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Abstract 
Many real datasets have uncertain categorical 
attribute values that are only approximately measured 
or imputed. Uncertainty in categorical data is 
commonplace in many applications, including 
biological annotation, medial diagnosis and automatic 
error detection. In such domains, the exact value of an 
attribute is often unknown, but may be estimated from 
a number of reasonable alternatives. Current 
conceptual clustering algorithms do not provide a 
convenient means for handling this type of uncertainty. 
In this paper we extend traditional conceptual 
clustering algorithm to explicitly handle uncertainty in 
data values. In this paper we propose new total utility 
(TU) index for measuring the quality of the clustering. 
And we develop improved algorithms for efficiently 
clustering uncertain categorical data, based on the 
COBWEB conceptual clustering algorithm. 
Experimental results using real datasets demonstrate 
how these algorithms and new TU measure can 
effectively improve the performance of clustering 
through the use of internal probabilistic information. 

 
1. Introduction 

In many applications, data contains inherent 
uncertainty. A number of factors will contribute to the 
uncertainty, such as the random nature of the physical 
data generation and collection process, measurement 
and decision errors, and data staling.  

One example is   protein database. Along with other 
information about various proteins, it is important to 
understand whether the protein is ordered or not – the 
existence of secondary structure. This type of 
information is typically obtained by literature mining – 
examining the experiments, or the features of similar or 
closely related protein datasets. However the literature 
mining results will introduce uncertainty to whether a 
protein may be marked as either ordered or not. Notice 
this is a categorical attribute with two levels.  

In the mean time, data uncertainty often arises in 
automatic data integration. For example deep web data 
in the form of dynamic HTML pages can be used to 
generate related datasets. This is a challenging 
problem. Often the mapping from information in a web 
page to a set of attributes is unclear. It may be known 
that a page contains prices for several items and a set 
of numeric values. It is difficult for a program to 
determine which numerical value is the price for a 
given item with accuracy. Instead, existing algorithms 
will generate multiple candidates for the value of an 
attribute, each with a likelihood or probability of being 
the correct one. Similar issues arise in the domain of 
integrating unstructured text information with 
structured databases, such as automatic annotation of 
customer relationship management (CRM) databases, 
and email search databases [SMPSH07].  

Uncertainty is prevalent in many application 
domains. Although much research effort has been 
directed towards the management of data with 
uncertainty in databases, few have addressed the issue 
of mining data with uncertainty. It is well known fact 
that data mining results will respond to the subtle 
errors or uncertainty in the data. The problem of 
inaccurate data has continuously been a challenge for 
many data mining applications. 

We suggest incorporating information of 
uncertainties, such as the probability distribution of 
attributes, into existing data mining methods. In this 
paper we will study how such information can be 
incorporated in data mining by using clustering as a 
motivating example. In particular, we will study one of 
the most popular conceptual clustering algorithms – 
COBWEB. 

This paper will focus on the problem of clustering 
categorical data with uncertainty, where candidate 
values for a certain attribute will be assigned 
probabilities. We propose new solutions as well as a 
new measure, Probability Utility (PU), for evaluating 
the quality of clustering. The new techniques are 
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shown to provide efficient clustering results through 
experimental validation with real life data.  

This paper is organized as follows. In the next 
section, we will discuss related work on data clustering 
and mining data with uncertainty.  Section 3 discusses 
the conventional COBWEB conceptual clustering 
techniques. Section 4 will show the model for 
categorical data with uncertainty. In section 5, we will 
discuss how to extend the conventional COBWEB 
algorithm for clustering data with uncertainty. We will 
show the experimental results in section 6. Section 7 
summarizes the paper. 

 
2. Related Work 
    Clustering is one of the most studied areas in data 
mining research. Many clustering algorithms have been 
proposed in the literature, such as hierarchical 
clustering, partitioning clustering, density-based 
clustering, grid-based clustering, and conceptual 
clustering. Hierarchical clustering algorithms are either 
agglomerative ("bottom-up") or divisive ("top-down"). 
They find successive clusters using previously 
established ones. Whereas partitioning algorithms, 
such as K-Means and K-Medoids, determine all 
clusters at once.  Density-based clustering, such as 
DBSCAN and OPTICS, typically regards clusters as 
dense regions of objects in the data space that are 
separated by regions with low data density. Grid-based 
methods, such as STING, quantize the space into finite 
number of cells to form a grid structure, on which all 
of the operations for clustering are performed. 
Conceptual clustering produces a classification scheme 
over the objects, and it goes one step further than other 
clustering algorithms by finding characteristic 
descriptions of each group. Hence each group 
represents a concept or a class.  
    In spite of the numerous clustering algorithms, how 
to handle missing data and data with uncertainty has 
remained a great challenge. One related research area 
is fuzzy clustering, which has been carefully studied in 
fuzzy logic [Ruspin69]. In fuzzy clustering, a cluster is 
represented as a fuzzy subset of objects. Each object 
has a “degree of belongingness” for each cluster. In 
other words, an object can belong to more than one 
cluster, each cluster with a different degree. The fuzzy 
c-means algorithm is one of the most widely used 
fuzzy clustering methods [Dunn73]. Different fuzzy 
clustering methods have been applied to regular or 
fuzzy data [SSJ97]. While their work focused on 
creating fuzzy clusters (i.e., each object can belong to 
more than one cluster with different degrees), our work 
aim at hard clustering, based on an uncertainty model 
of objects. The result is that each object can only 
belong to one cluster. 

    Recently there have been studies on partition-based 
and density-based clustering of data with uncertainty. 
The UK-means algorithm, [CCKN06] and 
[NKCCCY06], is based on the K-Means clustering 
algorithm. The expected distance between objects is 
computed using a probability distribution function.  
The FDBSCAN and FOPTICS algorithms, [KPKDD05] 
and [KPICDM05], are based on DBSCAN and OPTICS 
respectively. Instead of identifying regions with high 
data density, these algorithms identify regions with 
high expected density, based on the probability models 
of the objects. Our work differs from the previous ones 
in that we focus on conceptual clustering methods and 
our algorithms are able to handle uncertainty in 
categorical attributes.  
 
3. COBWEB Conceptual Clustering      
    Conceptual clustering is a machine-learning 
paradigm for clustering. It is different than other 
clustering algorithms in that it generates a concept 
descriptor for each cluster. COBWEB [DHFisher87] is 
one of the mostly commonly used algorithms for 
conceptual clustering. In this paper, we extend the 
COBWEB algorithm for clustering data with 
uncertainty.  

Whereas some iterative distance-based clustering 
algorithms, such as K-Means, go over the whole 
dataset until convergence occurs, COBWEB works 
incrementally, updating the clusters object by object. 
The clusters COBWEB creates are formed into a tree. 
The leaves of the tree represent every individual 
concept; the root node represents the whole dataset; 
and the branches represent the hierarchical clusters 
within the dataset. The total number of clusters can be 
up to by the size of the dataset.  

The COBWEB data structure is a tree wherein each 
node represents a certain concept. Each concept is 
associated with a set, a multi-set, or a bag of objects. 
Each object is assigned binary-valued indicators on a 
property list. The data associated with each concept are 
the integer counts for the objects belonging to that 
concept. 

Please refer to Figure 1 as an example. Let a concept 
C1 contain the following three objects (repeated objects 
being permitted). 

1. [1 0 1] 
2. [0 1 1] 
3. [1 1 1] 

The three properties are: [is_male, has_wings, 
is_nocturnal]. Then what is stored at this concept node 
is the property count [2 2 3], indicating that 2 of the 
objects in the concept is male, 2 of the objects have 
wings, and 3 of the objects are nocturnal. The concept 
descriptor is the concept-conditional probabilities of 
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the properties at the node. Thus, given that an object is 
a member of a concept C1, the probability that it is 
male is 2 / 3. Likewise, the probability that the object 
has wings is 2/3 and probability that the object is 
nocturnal is 3 / 3. The concept descriptor can therefore 
simply be given as [2/3, 2/3, 3/3], which corresponds 
to the C1-conditional feature probability, i.e., p(x | C1) 
= (2/3, 2/3, 3/3). 

 

 
Figure 1: Classification Tree 

     
Figure 1 shows a tree with five concepts. C0 is the 

root concept, which contains all ten objects in the data 
set. Concepts C1, C2 and C3 are the children of C0. C1 
contains three objects, C2 contains two objects, and C3 
contains five objects. Concept C3 is also the parent of 
concepts C4 and C5, which contain three and two 
objects respectively. Note that each parent node 
(relative super-ordinate concept) contains all the 
objects of its children nodes (relative sub-ordinate 
concepts). For each leave node, the first box 
underneath it lists the actual objects, and the second 
box lists the attribute counts. For each internal node, 
the box on its right lists the attribute counts for all its 
children nodes. In Fisher's (1987) description of 
COBWEB, he mentioned that only the total attribute 
counts, without the conditional probabilities or the 
actual object lists, should be stored at the nodes. Any 
probabilities can be computed from the attribute counts 
when needed. 

COBWEB starts with a tree consisting of just the 
root node. From there, instances are added one by one, 
with the tree being updated accordingly at each stage. 
When an instance is added, there are four possible 
actions. One will choose the action with the biggest 
category utility. The Category Utility (CU) is defined 
by the following function:   

n

])VP(A)C|VP(A)[P(C 2
i j iji

2
ki j ijik

n
1k∑ ∑∑∑∑ =−==  

Vij is a potential value of attribute Ai. q is the number 
of nodes, concepts or categories forming a partition 
{C1, C2, …, Cq} at a given level of the tree.  Category 
Utility is the increased amount of the expected number 
of attribute values that can be correctly estimated from 
a partition. This expected number 
is 2

ki j ijik )C|VP(A)[P(C ∑∑ = . And the 

expected number of correct estimates without such 
knowledge is the term 2

i j iji )VP(A∑∑ = . Category 

Utility rewards intra-class similarity and inter-class 
dissimilarity where:  

• Intra-class similarity is the probability P(Ai = 
Vij |Ck). The larger this value is, the greater 
the proportion of class members that share 
this attribute-value pair will be.  Hence the 
class members are more predictable.   

• Inter-class dissimilarity is the probability P(Ck 
|Ai = Vij). The larger this value is, the fewer 
the objects in contrasting classes will share 
this attribute-value pair. It is more likely that 
the pair belongs to a certain class.  
 

4. A Model for Categorical Data with 
Uncertainty  

In this section, we will introduce a general model for 
categorical data with uncertainty. Then in the next 
section, we will discuss how to cluster data with 
uncertainty based on this model.  

Under the uncertainty model, a dataset can have 
attributes that are allowed to take uncertain values. The 
focus of this paper is on attributes with uncertain 
values that come from categorical domains. Such an 
attribute is called an uncertain categorical attribute 
(UCA), denoted by u. 

u is an attribute in relation R which is uncertain. u 
takes values from the categorical domain D with 
cardinality |D| = N. Within a regular relation with the 
correct value, the value of an attribute a is a single 
value dk in D, Pr(a = dk)=1. In the case of an uncertain 
relation, we record the information by a probability 
distribution over D instead of a single value. Let D = 
{d1, d2, ..., dN}, then we write Ta as the probability 
distribution Pr(u = di) for all values of i in {1, …, N}. 
Thus, Ta can be represented by a probability vector Ta 
= (p1, p2, ..., pN) such that∑ =

N
i 1 pi = 1. In many cases, 

the probability vector is sparse and most of the value 
are zeros. In such cases, we may write Ta as a set of 
potential value and its corresponding probability pairs, 
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Ta={(d,p): Pr(Ta=d)=p and p ≠ 0}. Hereafter we write 
a UCA by u instead of Ta unless noted otherwise. Also, 
we write Pr(u = di) simply as pi.  

 
Table 1: Example of Data with uncertainty 

Age Gender … Tumor 
10-20 F  (Benign, 0.8), 

(Malignant, 0.2) 
60-70 M  (Benign, 0.9), 

(Malignant, 0.1) 
70-80 M  (Benign, 0.3), 

(Malignant, 0.7) 
40-50 M  (Benign, 0.2), 

(Malignant, 0.8) 
 

Table 1 shows an example. It is for a medical 
diagnosis application with an UCA attribute. The table 
stores information for patients with tumor. The type of 
tumor is an UCA attribute, whose value cannot be 
determined exactly. It may be either benign or 
malignant, each associated with a probability.   

Previously, [SMPSH07] defined UCA as follows: 
Definition 1 Given a categorical domain D ={d1, .., dN}, 
an uncertain discrete attribute (UCA) u is characterized 
by probability distribution over D. It can be represented 
by the probability vector P = (p1, ..., pN)  such that Pr(u = 
di) = pi. 
   Assuming n is the totally number of attributes and m 
is the maximal number of candidate values for the 
attributes, under the definition of UCA, we can record 
a general dataset with uncertainty using a n*m matrix 
as follows: 



















nmn3n2n1

2m232221

1m131211

p … ,p ,p ,p
…

p , … ,p ,p ,p
p ,… ,p ,p ,p

 

pij is the probability of Ai equal to the value Vij.  If an 
attribute Ai has only k candidate values, k<m, then for 
all k<l<m, pil = 0. 
  Dataset without uncertainty can be treated as a special 
case of data with uncertainty. When using a matrix to 
represent a data record without uncertainty, there is 
only one element per row to be non-zero. The value of 
the non-zero element is one, which means that the 
value for each attribute is certain – the probability that 
the attribute equals to such a value is 100%.  
 
5.  Conceptual Clustering with Uncertainty  
    In this section, we will discuss how to extend the 
COBWEB algorithm for conceptual clustering 
categorical data with uncertainty. We propose three 
solutions, a naïve solution, an extended COBWEB 
solution and a Total Utility (TU) based solution. We 
will explain the three solutions in detail next. 

 
5.1. Naïve Solution 
    For categorical data with uncertainty, a naïve 
solution is to pick one of the most likely candidate 
values for each attribute represented by probability 
distribution.  For example, with the data shown in table 
1, the tumor attribute is an uncertain one, with possible 
values to be either malignant or benign with certain 
probability. The naïve solution will set the attribute to 
be the type of tumor with higher probability for each 
data record.  That is, for record 1 and 2, the tumor will 
be benign and for record 3 and 4, the tumor is 
malignant. Therefore the uncertainty within a dataset 
disappears, and the traditional COBWEB algorithm 
can be applied on the dataset without modification. 
   While this naïve approach is simple to implement, it 
will result in significant loss of information and lower 
quality of data clustering. Hence we need alternative 
approaches that can process the uncertainty of the 
attribute values directly.  
 
5.2. Extended COBWEB  
For traditional COBWEB, the category utility is 
computed as: 

n

])VP(A)C|VP(A)[P(C 2
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2
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Specifically, the intra-class similarity is defined as P(Ai 
= Vij |Ck) and inter-class dissimilarity is defined as 
P(Ck |Ai = Vij).   
    When we have the exact value of every attribute in a 
dataset, the intra-class similarity P(Ai = Vij |Ck) is 
calculated as: |C|/ |} V = A & C O :{O| kijik∈ , which is 
the cardinality of objects equal to value Vij for attribute 
Ai in Ck divided by the overall cardinally of  Ck. As 
shown in Figure 2 (a), the number of objects in C1 is 3, 
thus the cardinally of C1 is 3. Out of these three 
objects, two of them has the first attribute A0 equal to 
one, therefore, P(A0 = 1 |Ck) = 2/3.  
    When data contains uncertain attributes, the way of 
calculating the intra-class similarity P(Ai = Vij |Ck) 
needs to be changed to: |C|)/ Vij  Ai:O( k=Σ rP  for all 
object O in Ck. Figure 2 (b) shows an example. Here 
the cardinality of C2 is also 3. Assume each of them 
have only one attribute, which could be either 0 or 1.  
The first object is 1 with probability 0.9 and is 0 with 
probability 0.1, object 2 is 1 with probability 0.2 and 0 
with probability 0.8, and object 3 is 1 with probability 
0.7 and 0 with probability 0.3. Therefore, for all three 
objects, the sum of the probability of being 1 should be 
0.9+0.2+0.7=1.8. The probability for class C2 of being 
1 is 1.8/3 = 60%.  This is different from the naïve 
approach in section 5.1. If we use the naïve approach, 
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which pick one of the most likely candidate values for 
each uncertain attribute, then the three object in C2 will 
be 1, 0, 1 and the probability for class C2 of being 1 is 
2/3. 
 

 
Figure 2:  Data with uncertainty 

 
5.2. Total Utility based COBWEB  
 
5.2.1 Probability Utility 
    When data contains uncertain attributes, we should 
take uncertainty into consideration when measuring the 
quality of a cluster/concept. In other words, ideally 
data within one cluster should not only have a high 
similarity measure based on all attributes, but also have 
similar probability distributions for the uncertain 
attributes. We will explain the reason with an example 
shown in Figure 3.  
 

 
Figure 3:  Data with uncertainty 

 
Figure 3 shows two clusters, C1 and C2.  Both C1 and 

C2 contain five records. For simplicity, assume each 
record has only one attribute, which describes the type 
of a tumor, and this attribute has two possible values, 0 
or 1: 0 for benign and 1 for malignant.  The five 
records in C1 all has value 1 with probability 0.6, while 
for the five records in C2, three of them have value 1 
with probability 1 and the rest two of them has value 0 
with probability 1. When using the category utility 
measure of the traditional COBWEB, both nodes has 
the same feature – the probability of being 1 is 0.6 on 
average. However, C1 should be considered as a better 
cluster than C2, since the data records within C1 has 
higher intra-class similarity – not only all of them tend 

to have value 1, but also all with 60% probability.  A 
researcher tends to find a cluster with five tumors, all 
of which may be malignant with the same 60% 
probability to be more interesting than a cluster with 
three malignant tumors and two benign ones.  

Based on the above observation, we propose another 
heuristic measure, Probability Utility (PU), to guide 
the search and clustering. The Probability Utility is 
defined as:  

n

])[P(C
i j

2
)VP(Ai j

2
)C|P(Ak

n
1k 2

iji
2

kiji
∑ ∑∑∑∑ === −− σσ V     

Probability Utility can be viewed as a function that 
rewards the similarity of the probability distributions 
of objects within the same class and dissimilarity of the 
probability distributions of objects between different 
classes. In particular, probability utility is a tradeoff 
between intra-class probability similarity and inter-
class probability dissimilarity of objects. Intra-class 
similarity is reflected by the term: “– (σP(Ai = Vij|Ck))2”. 
This is a non-positive value: negative one times a 
variance. A large value of this term means a small 
variance (σP(Ai = Vij|Ck))2. Hence a big proportion of the 
class members will share identical or similar 
probability distributions. Inter-class similarity is 
represented by the term (σP(Ai = Vij))2, the variation of 
unconditional probabilities. When this term is large, 
there will be fewer objects in contrasting classes that 
share the same or similar probabilities. Therefore each 
cluster will be more predictive. 
    Please note that Probability Utility works best when 
uncertainty naturally arises instead of by errors such as 
measurement imprecision. The reason is that only 
when uncertainty is part of the nature of the data itself, 
it can work as a similarity measure. If it is caused by 
external factors such as measurement imprecision, then 
the similarity derived from the uncertainty distributions 
probably indicates the similarity of measuring 
techniques or surrounding environments. It will have 
nothing to do with the data itself. 
    We further define the Total Utility (TU) index for 
guiding the clustering. Total Utility is a balance 
between the Category Utility and the Probability 
Utility: TU = αCU + (1- α) PU, where 0<=α<=1. When 
α=1, this is the same as regular COBWEB. As α 
becomes smaller, higher weight is given to the 
similarity of probability distributions within the same 
cluster.   
 
5.2.2 TU based COBWEB Algorithm  

Since Probability Utility can be used to guide the 
clustering process, each node should store not only the 
probabilities P(Ai = Vij |Ck), but also the variance of 
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the probabilities σ2
P(Ai = Vij|Ck).  This is for computing 

the Total Utility of each node.  
Same as traditional COBWEB algorithm, at each 

node, four possible operations – insert, create, merge 
and split – will be considered and the one that yields 
the highest Total Utility value will be selected.  
    Given a new object, TU based COBWEB descends 
the tree along an appropriate path, updating counts 
along the way, in search of the best node to place the 
object. The decision is based on temporarily adding the 
object in one node and computing the Total Utility of 
the resulting partition. The placement that results in the 
highest Total Utility should be a good candidate host 
for the object. COBWEB also computes the Total 
Utility of a new node that is created entirely for the 
object. Then we will compare the Total Utilities from 
inserting the object in existing nodes and the Total 
Utility of the new node. The object is then placed 
according to the higher value of the two options.  
    The results of two operations – insert and create – 
are highly sensitive to the input order, same as the 
conventional COBWEB. We then use two additional 
operators that help to make it less sensitive to the input 
order, by merging and splitting the nodes. When an 
object is processed, the two best hosts are considered 
for merging into a single node. Furthermore, we 
consider splitting the children nodes of the best host 
among all other existing nodes. These decisions are all 
based on Total Utility. The ‘merge’ and ‘split’ 
operators will allow COBWEB to perform a 
bidirectional search. For example, a merge can reverse 
a previous split.  
     All of the four operations – split, merge, create and 
insert – must take uncertainty gain or loss into account. 
A large increase in uncertainty in a node should be 
treated as a penalty and we must avoid it. This is 
automatically being taken care of by using the Total 
Utility measure and by adjusting the value of α in TU. 
The algorithm for TU based COBWEB is described as 
follows:  
 
Cobweb(N: Node, I:Instance) 
If N is a terminal node, 
Then Create-new-terminals(N, I) 
       UpdateNodeProbability(N,I). 
Else. 
    UpdateNodeProbability(N,I). 
    For each child C of node N, 
    Compute the utility for placing I in C. 
    N1 := the node with the highest utility U1. 
    N2 := the node with the second highest U2. 
    UNew := the utility for creating a new node for I 
    UMerge := the utility for merging N1 and N2 

USplit := the utility for splitting N1  
    UMax :=  Max(U1, UNew, UMerge, USplit), 
   If U1 == UMax  //insert 

   Then Cobweb(N1, I) (place I in category N1). 
    Else if UNew == UMax,  //create 

                Then Nnew = new Node(I)  
                  Else if UMerge == UMax  //merge 
           Then  NMerge :=  Merge(N1, N2, N). 
                    Cobweb(NMerge, I). 
                        Else if NSplit == UMax  //split 
                                Then Split(N1, N). 
                            Cobweb(N, I). 
 
UpdateNodeProabability(N: Node, I:Instance)   
    Update the probability and the variance of probability of 
category N. 
    For each attribute A in instance I, 
         For each value V of A, 
 Update the probability of V and the variance of 
probability given category N. 
 
Merge(N1, N2, N) 
  Make O a new child of N. 
  Compute O’s probabilities 
  Compute O’s variance  
  Remove N1 and N2 as children of node N. 
  Add N1 and N2 as children of node O. 
  Return O. 
 
Split(P, N) 
  Remove the child P of node N. 
  Promote the children of P to be children of N. 
 
The algorithm is similar to conventional COBWEB. 
The major difference is in the merge operation. When 
merging node N1 and N2 into a new node O, the 
probabilities and the variance of the probabilities of the 
new node O should be computed as follows: 

• The probabilities of the new node O are the 
weighted average of the probabilities of C1 
and C2. As shown in Figure 4, if P(A0=1|C1) = 
1.6/2=0.8, and P(A0=1|C2) = 1.2/2 = 0.6, by 
merging N1 and N2 into O, P(A0=1|O) should 
be (0.8*2+0.6*2)/(2+2)  = 2.8/4 = 0.7.  

• The variances of probabilities of the new node 
O can be computed based on the variance 
decomposition property or the law of total 
variance. According to this property, suppose 
the data is partitioned into subgroups. Then 
the variance of the whole group is equal to the 
mean of the variances of the subgroups plus 
the variance of the means of the subgroups. 
As shown in Figure 4, suppose that a group 
consists of a subgroup of C1 and an equally 
large subgroup of C2. Suppose that C1 has a 
probability for P(A0=1|N1) = 0.8 and the 
variance of the probabilities is 0.04, C2 has a 
probability for P(A0=1|N2) = 0.6 and the 
variance of the probabilities is 0.01, then the 
mean of the variances is (0.04 + 0.01) / 2 = 
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0.025; the variance of the means is the 
variance of 0.6, 0.8 which is 0.01. Therefore, 
for the merged node C3, the variance of 
P(A0=1|C3) will be 0.025 + 0.01 = 0.035. In a 
more general case, if the subgroups have 
unequal sizes, then they must be weighted 
proportionally to their size in the 
computations of the means and variances. 

 
  

Figure 4: An example of node merge 
 
6. Experiments 
 

In this section, we will present the experimental 
results for clustering the categorical data with 
uncertainty. Our primary aim is to measure the 
effectiveness of the three methods in the presence of 
data uncertainty.  

We used data records from a car evaluation dataset 
from the UCI machine-learning repository. The dataset 
contains six categorical attributes of cars: buying 
prices, maintenance price, doors, persons, luggage-boot 
and safety. Each attribute has a number of possible 
values. For example, the levels for buying price and 
maintenance price are ‘very high’, ‘high’, ‘median’ or 
‘low’. The possible values for safety are ‘low’, 
‘median’ or ‘high’. The true class label for each data 
object is one of the four: ‘unacceptable’, ‘acceptable’, 
‘good’, and ‘very-good’.  

Due to lack of real uncertain data sets, we artificially 
introduce uncertainty into the dataset. For each 
experiment, we hide the value of an attribute for one 

third of the data records. For example, the exact value 
of the safety attribute is deliberately removed for part 
of the dataset. Therefore, the safety attribute is 
recorded with a probability distribution for some data 
instances. The probability distribution can be computed 
based on other attributes.  Then the safety for a car 
instance may be ‘low’ with probability 0.8, ‘median’ 
with probability 0.1, and ‘high’ with probability 0.1.   
   We compare three clustering approaches discussed in 
section 5:  

(1) The naïve approach  
(2) The extended COBWEB  
(3) The TU based COBWEB  

    We use the Rand Measure or Rand Index 
[WMRand71] to measure the quality of clustering. We 
compare the RIs between the sets of clusters created by 
the three approaches using data with uncertainty and 
the sets of clusters created by the original accurate 
data, that is, the data without uncertainty introduced. 
Ideally, the clustering results should be similar. A 
higher RI value indicates a higher degree of similarity 
between two sets of clusters. The Rand Index has a 
value between 0 and 1: 0 indicates that the two data 
clusters do not agree on any pair of points; 1 indicates 
that the data clusters are exactly the same.  

Table 2. Experiment Results 
 BuyPrice MaintPrice Safety 

Naïve 0.628 0.623 0.612 
Extended COBWEB 0.731 0.733 0.709 
TU Based COBWEB 0.756 0.751 0.738 

 
    Table 2 shows the experiment results. The second 
column shows the RI index between our approaches 
using data with uncertainty in the buying price and the 
clustering results when the buying price is certain. 
When maintenance price is uncertain, the result is in 
the third column and the fourth column is the result 
when safety is uncertain. The extended COBWEB 
algorithm consistently showed a higher RI than the 
naïve approach. Furthermore, when the probability 
utility is taken as a measure for clustering, the 
performance is further improved.  The results 
demonstrated that the extended COBWEB algorithm 
and TU based COBWEB can give a better prediction 
of the clusters that would be produced if the data 
uncertainty information is available and utilized. 
 
7. Conclusions and Future Work 
 
    In this paper we present the extended COBWEB 
algorithm, which aims at improving the accuracy of 
clustering by considering the uncertainty associated 
with data. Although in this paper we only present the 
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COBWEB clustering algorithms for uncertain 
categorical data, the model can be easily generalized to 
uncertain numerical data using the algorithm proposed 
in [GLF89]. As future work, we would like to examine 
our approaches on more data sets, especially real 
uncertain data sets. We will also extend our model to 
other clustering approaches and other data mining 
techniques including outlier detection, classification 
and association mining. 
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