
Conceptual Clustering Categorical Data with Uncertainty

Yuni Xia
Indiana University – Purdue University Indianapolis

Indianapolis, IN 46202, USA
yxia@cs.iupui.edu

Bowei Xi
Purdue University

West Lafayette, IN 47906, USA
xbw@stat.purdue.edu

Abstract
Many real datasets have uncertain categorical
attribute values that are only approximately measured
or imputed. Uncertainty in categorical data is
commonplace in many applications, including
biological annotation, medial diagnosis and automatic
error detection. In such domains, the exact value of an
attribute is often unknown, but may be estimated from
a number of reasonable alternatives. Current
conceptual clustering algorithms do not provide a
convenient means for handling this type of uncertainty.
In this paper we extend traditional conceptual
clustering algorithm to explicitly handle uncertainty in
data values. In this paper we propose new total utility
(TU) index for measuring the quality of the clustering.
And we develop improved algorithms for efficiently
clustering uncertain categorical data, based on the
COBWEB conceptual clustering algorithm.
Experimental results using real datasets demonstrate
how these algorithms and new TU measure can
effectively improve the performance of clustering
through the use of internal probabilistic information.

1. Introduction

In many applications, data contains inherent
uncertainty. A number of factors will contribute to the
uncertainty, such as the random nature of the physical
data generation and collection process, measurement
and decision errors, and data staling.

One example is protein database. Along with other
information about various proteins, it is important to
understand whether the protein is ordered or not – the
existence of secondary structure. This type of
information is typically obtained by literature mining –
examining the experiments, or the features of similar or
closely related protein datasets. However the literature
mining results will introduce uncertainty to whether a
protein may be marked as either ordered or not. Notice
this is a categorical attribute with two levels.

In the mean time, data uncertainty often arises in
automatic data integration. For example deep web data
in the form of dynamic HTML pages can be used to
generate related datasets. This is a challenging
problem. Often the mapping from information in a web
page to a set of attributes is unclear. It may be known
that a page contains prices for several items and a set
of numeric values. It is difficult for a program to
determine which numerical value is the price for a
given item with accuracy. Instead, existing algorithms
will generate multiple candidates for the value of an
attribute, each with a likelihood or probability of being
the correct one. Similar issues arise in the domain of
integrating unstructured text information with
structured databases, such as automatic annotation of
customer relationship management (CRM) databases,
and email search databases [SMPSH07].

Uncertainty is prevalent in many application
domains. Although much research effort has been
directed towards the management of data with
uncertainty in databases, few have addressed the issue
of mining data with uncertainty. It is well known fact
that data mining results will respond to the subtle
errors or uncertainty in the data. The problem of
inaccurate data has continuously been a challenge for
many data mining applications.

We suggest incorporating information of
uncertainties, such as the probability distribution of
attributes, into existing data mining methods. In this
paper we will study how such information can be
incorporated in data mining by using clustering as a
motivating example. In particular, we will study one of
the most popular conceptual clustering algorithms –
COBWEB.

This paper will focus on the problem of clustering
categorical data with uncertainty, where candidate
values for a certain attribute will be assigned
probabilities. We propose new solutions as well as a
new measure, Probability Utility (PU), for evaluating
the quality of clustering. The new techniques are

19th IEEE International Conference on Tools with Artificial Intelligence

1082-3409/07 $25.00 © 2007 IEEE
DOI 10.1109/ICTAI.2007.135

329

19th IEEE International Conference on Tools with Artificial Intelligence

1082-3409/07 $25.00 © 2007 IEEE
DOI 10.1109/ICTAI.2007.135

329

19th IEEE International Conference on Tools with Artificial Intelligence

1082-3409/07 $25.00 © 2007 IEEE
DOI 10.1109/ICTAI.2007.135

329

19th IEEE International Conference on Tools with Artificial Intelligence

1082-3409/07 $25.00 © 2007 IEEE
DOI 10.1109/ICTAI.2007.135

329

shown to provide efficient clustering results through
experimental validation with real life data.

This paper is organized as follows. In the next
section, we will discuss related work on data clustering
and mining data with uncertainty. Section 3 discusses
the conventional COBWEB conceptual clustering
techniques. Section 4 will show the model for
categorical data with uncertainty. In section 5, we will
discuss how to extend the conventional COBWEB
algorithm for clustering data with uncertainty. We will
show the experimental results in section 6. Section 7
summarizes the paper.

2. Related Work
 Clustering is one of the most studied areas in data
mining research. Many clustering algorithms have been
proposed in the literature, such as hierarchical
clustering, partitioning clustering, density-based
clustering, grid-based clustering, and conceptual
clustering. Hierarchical clustering algorithms are either
agglomerative ("bottom-up") or divisive ("top-down").
They find successive clusters using previously
established ones. Whereas partitioning algorithms,
such as K-Means and K-Medoids, determine all
clusters at once. Density-based clustering, such as
DBSCAN and OPTICS, typically regards clusters as
dense regions of objects in the data space that are
separated by regions with low data density. Grid-based
methods, such as STING, quantize the space into finite
number of cells to form a grid structure, on which all
of the operations for clustering are performed.
Conceptual clustering produces a classification scheme
over the objects, and it goes one step further than other
clustering algorithms by finding characteristic
descriptions of each group. Hence each group
represents a concept or a class.
 In spite of the numerous clustering algorithms, how
to handle missing data and data with uncertainty has
remained a great challenge. One related research area
is fuzzy clustering, which has been carefully studied in
fuzzy logic [Ruspin69]. In fuzzy clustering, a cluster is
represented as a fuzzy subset of objects. Each object
has a “degree of belongingness” for each cluster. In
other words, an object can belong to more than one
cluster, each cluster with a different degree. The fuzzy
c-means algorithm is one of the most widely used
fuzzy clustering methods [Dunn73]. Different fuzzy
clustering methods have been applied to regular or
fuzzy data [SSJ97]. While their work focused on
creating fuzzy clusters (i.e., each object can belong to
more than one cluster with different degrees), our work
aim at hard clustering, based on an uncertainty model
of objects. The result is that each object can only
belong to one cluster.

 Recently there have been studies on partition-based
and density-based clustering of data with uncertainty.
The UK-means algorithm, [CCKN06] and
[NKCCCY06], is based on the K-Means clustering
algorithm. The expected distance between objects is
computed using a probability distribution function.
The FDBSCAN and FOPTICS algorithms, [KPKDD05]
and [KPICDM05], are based on DBSCAN and OPTICS
respectively. Instead of identifying regions with high
data density, these algorithms identify regions with
high expected density, based on the probability models
of the objects. Our work differs from the previous ones
in that we focus on conceptual clustering methods and
our algorithms are able to handle uncertainty in
categorical attributes.

3. COBWEB Conceptual Clustering
 Conceptual clustering is a machine-learning
paradigm for clustering. It is different than other
clustering algorithms in that it generates a concept
descriptor for each cluster. COBWEB [DHFisher87] is
one of the mostly commonly used algorithms for
conceptual clustering. In this paper, we extend the
COBWEB algorithm for clustering data with
uncertainty.

Whereas some iterative distance-based clustering
algorithms, such as K-Means, go over the whole
dataset until convergence occurs, COBWEB works
incrementally, updating the clusters object by object.
The clusters COBWEB creates are formed into a tree.
The leaves of the tree represent every individual
concept; the root node represents the whole dataset;
and the branches represent the hierarchical clusters
within the dataset. The total number of clusters can be
up to by the size of the dataset.

The COBWEB data structure is a tree wherein each
node represents a certain concept. Each concept is
associated with a set, a multi-set, or a bag of objects.
Each object is assigned binary-valued indicators on a
property list. The data associated with each concept are
the integer counts for the objects belonging to that
concept.

Please refer to Figure 1 as an example. Let a concept
C1 contain the following three objects (repeated objects
being permitted).

1. [1 0 1]
2. [0 1 1]
3. [1 1 1]

The three properties are: [is_male, has_wings,
is_nocturnal]. Then what is stored at this concept node
is the property count [2 2 3], indicating that 2 of the
objects in the concept is male, 2 of the objects have
wings, and 3 of the objects are nocturnal. The concept
descriptor is the concept-conditional probabilities of

330330330330

the properties at the node. Thus, given that an object is
a member of a concept C1, the probability that it is
male is 2 / 3. Likewise, the probability that the object
has wings is 2/3 and probability that the object is
nocturnal is 3 / 3. The concept descriptor can therefore
simply be given as [2/3, 2/3, 3/3], which corresponds
to the C1-conditional feature probability, i.e., p(x | C1)
= (2/3, 2/3, 3/3).

Figure 1: Classification Tree

Figure 1 shows a tree with five concepts. C0 is the

root concept, which contains all ten objects in the data
set. Concepts C1, C2 and C3 are the children of C0. C1
contains three objects, C2 contains two objects, and C3
contains five objects. Concept C3 is also the parent of
concepts C4 and C5, which contain three and two
objects respectively. Note that each parent node
(relative super-ordinate concept) contains all the
objects of its children nodes (relative sub-ordinate
concepts). For each leave node, the first box
underneath it lists the actual objects, and the second
box lists the attribute counts. For each internal node,
the box on its right lists the attribute counts for all its
children nodes. In Fisher's (1987) description of
COBWEB, he mentioned that only the total attribute
counts, without the conditional probabilities or the
actual object lists, should be stored at the nodes. Any
probabilities can be computed from the attribute counts
when needed.

COBWEB starts with a tree consisting of just the
root node. From there, instances are added one by one,
with the tree being updated accordingly at each stage.
When an instance is added, there are four possible
actions. One will choose the action with the biggest
category utility. The Category Utility (CU) is defined
by the following function:

n

])VP(A)C|VP(A)[P(C 2
i j iji

2
ki j ijik

n
1k∑ ∑∑∑∑ =−==

Vij is a potential value of attribute Ai. q is the number
of nodes, concepts or categories forming a partition
{C1, C2, …, Cq} at a given level of the tree. Category
Utility is the increased amount of the expected number
of attribute values that can be correctly estimated from
a partition. This expected number
is 2

ki j ijik)C|VP(A)[P(C ∑∑ = . And the

expected number of correct estimates without such
knowledge is the term 2

i j iji)VP(A∑∑ = . Category

Utility rewards intra-class similarity and inter-class
dissimilarity where:

• Intra-class similarity is the probability P(Ai =
Vij |Ck). The larger this value is, the greater
the proportion of class members that share
this attribute-value pair will be. Hence the
class members are more predictable.

• Inter-class dissimilarity is the probability P(Ck
|Ai = Vij). The larger this value is, the fewer
the objects in contrasting classes will share
this attribute-value pair. It is more likely that
the pair belongs to a certain class.

4. A Model for Categorical Data with
Uncertainty

In this section, we will introduce a general model for
categorical data with uncertainty. Then in the next
section, we will discuss how to cluster data with
uncertainty based on this model.

Under the uncertainty model, a dataset can have
attributes that are allowed to take uncertain values. The
focus of this paper is on attributes with uncertain
values that come from categorical domains. Such an
attribute is called an uncertain categorical attribute
(UCA), denoted by u.

u is an attribute in relation R which is uncertain. u
takes values from the categorical domain D with
cardinality |D| = N. Within a regular relation with the
correct value, the value of an attribute a is a single
value dk in D, Pr(a = dk)=1. In the case of an uncertain
relation, we record the information by a probability
distribution over D instead of a single value. Let D =
{d1, d2, ..., dN}, then we write Ta as the probability
distribution Pr(u = di) for all values of i in {1, …, N}.
Thus, Ta can be represented by a probability vector Ta
= (p1, p2, ..., pN) such that∑ =

N
i 1 pi = 1. In many cases,

the probability vector is sparse and most of the value
are zeros. In such cases, we may write Ta as a set of
potential value and its corresponding probability pairs,

331331331331

Ta={(d,p): Pr(Ta=d)=p and p ≠ 0}. Hereafter we write
a UCA by u instead of Ta unless noted otherwise. Also,
we write Pr(u = di) simply as pi.

Table 1: Example of Data with uncertainty

Age Gender … Tumor
10-20 F (Benign, 0.8),

(Malignant, 0.2)
60-70 M (Benign, 0.9),

(Malignant, 0.1)
70-80 M (Benign, 0.3),

(Malignant, 0.7)
40-50 M (Benign, 0.2),

(Malignant, 0.8)

Table 1 shows an example. It is for a medical
diagnosis application with an UCA attribute. The table
stores information for patients with tumor. The type of
tumor is an UCA attribute, whose value cannot be
determined exactly. It may be either benign or
malignant, each associated with a probability.

Previously, [SMPSH07] defined UCA as follows:
Definition 1 Given a categorical domain D ={d1, .., dN},
an uncertain discrete attribute (UCA) u is characterized
by probability distribution over D. It can be represented
by the probability vector P = (p1, ..., pN) such that Pr(u =
di) = pi.
 Assuming n is the totally number of attributes and m
is the maximal number of candidate values for the
attributes, under the definition of UCA, we can record
a general dataset with uncertainty using a n*m matrix
as follows:



















nmn3n2n1

2m232221

1m131211

p … ,p ,p ,p
…

p , … ,p ,p ,p
p ,… ,p ,p ,p

pij is the probability of Ai equal to the value Vij. If an
attribute Ai has only k candidate values, k<m, then for
all k<l<m, pil = 0.
 Dataset without uncertainty can be treated as a special
case of data with uncertainty. When using a matrix to
represent a data record without uncertainty, there is
only one element per row to be non-zero. The value of
the non-zero element is one, which means that the
value for each attribute is certain – the probability that
the attribute equals to such a value is 100%.

5. Conceptual Clustering with Uncertainty
 In this section, we will discuss how to extend the
COBWEB algorithm for conceptual clustering
categorical data with uncertainty. We propose three
solutions, a naïve solution, an extended COBWEB
solution and a Total Utility (TU) based solution. We
will explain the three solutions in detail next.

5.1. Naïve Solution
 For categorical data with uncertainty, a naïve
solution is to pick one of the most likely candidate
values for each attribute represented by probability
distribution. For example, with the data shown in table
1, the tumor attribute is an uncertain one, with possible
values to be either malignant or benign with certain
probability. The naïve solution will set the attribute to
be the type of tumor with higher probability for each
data record. That is, for record 1 and 2, the tumor will
be benign and for record 3 and 4, the tumor is
malignant. Therefore the uncertainty within a dataset
disappears, and the traditional COBWEB algorithm
can be applied on the dataset without modification.
 While this naïve approach is simple to implement, it
will result in significant loss of information and lower
quality of data clustering. Hence we need alternative
approaches that can process the uncertainty of the
attribute values directly.

5.2. Extended COBWEB
For traditional COBWEB, the category utility is
computed as:

n

])VP(A)C|VP(A)[P(C 2
i j iji

2
ki j ijik

n
1k∑ ∑∑∑∑ =−==

Specifically, the intra-class similarity is defined as P(Ai
= Vij |Ck) and inter-class dissimilarity is defined as
P(Ck |Ai = Vij).
 When we have the exact value of every attribute in a
dataset, the intra-class similarity P(Ai = Vij |Ck) is
calculated as: |C|/ |} V = A & C O :{O| kijik∈ , which is
the cardinality of objects equal to value Vij for attribute
Ai in Ck divided by the overall cardinally of Ck. As
shown in Figure 2 (a), the number of objects in C1 is 3,
thus the cardinally of C1 is 3. Out of these three
objects, two of them has the first attribute A0 equal to
one, therefore, P(A0 = 1 |Ck) = 2/3.
 When data contains uncertain attributes, the way of
calculating the intra-class similarity P(Ai = Vij |Ck)
needs to be changed to: |C|)/ Vij Ai:O(k=Σ rP for all
object O in Ck. Figure 2 (b) shows an example. Here
the cardinality of C2 is also 3. Assume each of them
have only one attribute, which could be either 0 or 1.
The first object is 1 with probability 0.9 and is 0 with
probability 0.1, object 2 is 1 with probability 0.2 and 0
with probability 0.8, and object 3 is 1 with probability
0.7 and 0 with probability 0.3. Therefore, for all three
objects, the sum of the probability of being 1 should be
0.9+0.2+0.7=1.8. The probability for class C2 of being
1 is 1.8/3 = 60%. This is different from the naïve
approach in section 5.1. If we use the naïve approach,

332332332332

which pick one of the most likely candidate values for
each uncertain attribute, then the three object in C2 will
be 1, 0, 1 and the probability for class C2 of being 1 is
2/3.

Figure 2: Data with uncertainty

5.2. Total Utility based COBWEB

5.2.1 Probability Utility
 When data contains uncertain attributes, we should
take uncertainty into consideration when measuring the
quality of a cluster/concept. In other words, ideally
data within one cluster should not only have a high
similarity measure based on all attributes, but also have
similar probability distributions for the uncertain
attributes. We will explain the reason with an example
shown in Figure 3.

Figure 3: Data with uncertainty

Figure 3 shows two clusters, C1 and C2. Both C1 and

C2 contain five records. For simplicity, assume each
record has only one attribute, which describes the type
of a tumor, and this attribute has two possible values, 0
or 1: 0 for benign and 1 for malignant. The five
records in C1 all has value 1 with probability 0.6, while
for the five records in C2, three of them have value 1
with probability 1 and the rest two of them has value 0
with probability 1. When using the category utility
measure of the traditional COBWEB, both nodes has
the same feature – the probability of being 1 is 0.6 on
average. However, C1 should be considered as a better
cluster than C2, since the data records within C1 has
higher intra-class similarity – not only all of them tend

to have value 1, but also all with 60% probability. A
researcher tends to find a cluster with five tumors, all
of which may be malignant with the same 60%
probability to be more interesting than a cluster with
three malignant tumors and two benign ones.

Based on the above observation, we propose another
heuristic measure, Probability Utility (PU), to guide
the search and clustering. The Probability Utility is
defined as:

n

])[P(C
i j

2
)VP(Ai j

2
)C|P(Ak

n
1k 2

iji
2

kiji
∑ ∑∑∑∑ === −− σσ V

Probability Utility can be viewed as a function that
rewards the similarity of the probability distributions
of objects within the same class and dissimilarity of the
probability distributions of objects between different
classes. In particular, probability utility is a tradeoff
between intra-class probability similarity and inter-
class probability dissimilarity of objects. Intra-class
similarity is reflected by the term: “– (σP(Ai = Vij|Ck))2”.
This is a non-positive value: negative one times a
variance. A large value of this term means a small
variance (σP(Ai = Vij|Ck))2. Hence a big proportion of the
class members will share identical or similar
probability distributions. Inter-class similarity is
represented by the term (σP(Ai = Vij))2, the variation of
unconditional probabilities. When this term is large,
there will be fewer objects in contrasting classes that
share the same or similar probabilities. Therefore each
cluster will be more predictive.
 Please note that Probability Utility works best when
uncertainty naturally arises instead of by errors such as
measurement imprecision. The reason is that only
when uncertainty is part of the nature of the data itself,
it can work as a similarity measure. If it is caused by
external factors such as measurement imprecision, then
the similarity derived from the uncertainty distributions
probably indicates the similarity of measuring
techniques or surrounding environments. It will have
nothing to do with the data itself.
 We further define the Total Utility (TU) index for
guiding the clustering. Total Utility is a balance
between the Category Utility and the Probability
Utility: TU = αCU + (1- α) PU, where 0<=α<=1. When
α=1, this is the same as regular COBWEB. As α
becomes smaller, higher weight is given to the
similarity of probability distributions within the same
cluster.

5.2.2 TU based COBWEB Algorithm

Since Probability Utility can be used to guide the
clustering process, each node should store not only the
probabilities P(Ai = Vij |Ck), but also the variance of

333333333333

the probabilities σ2
P(Ai = Vij|Ck). This is for computing

the Total Utility of each node.
Same as traditional COBWEB algorithm, at each

node, four possible operations – insert, create, merge
and split – will be considered and the one that yields
the highest Total Utility value will be selected.
 Given a new object, TU based COBWEB descends
the tree along an appropriate path, updating counts
along the way, in search of the best node to place the
object. The decision is based on temporarily adding the
object in one node and computing the Total Utility of
the resulting partition. The placement that results in the
highest Total Utility should be a good candidate host
for the object. COBWEB also computes the Total
Utility of a new node that is created entirely for the
object. Then we will compare the Total Utilities from
inserting the object in existing nodes and the Total
Utility of the new node. The object is then placed
according to the higher value of the two options.
 The results of two operations – insert and create –
are highly sensitive to the input order, same as the
conventional COBWEB. We then use two additional
operators that help to make it less sensitive to the input
order, by merging and splitting the nodes. When an
object is processed, the two best hosts are considered
for merging into a single node. Furthermore, we
consider splitting the children nodes of the best host
among all other existing nodes. These decisions are all
based on Total Utility. The ‘merge’ and ‘split’
operators will allow COBWEB to perform a
bidirectional search. For example, a merge can reverse
a previous split.
 All of the four operations – split, merge, create and
insert – must take uncertainty gain or loss into account.
A large increase in uncertainty in a node should be
treated as a penalty and we must avoid it. This is
automatically being taken care of by using the Total
Utility measure and by adjusting the value of α in TU.
The algorithm for TU based COBWEB is described as
follows:

Cobweb(N: Node, I:Instance)
If N is a terminal node,
Then Create-new-terminals(N, I)
 UpdateNodeProbability(N,I).
Else.
 UpdateNodeProbability(N,I).
 For each child C of node N,
 Compute the utility for placing I in C.
 N1 := the node with the highest utility U1.
 N2 := the node with the second highest U2.
 UNew := the utility for creating a new node for I
 UMerge := the utility for merging N1 and N2

USplit := the utility for splitting N1
 UMax := Max(U1, UNew, UMerge, USplit),
 If U1 == UMax //insert

 Then Cobweb(N1, I) (place I in category N1).
 Else if UNew == UMax, //create

 Then Nnew = new Node(I)
 Else if UMerge == UMax //merge
 Then NMerge := Merge(N1, N2, N).
 Cobweb(NMerge, I).
 Else if NSplit == UMax //split
 Then Split(N1, N).
 Cobweb(N, I).

UpdateNodeProabability(N: Node, I:Instance)
 Update the probability and the variance of probability of
category N.
 For each attribute A in instance I,
 For each value V of A,
 Update the probability of V and the variance of
probability given category N.

Merge(N1, N2, N)
 Make O a new child of N.
 Compute O’s probabilities
 Compute O’s variance
 Remove N1 and N2 as children of node N.
 Add N1 and N2 as children of node O.
 Return O.

Split(P, N)
 Remove the child P of node N.
 Promote the children of P to be children of N.

The algorithm is similar to conventional COBWEB.
The major difference is in the merge operation. When
merging node N1 and N2 into a new node O, the
probabilities and the variance of the probabilities of the
new node O should be computed as follows:

• The probabilities of the new node O are the
weighted average of the probabilities of C1
and C2. As shown in Figure 4, if P(A0=1|C1) =
1.6/2=0.8, and P(A0=1|C2) = 1.2/2 = 0.6, by
merging N1 and N2 into O, P(A0=1|O) should
be (0.8*2+0.6*2)/(2+2) = 2.8/4 = 0.7.

• The variances of probabilities of the new node
O can be computed based on the variance
decomposition property or the law of total
variance. According to this property, suppose
the data is partitioned into subgroups. Then
the variance of the whole group is equal to the
mean of the variances of the subgroups plus
the variance of the means of the subgroups.
As shown in Figure 4, suppose that a group
consists of a subgroup of C1 and an equally
large subgroup of C2. Suppose that C1 has a
probability for P(A0=1|N1) = 0.8 and the
variance of the probabilities is 0.04, C2 has a
probability for P(A0=1|N2) = 0.6 and the
variance of the probabilities is 0.01, then the
mean of the variances is (0.04 + 0.01) / 2 =

334334334334

0.025; the variance of the means is the
variance of 0.6, 0.8 which is 0.01. Therefore,
for the merged node C3, the variance of
P(A0=1|C3) will be 0.025 + 0.01 = 0.035. In a
more general case, if the subgroups have
unequal sizes, then they must be weighted
proportionally to their size in the
computations of the means and variances.

Figure 4: An example of node merge

6. Experiments

In this section, we will present the experimental
results for clustering the categorical data with
uncertainty. Our primary aim is to measure the
effectiveness of the three methods in the presence of
data uncertainty.

We used data records from a car evaluation dataset
from the UCI machine-learning repository. The dataset
contains six categorical attributes of cars: buying
prices, maintenance price, doors, persons, luggage-boot
and safety. Each attribute has a number of possible
values. For example, the levels for buying price and
maintenance price are ‘very high’, ‘high’, ‘median’ or
‘low’. The possible values for safety are ‘low’,
‘median’ or ‘high’. The true class label for each data
object is one of the four: ‘unacceptable’, ‘acceptable’,
‘good’, and ‘very-good’.

Due to lack of real uncertain data sets, we artificially
introduce uncertainty into the dataset. For each
experiment, we hide the value of an attribute for one

third of the data records. For example, the exact value
of the safety attribute is deliberately removed for part
of the dataset. Therefore, the safety attribute is
recorded with a probability distribution for some data
instances. The probability distribution can be computed
based on other attributes. Then the safety for a car
instance may be ‘low’ with probability 0.8, ‘median’
with probability 0.1, and ‘high’ with probability 0.1.
 We compare three clustering approaches discussed in
section 5:

(1) The naïve approach
(2) The extended COBWEB
(3) The TU based COBWEB

 We use the Rand Measure or Rand Index
[WMRand71] to measure the quality of clustering. We
compare the RIs between the sets of clusters created by
the three approaches using data with uncertainty and
the sets of clusters created by the original accurate
data, that is, the data without uncertainty introduced.
Ideally, the clustering results should be similar. A
higher RI value indicates a higher degree of similarity
between two sets of clusters. The Rand Index has a
value between 0 and 1: 0 indicates that the two data
clusters do not agree on any pair of points; 1 indicates
that the data clusters are exactly the same.

Table 2. Experiment Results
 BuyPrice MaintPrice Safety

Naïve 0.628 0.623 0.612
Extended COBWEB 0.731 0.733 0.709
TU Based COBWEB 0.756 0.751 0.738

 Table 2 shows the experiment results. The second
column shows the RI index between our approaches
using data with uncertainty in the buying price and the
clustering results when the buying price is certain.
When maintenance price is uncertain, the result is in
the third column and the fourth column is the result
when safety is uncertain. The extended COBWEB
algorithm consistently showed a higher RI than the
naïve approach. Furthermore, when the probability
utility is taken as a measure for clustering, the
performance is further improved. The results
demonstrated that the extended COBWEB algorithm
and TU based COBWEB can give a better prediction
of the clusters that would be produced if the data
uncertainty information is available and utilized.

7. Conclusions and Future Work

 In this paper we present the extended COBWEB
algorithm, which aims at improving the accuracy of
clustering by considering the uncertainty associated
with data. Although in this paper we only present the

335335335335

COBWEB clustering algorithms for uncertain
categorical data, the model can be easily generalized to
uncertain numerical data using the algorithm proposed
in [GLF89]. As future work, we would like to examine
our approaches on more data sets, especially real
uncertain data sets. We will also extend our model to
other clustering approaches and other data mining
techniques including outlier detection, classification
and association mining.

8. Acknowledgement

 We would like to thank reviewers for their valuable
comments.

9. References

[GLF89] J. H. Gennari,P. Langley, D. Fisher, Models of
incremental concept formation, Artificial Intelligence, vol.
40, pp. 11 – 61, 1989.

[DHFisher87] D. H. Fisher, Knowledge Acquisition via
Incremental Conceptual Clustering, Machine Learning, vol 2,
pp. 139-172, 1987.

[CCKN06] M. Chau, Reynold Cheng, B. Kao and J. Ng.
Data with uncertainty Mining: An Example in Clustering
Location Data. In the Methodologies for Knowledge
Discovery and Data Mining, Pacific-Asia Conference
(PAKDD 2006), Singapore, 2006.

[NKCCCY06] J. Ngai, B. Kao, C. Chui, R. Cheng, M. Chau
and K. Yip. Efficient Clustering of data with uncertainty. In
IEEE Intl. Conf. on Data Mining (ICDM), 2006.

[CCAggarwal07] C. C. Aggarwal. On Density Based
Transforms for Data with uncertainty Mining. In IEEE Intl.
Conf. on Data Engineering (ICDE), 2007.

[SMPSH07] S. Singh, C. Mayfield, S. Prabhakar, R. Shah, S.
Hambrusch, Indexing Categorical data with uncertainty In
IEEE Intl. Conf. on Data Engineering (ICDE), 2007.

[WMRand71] W. M. Rand, Objective criteria for the
evaluation of clustering methods. Journal of the American
Statistical Association, 66, pp846–850, 1971.

[KPKDD05] H.-P. Kriegel and M. Pfeifle. Density-based
clustering of data with uncertainty. In Proc. of ACM
SIGKDD Conference, 2005.

[KPICDM05] H.-P. Kriegel and M. Pfeifle. Hierarchical
density-based clustering of data with uncertainty. In Proc. of
IEEE ICDM Conference, 2005.

[Ruspin69] E. H. Ruspini. A new approach to clustering.
Information Control, 15(1):22–32, 1969.

[Dunn73] J. C. Dunn. A fuzzy relative of the ISODATA
process and its use in detecting compact well-separated
clusters. Journal of Cybernetics, 3:32–57, 1973.

[SSJ97] M. Sato, Y. Sato, and L. Jain. Fuzzy Clustering
Models and Applications. Physica-Verlag, Heidelberg, 1997.

336336336336

