let c(i, j) be the cost of classifying 
an object into class Si given it actually belongs to class Sj, i = g or b, and j = g or b.  In this simple example 
we set c(g,g) = c(b,b) = 0 and c(g,b) = c(b,g) = 1. The optimal Bayesian classification rule against 
transformation T is the following. 
  
 hT(X) = Sg  if  pb×fT

b(X) <= pg× fg(X);  Sb otherwise.    
 
Given the above set-up, the adversary gain can be re-written as follows.  
 
 W(T) = ∫L(hT,g)  max(1 – a|T-1(X)-X|, 0) × fTb(X) dX . 
 
A sub-game perfect equilibrium is ( Te, hT

e ), where  
 
 Te  = argmax T	∈ R W(T) .  
 
 Under this set-up, Table 1 shows three attributes initial distributions, penalties, and their equilibrium 
classification errors respectively.  
 
 

Attribute Sg Sb Penalty Equilibrium Error Rate 
X1 N(1,1) N(3,1) a=1 0.16 
X2 N(1,1) N(3.5,1) a=0.45 0.13 
X3 N(1,1) N(4,1) a=0 0.23 

   
  Table 1. X1, X2, X3 Equilibrium Performance. 
  
 X1 sees the heaviest penalty, and X3 has the best initial performance. However X2 returns the 
smallest equilibrium classification error. We cannot select attributes based on penalty alone or their initial 
performance. To select a subset of attributes, we either exhaustively evaluate the equilibrium performance of 
every subset, or we can implement a forward or backward selection algorithm for attribute selection.   
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3 Adversarial Support Vector Machine 
 
 Now we focus on how to build resilient classification models against active adversaries. In the 
presence of active adversaries, data used for training by a data mining algorithm is unlikely to represent the 
future data the system would observe. What typically flunk these data mining algorithms are targeted attacks 
by the adversary that aim to make the data mining system dysfunctional by disguising malicious data. 
Existing data mining algorithms cannot be easily tailored to counter this kind of attack because there is a 
great deal of uncertainty in terms of how much the attacks would affect the structure of the sample space. 
Unlike the model discussed in the previous section, here we do not model the attacker’s utility function 
directly. Instead, we assume certain limits on the attacker’s capabilities. This implies that attacker’s utility 
increases proportional with the loss of the data miner as long as the attack does not exceed the capabilities of 
the attacker. Therefore, attack models that foretell how far an adversary would go in order to breach the 
system, need to be incorporated into data mining algorithms to build a robust decision surface. In [14], we 
discuss two attack models that cover a wide range of attacks tailored to match the adversary's motives. Each 
attack model makes a simple and realistic assumption on what is known to the adversary. Optimal SVM 
strategies are then developed against the attack models.  
 In our model, let X be a d-dimensional vector of attributes measured from an object. In classification 
scenario, we often obtain a class label from an object as well. Let y ∈ {-1, +1} be the class label. y = +1 
indicates an attack object.  We consider an adversarial data mining problem where the adversary has the 
freedom to move only the malicious attack object (yi = 1) in any direction by adding a non-zero 
displacement vector δ to attack object vector. For example, in spam-filtering scenario, the adversary may 
add good words to spam e-mail to defeat spam filters. On the other hand, adversary will not be able to 
modify legitimate e-mails. We make no specific assumptions on the adversary's knowledge of the defensive 
system. Instead, we simply assume there is a trade-off or cost of changing malicious objects. For example, a 
practical strategy often employed by an adversary is to move the malicious objects in the feature space as 
close as possible to where the innocuous objects are frequently observed. However, the adversary can only 
alter a malicious object in such a way that its malicious utility is not completely lost. If the adversary moves 
an object too far away from its own class in the feature space, the adversary may have to sacrifice much of 
the malicious utility of the original object. For example, in order to prevent detection, the attacker may 
reduce the download speed of the sensitive data gathered after a successful cyber attack, since some of the 
recent intrusion detection systems try to detect sensitive data exfiltration from the system. On the other hand, 
reducing the sensitive data download speed to zero that may prevent detection would kill entire purpose of 
the attack. Clearly, different type of modifications by the attacker has different costs and benefits for the 
attacker. In this adversarial SVM work, we model these costs and benefits as a limit on the attacker’s 
capabilities. In [14], we consider different attack models. To further clarify this modeling choice, we explain 
the free range attack model from [14] below.  
    
3.1 Free Range Attack 
  

In this attack model, we assume every attribute is bounded. For the j-th attribute, xj ∈	 �	 xj
min , xj

max	 ]	 .	
In the free range attack model, the attacker can modify the j-th attribute of the i-th attack object, xij, by 
adding δij to xij, where δij satisfies the following constraint  
	

	 	 	 	 )()( max
.

min
. ijjfijijjf xxCxxC −≤≤− δ ,	

	
where Cf is between 0 and 1. In this model,	 the	 parameter	 Cf controls the extent of the attacker’s 
capabilities on modifying the j-th attribute. Cf  = 0 means attacker cannot modify the data at all. And Cf = 1 
corresponds to the most aggressive attacks involving the widest range of permitted data movement. The 
great advantage of this attack model is that it is sufficiently general to cover all possible attack scenarios as 
far as data modification is concerned. When paired with a defensive algorithm, the combination would 
produce good performance against the most severe attacks. However, when there are only mild attacks, the 
defensive algorithm can become paranoid and its performance suffers accordingly. 	

After defining the above attack model, we can incorporate it into the SVM model to make the 
resulting classifier more resilient against various attacks. In the context of SVM, by using mathematical 
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tricks such adding a slack variable and considering the dual problem, we can rewrite the classic SVM 
optimization problem as follows: 
 

   
 

In the above formulation, the adversarial SVM algorithm explicitly considers the fact that objects 
can be transformed by the attacker by integrating Cf in the SVM optimization formulation. In other words, 
unlike the traditional SVM, our adversarial SVM algorithm takes into consideration of the future potential 
attacks by the adversary at model building time to make the defensive algorithm more resistant to attacks.  
 
3.2 Simulation 
 

In order to illustrate the effect of the above discussed adversarial SVM modeling, we provide some 
results on synthetic datasets. For Figures 1(a) and 1(b), we use a synthetic data with two features. Figure 1(a) 
shows the classification boundaries on the training data, before the adversary lounged an attack. The 
standard SVM missed a few "bad" objects (e.g., spam emails) and correctly classified most of the "good" 
objects (e.g., legitimate emails). Adversarial SVM, in anticipation of a future attack, blocked most of the 
"bad" objects and misclassified a few "good" objects. Figure 1(b) shows the classification boundaries on the 
test data with attack objects, both the transformed ones and the ones in the original form. The standard SVM 
failed to block a large number of the attack objects, while Adversarial SVM succeeded in blocking most of 
the attack objects. 

 
4 Conclusion 

 
Our proposed game theoretic framework serves multiple purposes. First, it is used to evaluate the 

equilibrium performance of any adversarial data mining technique. The equilibrium performance of an 
adversarial data mining technique is an indicator of its long term effectiveness. When the equilibrium payoff 
for the data miner is unsatisfactory, the data miner can completely change the rule of the game. Secondly, 
our game theoretic model indicates that we need to build decision boundaries close to the good class but not 
too close to prevent too many false positives. Based on this intuition from our game theoretic model, we 
propose the Adversarial SVM algorithms, which exhibit robust performance against various attacks in the 
form of data modification. We further extend our basic model to an adversarial Bayesian relevance vector 
machine model [15] and the adversarial Hierarchical Mixtures of Experts [16]. Given the limited space we 
cannot cover the extensions in details in this survey article. More information can be found in [15] and [16].   

One important conclusion of our work and similar adversarial data mining work is that when data 
analytics and data mining techniques are used to detect malicious behavior and events, the adaptation of the 
attacker strategies must be explicitly considered when building a defensive algorithm. Otherwise, the data 
mining techniques and decisions support systems used in cyber defense can quickly become useless due to 
the adversaries potential evasion techniques and adaptation. 
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(a) 

 
 
 

(b) 

 
 
 

 
 

 
 
 
 
 
 
 
 
 

Figure 1. Classification boundaries. + is for the untransformed "bad" objects; o is 
for the "good" objects; * is for the transformed "bad" objects, i.e., the attack objects. 
The black dashed line is the standard SVM classification boundary, and the blue line 
is the Adversarial SVM classification boundary. Both the untransformed and the 
transformed "bad" objects are what we want to detect and block. 
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