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Summary

Many real world applications, ranging from spamtefing to intrusion detection, are facing
malicious adversaries who actively transform thgecls under their control to avoid detection. Daifaing
techniques are highly useful tools for cyber dedeisince they play an important role in distinginghthe
legitimate from the destructive. Unfortunately,diteonal data mining techniques are insufficienthandle
such adversarial problems directly. The adversadapt to the data miner's reactions, and datangini
algorithms constructed based on a training dat@egtades quickly. Our proposed adversarial datangin
framework addresses the challenges posed by madi@dversaries. In this survey article, we dis¢hes
theory, the techniques, and the applications ofpmoposed adversarial data mining framework. We ehod
the adversarial data mining applications as a 8thekg game, with an emphasis on the sequentianact
of the adversary and the data miner, allowing Ilpatities to maximize their own utilities. We analyhe
equilibrium behavior of both parties under our egd game theoretic framework, which offers insigtad
the long term effectiveness of a defensive algoritRurthermore we apply the equilibrium informatimn
cost sensitive attribute selection. We then deddgersarial support vector machine models against a
adversary whose attack strategy is defined undeergeand reasonable assumptions. We investigate ho
the performance of the resulting solutions changeder different attack models. The empirical result
suggest that our adversarial support vector madigerithms are robust against various degreetaxdies.
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1 Introduction

Data mining techniques such as clustering andsifieetion have wide applications in real-world
problems. However traditional data mining techngjémlow a major implicit assumption that the cuntre
data and the future data share the same propewhsn this assumption is satisfied, a data mining
algorithm developed using the current observed gatborms well with the future data. Unfortunatétys
assumption no longer holds in an adversarial enuaient where data miner faces malicious active
adversaries. Examples of such adversarial apmitsitare spam filtering, intrusion detection, adeanc
persistent threat detection etc. Unlike in a sta&tiwironment, the attack instances are controllgd b
malicious adversaries who actively transform thigatis under their control to avoid detection. Fxaraple,
in spam filtering, spammers increase the lengthpaim emails and insert “good” words to make thenspa
emails resemble the legitimate emails and pass dSjéers. Performance of traditional data mining
techniques deteriorates quickly when facing actideersaries. To address these challenges, we need t
develop resilient and robust data mining technigiesn adversarial environment to distinguish the
legitimate objects from the attack objects.

The challenges we face from the active adversaniesdifferent from the concept drift problem,
because the adversaries launch targeted attackmaliclously change the properties of the objectden
their control to maximize their payoff. One approdacing malicious adversaries is to be protectirest
the worst case scenario, i.e. the minimax solufitve drawback of the minimax solution is that theg too
pessimistic because they do not consider the aawyesautility function and their potential motives.

This survey article summarizes our previous warkadversarial data mining. We model the
adversarial data mining applications as a two ple&y@ckelberg game, where the data miner and the
adversary make sequential moves, and each playsrtai maximize its own utility. Our approach is tmt
stay ahead of the adversary by constantly adaptirtbe adversary’s actions. We focus on a datangini
algorithm’s long term performance, i.e. its equiliion performance. At an equilibrium, neither plapas an
incentive to change its action. Based on a datangnialgorithm’s equilibrium performance, we areeaty
carry out cost sensitive attribute selection. Caimg theoretic framework is general, where the zaro-
game and the corresponding minimax solution isegigpcase under our framework.

The article is organized as follows: In Sectiow®, describe our game theoretic framework for the
adversarial data mining applications, and the stsiit search algorithm we use to find the equilitori
information. The equilibrium information measurée tong term effectiveness of a data mining albarit
We then use the equilibrium information to perfarast sensitive attribute selection. In Section 3ewiend
our basic model, and present our adversarial stipjeator machine algorithms. Section 4 concludes th
survey article.

1.1 Related Work

Dalvi et al. [3] propose a game theoretic framewfmk adversarial problems where there is an
optimal opponent. They define the problem as a goete&een two cost-sensitive opponents: a Naive 8aye
classifier and an adversary playing optimal striaedlhey assume all parameters of both playerkrayen
to each other and the adversary knows the exauct ddrthe classifier. Their adversary-aware Naivge3a
classifier makes constant automatic adjustmenisrdit to the adversary’s expected actions.

Lowed and Meek [12] point out that assuming theeaslry has perfect knowledge of the classifier
is unrealistic. Instead they suggest the adversanyconfirm the membership of an arbitrary instaioge
sending queries to the classifier. They also asghmedversary has available an adversarial costitun
over the sample space that maps samples to cassvalhis assumption essentially means the adyersar
needs to know the entire feature space to issuenalptttacks. They propose an adversarial classifie
reverse engineering algorithm to learn the vulniéitigls of given learning algorithms.

Adversarial data mining problems are often modeledjames played between two opponents. We
summarize our work in this area in this surveyctatibased on Kantarcioglu et al. [8]). We modd th
problem as a sequential Stackelberg game. As veesisn details below, we assume the two playevsvkn
each other's utility function. A stochastic seaatdjorithm is used, such as simulated annealingganetic
algorithm, to search for an equilibrium. Later arcls equilibrium is used to choose optimal set tftattes
that give good equilibrium performance. After [8ruckner et al. [2] also model adversarial predicti



problems as Stackelberg games. However, their flation assumes that the data miner is the leadkthen
adversary is the follower in the game. Comparedh j2{, in [8], we let the data miner be the follawe
Furthermore our formulation can be generalized, theddata miner can have the option to take amrmcti
that does not optimize its utility but instead minds the adversary at its own expense. Improvecisad
which Nash strategies are played have also begroped [1, 10]. Other game theoretic models plag-zer
sum minimax strategies. Globerson and Roweis [fgicter a problem where some features may be missing
at testing time. This is related to adversariaadaining in that the adversary may simply delewghlyi
weighted features in malicious data to increasehitgice to evade detection. They develop a ganoeettice
framework in which classifiers are constructed &dptimal in the worst case scenario. Their idetbis
prevent assigning too much weight on any singleufeaThey use the support vector machine modethwhi
optimally minimizes the hinge loss when at mostaatfires can be deleted. El Ghaoui et al [6] apply a
minimax model to training data bounded by hypetaegles. Their model minimizes the worst-case loss
over data in given intervals. Other robust learraigprithms for handling classification-time noese also
proposed [9, 10, 11, 13].

In a follow-up work [14], discussed in Section 3¢ whow how to build robust support vector
machine classifiers without making strong assunmgtion what is known to either side of the playkrsur
SVM models, both wide range attacks and targetethks are considered and incorporated into the SVM
framework. We discuss the details of our advers&vé models in Section 3.

2 A Game Theoretic Framework
2.1 Adversarial Stackelberg Game

Assume the “good” classg8onsists of the legitimate objects and the “bad’%sl$ consists of the
attack objects. The “bad” clas® 8 controlled by one or several adversaries. Owicbhgame theoretic
model formulates the adversarial data mining appbos as a two class problem. Data miner measyres
attributes from an object, X=@XX2, ..., Xd). Assume each class has a probability densitytiomd(X), i =
g or b. Assumeis the proportion of each class in the overall pafon, i = g or b. We havegp- po= 1.
The overall population is a mixture of two classesh the density function

f(X) = pg fg(X) + po fo(X) .

The adversary transforms the objects under itsraloto avoid detection, applying transformation T
to the attack objectdhe transformed “bad” class has a new density foncf'b(X). We assume the
proportions of two classesg@nd p, stay the same under attack. This assumption caasity relaxed and
adopted into our basic model if an attack signiftaincreases the number of attack objects. When a
attack object is misidentified as a legitimate objé& generates a profit for the adversary. Onatier hand,
transformation of an attack object suffers fromemadty. For example, by purchasing links a website
increase its search ranking. The cost of purchalsnkg is a form of penalty to its profit. The ultate
penalty for the website is to be removed from #ereh index if it is caught doing so. Following maral-
world applications, the adversary and the data noften take the following sequential actions:

1. Given the initial overall distribution with the d&ty function f(X), the adversary chooses a
transformation T from its strategy spaBewhich is the set of all feasible transformatioaad
applies the transformation T to the objects untecaontrol.

2. After observing the transformation T, the data misets parameter values for a data mining
algorithm and creates a defensive rule h(X).

Let L(h,g) and L(h,b) be the regions where the=otg are identified as legitimate or not respebtive
We allow each player to have their own utility ftion. Let w(T,h) denote the data miner’s utility function,
such as —C(T,h) where C(T,h) is the misclassificatcost. Let g(T,X) be the profit generated by a
transformed attack object when it is misidentifeesl legitimate. The utility function for the advensas
defined as the expected value of the profit gerdray a misidentified transformed attack object.



ub(T,h) = [ g 9(T.X)f'b(X) dX .

We use a Stackelberg game with two players to htbdeadversary and the data miner’'s sequential
actions. We define the Adversarial Stackelberg Gasillows.

Adversarial Stackelberg Game G=(N,H,P,ub,ug):

N = {adversary, data miner}. Set of sequences Hgs {T), (T,h) } s.t. Te S and he C, whereSandC are
the strategy spaces for the adversary and thendiaier respectively. Function P assigns a playezach
sequence in H: B()=adversary and P((T))=data miner. There is aesponding function A that assigns a
strategy space to each sequence in K A€ S, A((T)) = C, and A((T,h)) =p. Payoff functions mand
are defined as above.

We assume the adversary knows which data mingyighm is used and which attributes are being
measured by the data miner. Furthermore we assaotepayer knows the other’s utility function. Henc
the players have perfect information in the game. &¥sume both are rational players. Hence eackrplay
wants to maximize their own utility. Therefore absygame perfect equilibrium of the Adversarial
Stackelberg Game can be expressed as follows.

Let hr(X) be the data miner’s best defensive rule agarasisformation T. Let L(hg) be the region
where the objects are identified as legitimate unde defensive ruleTiX). The adversary gain W(T) of
applying transformation T is the expected valuéhefprofit generated by a misidentified transforragtdck
object under the data miner’s best defensive rydénat T.

W(T) = w(T,hr) =Jimrg 9(T,X)fb(X) dX .
A sub-game perfect equilibrium is {, 1°), where
T® = argmax e sW(T) .

When an equilibrium is reached, obviously neitplryer has the incentive to change its action.
When the strategy space is compact and the adyegsam is continuous, there exists a solution for t
optimization problem. If the two players’ utilityufictions have this relationshipy(Tl,h) = -w(T,h), the
Adversarial Stackelberg Game becomes a zero-sune.gélence our game theoretic framework is more
general and is able to handle the minimax solu®well.

Compared with previous work, in our model, theetygf data mining algorithm and the set of
attributes chosen by the data miner is an initiap ghat is not directly modeled in our game thgore
framework. Actually the data miner has an advantagthis initial choice. Being able to choose tyyeet of
data mining algorithm and the set of attributes msaatimately the data miner controls the rulehaf lame.
When the equilibrium payoff for the data miner isatisfactory, the data miner is able to changeuteeof
the game by

1) increasing the penalties for certain attributes;
2) selecting a different set of attributes;
3) switching to another data mining algorithm.

2.2 Search for An Equilibrium

It is straight forward to see from the above exgimsthat we cannot obtain an explicit expression
of a sub-game perfect equilibrium even under a Erdstribution such as Gaussian mixture. We tloeeef
use computational algorithms to search for an dogitim.

The first step is to be able to evaluate the aghrgr gain given a transformation. Given a
transformation T, we can generate transformed lattdijects based on the observed data, and use the
generated objects to re-train the data mining &lgarwith the chosen set of attributes to obtaim dptimal
defensive rule against the transformatiom(>®. We then use Monte Carlo integration to evautie
adversary gain W(T) for the transformation T. Theexsary gain can be written as



W(T) = ] 1rg(X) 9(TX)fb(X) dX

where |rg(X) is an indicator function. It equals to 1 if attack object is not identified by the defensive
algorithm, and 0 otherwise. We generateransformed attack objects under transformatiorexgmine
which ones can successfully pass the optimal defemnsle hr(X). Each unidentified attack object generates
a profit for the adversary according to g(T,X). Theerage of the profits from the unidentified dttabjects

is an estimate of the adversary gain W(T). Incregasi will increase the accuracy of the estimated adwgrs
gain.

Next we use a stochastic search algorithm to &ndequilibrium of the Adversarial Stackelberg
game. Any stochastic search algorithm with goodpberties will serve the purpose. In [14], we used th
simulated annealing algorithm to search for an légiwim. Simulated annealing algorithm is able to
converge to a global optimum. The algorithm goesugh a slow cooling process and settles downeat th
lowest energy state when the computation budgehiisnited. The simulated annealing algorithm is as
follows.

- Set parameters TempMin, TempMax, reduction rat@<R€1), sample size N
- Let Tc be the starting transformation with evalc = \&)(T

- Let Tg be the best transformation in the search so fér @walg = W(TE)

- Tg=Tcand W(Tg) = W(Tc)

- TempCurrent = TempMax

- WHILE  TempCurrent >= TempMin DO
FOR i=1toN DO
Randomly selectrlin the neighborhood ofcT
Let evaln = W(h)
IF evaln > evalc THEN
Tc=Tn, evalc = evaln
IF evalg <evaln THEN
Tg=Tn, evalg = evaln

END IF
ELSE IF rand(0,1) <= exp{(evaln-evalc)/Tempfemt} THEN
Tc=Tn, evalc = evaln
END IF
END FOR
TempCurrent = TempCurrent x R
- END WHILE

An Adversarial Stackelberg game may have multigleildria. The adversary receives the same
maximum adversary gain at each equilibrium, butddi miner may see different payoffs. Theoretjoak
should run a stochastic algorithm multiple timesl axamine the data miner's worst and best equilibri
payoffs.

2.3 Equilibrium Performance and Attribute Selection

A data mining algorithm’s initial success cannotaigntee its good performance against active
adversaries. The data miner needs a proper critedomeasure a defensive algorithm’s long term
performance. There are three quantities that ctanpally serve as such a measure.

1) Adversary’s equilibrium transformation;
2) Adversary’s equilibrium gain;
3) Data miner’s equilibrium payoff.



We believe a data mining algorithm’s long termcass should be measured from the data miner’s
perspective. When the adversary significantly altee attack objects to make them similar to toeifeate
objects, the unidentified attack objects then bexbarmless. As long as the data miner does natrsuéim
major damages, it might tolerate a few unidentifittdck objects. For instance, we still receivetaf spam
emails today. A defensive algorithm is put in placainly to prevent the data miner from suffering
significant damages. Hence we choose the data imguilibrium payoff to measure a defensive
algorithm’s long term effectiveness.

Often there are a number of attributes that caméa&sured from an object. A data mining algorithm
may monitor only a few of them. Data miner’s eduilim payoff can then be used to select the béxtetu
of attributes. Notice many factors interact withckeaother to determine the attributes’ equilibrium
performance. Below is an example. Consider a datmgalgorithm that monitors only one attributeda
there are three attributes available. Assume tb#t unction of a transformed attack object is thiowing.

g(T,X) = max(1 — a[f(X)-X|, 0) .

X is the transformed value, and(K) is the original one. [f{X)-X| measures the extent of transformation. a
is the penalty per unit transformation. The maximpnofit generated by an unidentified attack object,
and it decreases linearly due to transformatior Mimimum profit is 0.

Further assume the “good” and the “bad” class dalltbws a Gaussian distribution(X), is the
density function of N§, o2i), i =g or b. Assume two classes are of the same sizepp= 0.5. Let T be a
real number and the value of a transformed atgilmisimply T(X) = TxX. Under transformation Tp(X)
is the density of N(Tpb, T?xa2b).

Data miner uses a Bayesian classifier to detecattack objects. Let c(i, j) be the cost of clyssgy
an object into classi §iven it actually belongs to clasg B=g or b, and g or b. In this simple example
we set ¢(g,9) = c(b,b) = 0 and c¢(g,b) = c(b,g) =The optimal Bayesian classification rule against
transformation T is the following.

hr(X) = Sg if poxf'b(X) <= pyx fg(X); Sb otherwise.

Given the above set-up, the adversary gain car-beitten as follows.
W(T) =i g Max(l —alF(X)-X], 0) x fb(X) dX .

A sub-game perfect equilibrium is {, 1°), where
T® = argmax eg W(T) .

Under this set-up, Table 1 shows three attribimitial distributions, penalties, and their equilibom
classification errors respectively.

Attribute | § S Penalty Equilibrium Error Rate
X1 N(1,1) N(3,1) a=1 0.16
X2 N(1,1) N(3.5,1) a=0.45 0.13
X3 N(1,1) N(4,1) a=0 0.23

Table 1. X1, X2, X3 Equilibrium Performance.

X1 sees the heaviest penalty, anehas the best initial performance. However péturns the
smallest equilibrium classification error. We cangselect attributes based on penalty alone or ihial
performance. To select a subset of attributes,ithereexhaustively evaluate the equilibrium perfanoe of
every subset, or we can implement a forward or waol selection algorithm for attribute selection.



3 Adversarial Support Vector Machine

Now we focus on how to build resilient classificatimodels against active adversaries. In the
presence of active adversaries, data used foirtgaby a data mining algorithm is unlikely to repeet the
future data the system would observe. What typidalhk these data mining algorithms are targetéacis
by the adversary that aim to make the data minysiesn dysfunctional by disguising malicious data.
Existing data mining algorithms cannot be easiliptad to counter this kind of attack because thsra
great deal of uncertainty in terms of how much dktecks would affect the structure of the samphkcsp
Unlike the model discussed in the previous sectiwre we do not model the attacker’s utility fuonti
directly. Instead, we assume certain limits ondttacker’s capabilities. This implies that attackeitility
increases proportional with the loss of the dataemas long as the attack does not exceed the itapsiof
the attacker. Therefore, attack models that fdréi@lv far an adversary would go in order to bretwh
system, need to be incorporated into data miniggrithms to build a robust decision surface. In][ide
discuss two attack models that cover a wide ram@dtacks tailored to match the adversary's motizesh
attack model makes a simple and realistic assummiiowhat is known to the adversary. Optimal SVM
strategies are then developed against the attadkIso

In our model, let X be a d-dimensional vector ifilautes measured from an object. In classificatio
scenario, we often obtain a class label from aealgs well. Let ye {-1, +1} be the class label. y = +1
indicates an attack object. We consider an aduatsgata mining problem where the adversary has th
freedom to move only the malicious attack object £y1) in any direction by adding a non-zero
displacement vectas to attack object vector. For example, in spanedfiity scenario, the adversary may
add good words to spam e-mail to defeat spam diltén the other hand, adversary will not be able to
modify legitimate e-mails. We make no specific aggtions on the adversary's knowledge of the defensi
system. Instead, we simply assume there is a wHd@a-cost of changing malicious objects. For eplama
practical strategy often employed by an adversautp imove the malicious objects in the feature espzec
close as possible to where the innocuous objeetfraquently observed. However, the adversary céy o
alter a malicious object in such a way that itsionalis utility is not completely lost. If the adgary moves
an object too far away from its own class in thatdee space, the adversary may have to sacrificd ot
the malicious utility of the original object. Foxample, in order to prevent detection, the attackay
reduce the download speed of the sensitive dategat after a successful cyber attack, since sdrtieeo
recent intrusion detection systems try to detecsisge data exfiltration from the system. On tlilees hand,
reducing the sensitive data download speed to thatomay prevent detection would kill entire purpas
the attack. Clearly, different type of modificatioby the attacker has different costs and benfefitshe
attacker. In this adversarial SVM work, we modetsh costs and benefits as a limit on the attacker’s
capabilities. In [14], we consider different attankdels. To further clarify this modeling choiceg @xplain
the free range attack model from [14] below.

3.1 Free Range Attack
In this attack model, we assume every attributisnded. For the j-th attribute,& [ ™ , %

In the free range attack model, the attacker cadifjndhe j-th attribute of the i-th attack objeoxt;J,, by
addinggd; to x;, whereg; satisfies the following constraint

max ]

Cf (XTi"—X;) SJ.; SCf (X.rjnax_)gj)'

where G is between 0 and 1. In this modehe parameter Ct controls the extent of the attacker’s
capabilities on modifying the j-th attributet € 0 means attacker cannot modify the data afalll G =1
corresponds to the most aggressive attacks inyplihe widest range of permitted data movement. The
great advantage of this attack model is that swifficiently general to cover all possible attackmsarios as
far as data modification is concerned. When paisétt a defensive algorithm, the combination would
produce good performance against the most seviarekat However, when there are only mild attadks, t
defensive algorithm can become paranoid and ifeeance suffers accordingly.

After defining the above attack model, we can ipooate it into the SVM model to make the
resulting classifier more resilient against vari@tacks. In the context of SVM, by using matheoati



tricks such adding a slack variable and considetiregdual problem, we can rewrite the classic SVM
optimization problem as follows:

argmin  Lflul® + C X, &
w,b,fi,ti,ui,vi
s.t. 51 > 0
§i>21—yi-(w-zi+b)+t;
ti > 32, Cr (vig (2 — 245) — uiz (2™ — 245))
U; — UV = %(1 + yi)w
u; =~ 0
Vi t 0

In the above formulation, the adversarial SVM ailfpon explicitly considers the fact that objects
can be transformed by the attacker by integrating @e SVM optimization formulation. In other words
unlike the traditional SVM, our adversarial SVM atighm takes into consideration of the future ptitdn
attacks by the adversary at model building timmgdke the defensive algorithm more resistant takdta

3.2 Simulation

In order to illustrate the effect of the above dssed adversarial SVM modeling, we provide some
results on synthetic datasets. For Figures 1(alléng we use a synthetic data with two featurégure 1(a)
shows the classification boundaries on the trainilaga, before the adversary lounged an attack. The
standard SVM missed a few "bad" objects (e.g., spamails) and correctly classified most of the "dood
objects (e.g., legitimate emails). Adversarial SVl anticipation of a future attack, blocked mosttwe
"bad" objects and misclassified a few "good" olge€ligure 1(b) shows the classification boundavieshe
test data with attack objects, both the transforomes and the ones in the original form. The stah8&M
failed to block a large number of the attack olgeuwthile Adversarial SVM succeeded in blocking mafst
the attack objects.

4 Conclusion

Our proposed game theoretic framework serves nhellpprposes. First, it is used to evaluate the
equilibrium performance of any adversarial dataingntechnique. The equilibrium performance of an
adversarial data mining technigue is an indicafdtsdong term effectiveness. When the equilibripayoff
for the data miner is unsatisfactory, the data moam completely change the rule of the game. S#gon
our game theoretic model indicates that we neduliid decision boundaries close to the good class bt
too close to prevent too many false positives. Base this intuition from our game theoretic modeé
propose the Adversarial SVM algorithms, which eikhibbust performance against various attacks é th
form of data modification. We further extend ousisamodel to an adversarial Bayesian relevanceovect
machine model [15] and the adversarial Hierarchidadttures of Experts [16]. Given the limited spage
cannot cover the extensions in details in thiseyarticle. More information can be found in [15d416].

One important conclusion of our work and similaverdarial data mining work is that when data
analytics and data mining techniques are usedtexrtmalicious behavior and events, the adaptatidhe
attacker strategies must be explicitly consideré@mwbuilding a defensive algorithm. Otherwise, dia¢a
mining techniques and decisions support systend inseyber defense can quickly become uselessalue t
the adversaries potential evasion techniques asptaiibn.
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