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Big data and Cyber Security

oOoluL

HOME EVENTS TOP 100 RESEARCH CEO SERIES

Big Data Cloud Storage Google Cloud Providers SaaS Cloud Security White Paper

Gartner Report: Big Data will
Revolutionize Cyber Security in the
Next Two Years

by Saroj Kar on February 12, 2014 - 2 Comments

Organizations are more than 19
ever exposed to a large
number and variety of threats and risks to

G a rt n er cyber security. Big Data will be one of the
- main elements of change in the enterprises by

supplying intelligence-driven models.

G+1

Research firm Gartner said that big data analytics
will play a crucial role in detecting crime and security infractions. By 2016, more
than 25 percent of global firms will adopt big data analytics for at least one
security and fraud detection use case, up from current eight percent.

PURDUE
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Already many start-ups in the field.

= CS0

FROM IDG

Home Data Protection Big Data

CYBERSECURITY BUSINESS REPORT
b ¢/ By Steve Morgan @ Follow
-

| OPINION

Cybersecurity is the killer app far big data
analytics

Big data analytics tools will be the first line of defense to provide holistic and integrated
security threat prediction, detection, and deterrence and prevention programs.

PURDUE
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More data is available for cyber security

 Malware samples
e System Logs
* Firewall Logs
e Sensor data
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Cyber Security is Different

 Many adversarial learning problems in
practice
— Intrusion Detection
— Fraud Detection
— Spam Detection
— Malware Detection

o Adversary adapts to avoid being detected.

e New solutions are needed to address this
problem
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The Problem

 Violation of standard i.i.d. assumption
e Adversary modifies data to defeat learning algorithms
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Example: Spam Filtering

« Millions way to write Viagra

From: "Ezra Martens" <ezrabngktbbem.. .

To: "Eleftheria Marconil" <cliftonapu...
Subject: ashunlesg Phaxrrmaceutical

Date: Fri, 30 Sep 2005 04:49:10 -0500

Heallo,

Easy Faat =

Best Home Total

OrdefShipPrricDelivCont
ringpingeservidentiality
VIAAmMbCIALevVALXan

GRAlenLISitralUMax

S 58

3.33 1.21 2.75

Gaet =additional informmation attempted to

PURDUE
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Understanding Adversarial Learning

 |tis not concept drift

 |tis not online learning

« Adversary adapts to avoid being detected
— During training time (i.e., data poisoning)

— During test time (i.e., modifying features when
data mining is deployed)

 There Is game between the data miner and
the adversary
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Solution Ideas

o Constantly adapt your classifier to changing
adversary behavior.

e Questions??
— How to model this game?
— Does this game ever end?
— Is there an equilibrium point in the game?
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 Summary of foundational results/models to
reason about learning in the presence of an
active adversary

— No proofs/ Summary of the models

 Modified techniques resistant to adversarial
behavior

« Some applications of data mining for cyber
security/practical attacks

e Summary/Suggestions
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Foundations
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Learning in the Presence of Malicious Errors [1]

e Training data contains malicious noise.

 The adversary has
— unbounded computational resource

— knowledge of target concept, target distributions,
Internal states of the learning algorithm

o With probability  (0< <1/2), the adversary
gets to generate malicious errors.

 The adversary’s goal is to foil the learning
algorithm.
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Optimal Malicious Error Rates

« Optimal malicious error rates for a class C:
— En(C):
 the largest value of Sthat can be tolerated by any
learning algorithm for C
« Upper bound
- Ey"(C):
* the largest rate of malicious error that can be

tolerated by a polynomial-time learning algorithm
for C

 Lower bound
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Upper Bound of Malicious Error Rate

Theorem 1 For a distinct concept class C,

€
1+ €

— To learn an e-good hypothesis (type 1 and type
error rates are less than ¢), a learning algorithm
can only handle £< ¢/(1+ ¢).

— The bound holds regardless of the time or sample
complexity of the learning algorithms for C.

— The bound holds even for algorithms with
unbounded computational resources.

EM(C) <
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Lower Bound of Malicious Error Rate for

Polynomial-time Learning Algorithms

Theorem 2 Let C be a polynomial time learnable
concept class in the error-free model by algorithm
with sample complexity,&:,d) (learns as—
hypothesis with prob. at Busing s(&,J) samples )
and let s= s,(&8, ¥2). We can learn C in polynomial
time with an error rate of

B = Q(min(S, %))

— Als a [3-tolerant Occam algorithm for C if it is
consistent with at least 1-&2 of the samples
received from the faulty oracles.

PURDUE
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Summary of [1]

e Error tolerance against data poisoning need
not come at the expense of efficiency or
simplicity if you have large enough data and
attacker capabillities are bounded.

« Better tolerable error rates (upper bound) can
be achieved using both types (+/-) of
examples than positive-only or negative-only
learning.

e Strong ties exist between learning with errors
and data poisoning attacks.

PURDUE
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Adversarial Classification [2]

« Data is manipulated by an adversary to
Increase false negatives.
— Spam detection
— Intrusion detection
— Fraud detection

» Classification is considered as a game
between the classifier and the adversary.

— Both are cost-sensitive
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Cost and Utility for Classifier & Adversary

e Given a training set Sand a test set T,

— CLASSIFIER

* |learn from Sa classification function y. = C(x)
« V.: cost of measuring the it feature X

* U.(Ye Y): utility of classifying an instance as y with true
classy

— Ug(+, -) <0 Uc(-, +) <0 U(+,+) > 0, U(-,-) >0
— ADVERSARY
* modify a positiveinstance in T from x to X’ = A(X)
« Wi(x, X:): cost of changing the it feature from x; to X',

* Un(Ye ¥): ADVERSARY's utility when the classifier
classifies an instance as y. with true class y

* Up(-#) > 0,Up(+,+) <0and Up(-,-) =Uu(+,-) =0
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A Single-step Two Players’ Game

 For computational tractability, the adversarial
classification game only considers one move
oy each of the players.

|t also assumes that all parameters of both
nlayers are known to each other.

« Classifier is naive Bayes:

— an instance x is classified positive If the expected
utility of doing so exceeds that of classifying it as
negative

P(+|$) > UC(-a _) il UC(+1 _)
P(-lz) = Uc(+,+) —Uc(-,+)
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Adversary’s Strategy

« Adversary’s optimal strategy:

— Two assumptions:
e complete Information
« CLASSIFIER is unaware of its presence.
— Modify features such that
« The transformation cost is less than the expected utility.
 The new instances is classified as negative.

— Solve an integer LP
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Classifier’'s Strategy

e Classifier’'s optimal strategy:

— Three assumptions:
» Adversary uses optimal strategy.
e Training set is not tampered by Adversary.
» The transformation cost W,(x;, X)) IS a semi-metric.

— Make prediction y. that Maximizes conditional
utility:

U(yclz) = ) P(ylz)Uc(ye,y)
yey

with a post-adversary conditional probability

Pa(@'|[+) = 3 P(al+)Pa(c'|z,+)
TEX
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Classifier Evaluation and Attribute Selection

against Active Adversaries [3

 Consider cases where the classifier is modified after
observing adversaries action.
— Spam filter rules.

« Stackelberg Games
— Adversary chooses an action a,
— After observing a, , data miner chooses action a,
— Game ends with payoffs to each player

ul(al’aZ)’UZ(al’aZ)
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Adversarial Stackelberg Game Formulation

 Two class problem
— Good class, Bad class

e Mixture model
x = (Xg, Xp0 Xg0eer ) X, )

p, + p, =1

f(x)= p,f,(x)+ p,f,(x)

o Adversary applies a transformation T to modify
badclass (ile f, (x)- f,7 (x))
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Adversarial Stackelberg Game Formulation Cont.

After observing transformation, data miner chooses an updated
classifier h

We define the payoff function for the data miner
f(x)= p.f(x)+ p, ;] (x)

c(T.h) = [cyups f(x)+ cpp, 57 ()X + [ py (%) + €y p, £ (X)olx
0

Ly

u,(T,h)=-c(T,h)

C; Is the cost for classifying x to class i to given that it is in class |
Data miner tries to minimize c(T,h)
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Adversarial Stackelberg Game Formulation Cont.

« Transformation has a cost for the adversary
— Reduced effectiveness for spam e-mails

e Let g7 (x) bethe gain of an element after
transformation

e Adversary gains for the “bad” instances that are classified
as “good”

DRI RECO IR
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Adversarial Stackelberg Game Formulation Cont.

 Given the transformation T, we can find the best
response classifier( R(T)) h that minimizes the c(T,h)

h (X) = T, (012 - 022)p2 1:2T (X) < (021 - Cll)pl 1:1 (X)
! 1T, , otherwise

 For Adversarial Stackelberg game, subgame perfect
equilibrium is:

*

T" = arg max s (u, (T, R(T)))
(T ,R(T))
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Adversarial Stackelberg Game Formulation Cont.

9e(T) = us (T, R2(T))
= [, @ @)

1

= Ep(I (@) x g7 (@)

T™ = arg max(g.(T))
TeS

o |If the game is repeated finitely many times, after an
equilibrium is reached, each party does not have
ncentive change their actions.
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Summary [3]:

Attribute Selection for Adversarial Learning

 How to choose attributes for Adversarial Learning?
— Choose the most predictive attribute
— Choose the attribute that is hardest to change

 Example:

Attribute T, T, Penalty | Equilibrium Bayes Error
X N(1,1) N(3,1) a=1 |0.16
X, N(1,1) | N(3.5,1)| a=0.450.13
X N(1,1) N(4,1) a=0 |0.23

* INUU SU gOoOU 1gedasT!
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Stackelberg Games for Adversarial Prediction

Problems [4

* Unlike the previous research, Bruckner & Scheffer
consider Stackelberg games where the classifieris
the leader and the adversaryis the follower.

— Data miner chooses an action a,
— After observing a, , the adversary chooses action a,
— Game ends with payoffs to each player

u,(a,.a,)u,(a,.a,)
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Cost Definition

 Two-players game between learner (-1) and
adversary (+1).

* The costs of the two players are defined as
follows:

é—l(W, D) = Zc—1¢f—1(fw(5%),yg;)+p—1§2—1(W),

1=1

O11(w,D) = Zc+1,¢£+1(fw(:b,;),y¢) + p+1Q+41(D, D)

=1
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Stackelberg Games

1. Learner decides on w.

2. Adversary observes w and changes the data
distribution.

3. Adversary minimizes its loss given w by
searching for a sample D, that leads to the
global minimum of the loss

Dw:

{{(j;iyyi)}?zl : {&i}i=1 € argmin 64, (w,{(a':{,yi)}?zl)}

- — Y 4
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Stackelberg Equilibrium

e Assuming that the adversary will decide for any D €
D, the learner has to choose model parameters w*
that minimize the learner’s cost function 6_, for any of
the possible reactions D € D, that are optimal for the
adversary:

w" € argmin max 6_;(w, D)
weR™ DeDw

e An action w* that minimizes the learner’s costs and a
corresponding optimal action D € D,. of the
adversary are called a Stackelberg equilibrium.
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Find Stackelberg Equilibrium [4]

Finding Stackelberg Equilibrium

A

min Jinax 0_1(w, {(&i, ys) }iz1)

s.t. {a:z}?zl € argmin 9A+1(W,{(¢z‘,ayi)}?=1)

BY 5s = oty EX

Stackelberg equilibrium is applicable when
(1.) the adversary is rational,
(2.) the predictive model is known to
the adversary.
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TECHNIQUES
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Adversarial support vector machine learning [5]

e Support Vector
machines try to find the
hyperplane that has the
highest possible
separation margin.

FEARLESS engineering [UT|D]
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Adversarial Attack Models

* Free-range attack

— Adversary can move malicious data anywhere in
the domain

(:(x”"n X )< O <C (X7 =X.)
« Targeted attack

— Adversary can move malicious data closer to a
target point

xt—x.‘

‘x.. ‘+
i

0= (X -x,)d <C,(1-C,

t 2
i )(% X

j
t j
X.
j
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Adversarial SVM Risk Minimization Model

SVM risk minimization model: free-range attack

argmin Hw|]?+C Y, &

w,b,&i,ti,ui,vi

8.5 6,, > 0
§i>21l—yi-(w-z; +b)+t |
ti > 30, Cr (0i (277 — zi5) — wiz (27" — zij))
ui —v; = 3 (1 + yi)w
U; t 0
vi = 0
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Adversarial SVM Risk Minimization Model cont.

SVM risk minimization model: targeted attack

argmin SwlP+CY, &

’UJ,b,&q‘, ’ti yUq,Vq

8.15. &£ 20
Ei>21—yi-(w-zi+b)+ 1
ti 2 ) €ijUi
(—us +vi) o (2§ — 23) = 5(1 +ys)w
Vi t 0
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AD-SVM Example:

0.3 U T
+ positive 2 ot
02 " ne atlve f O 0.2 * attaCK
' g — negative
- 0.1F —
‘:.—:‘ ol .\'\.
o o, e, 0 3
= R R S .01 R
S .01 R & e & g
b ++ Y + M 02 o+ i
i + i *
-0.2 &
-03
-0.3
0 ; : : . b4 -0.2 0 0.2 0.4
04 -0.2 0 0.2 04 feature 1
feature 1

black dashed line is the standard SVM classification boundary, and
the blue line is the Adversarial SVM (ADV-SVM) classification boundary
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Summary of [5]

 AD-SVM solves a convex optimization
problem where the constraints are tied to
adversarial attack models

 AD-SVM is more resilient to modest attacks
than other SVM learning algorithms
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Learning to Classify with Missing and Corrupted

Features |7/

» Goal: devising classifiers which are robust to
classification phase noise

— Instances drawn I1.1.d. from some

X x {1}, X C R"

— Linear margin-based classifiers

— A clean, uncorrupted training data is available for
learning a classifier <w, >
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Problem Setting

Trained Classifier

A W, . W,

Test Dataset
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Problem Setting cont.

« Adversary’s power must be reasonably
bounded for learning to be possible.

e Suppose each feature | has a fixed feature

value v, > 0.
e Assumption: the adversary must leave intact
a subset Jin{l, ..., i} of features such that

V()= v>P
where P specifics 1uioc torcr aie.
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LP Formulation

« Worst-case “empirical risk” on training set:

—Z[ min yz‘(b‘i‘zjefijz',j) - 0]]

J:V([n\J)<N

e An SVM I|<e formulation:

mg‘)ré m_722 1‘51,
st. Vie[m|] VJ :V(n]\J)<N
>

yi(b+2jejwj$i,j) & 'YV;J) —il
Vie[m] & >0, [wlle <C .

Problem: exponential growth of the constraint set
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A Compact LP Formulation

« With a duality transform, a compact O(mn)
constraint set is obtained:

min m—,yzz 164 (:
st. Vi€ [m] P\ — Z;-L:l a;; +yib > —§&;
Vie[m]Vjen wmwizi;— B = Avj—ayy,
Vie[m|Vjen a;; >0,
Vie[m| X\;>0and & >0,
Wl < C

An online-to-batch algorithm is developed to learn the
average hypothesis.
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Adversarial Learning: Practice and Theory [8]

Problem : Content-based spam filtering

*Practice: good word attacks
— Passive attacks
— Active attacks

*Theory: ACRE learning
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Passive Attacks

« Common heuristics
— Random dictionary words
— Most frequent English words
— Highest ratio: English frequency/spam frequency
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Active Attacks

e Learn which words are best by querying the
spam filter.

e First-N: Find n good words using as few
gueries as possible

e Best-N: Find the best n words
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Adversarial Classifier Reverse Engineering

(ACRE)

ACRE k-learnable algo.: minimize a(x) subject to c(x) = -1 within
a factor of k, given:

—the adversarial cost function a(x)

—One positive and one negative example, x* and x-
—A polynomial number of membership queries
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ACRE k-learnability of Linear Classifiers

e Linear classifiers with continuoudeatures are
ACRE (1+¢)-learnable under linear cost
functions.

e Linear classifiers with booleanfeatures are
ACRE 2-learnable under uniform linear cost
functions
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Modeling Adversarial Learning as Nested

Stackelbero

« Existing adversarial learning approaches
— A two-player game
o Zero-sum, Nash, Stackelberg
— AD-SVM, AD-RVM, AD-HME
— handle a single adversary of one type
A more challenging problem:
— Multiple adversaries of various types
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Adversarial Learning:

Multiple Adversaries of Various Types

Training data Learning Model

LSingle Leader

Multiple Followers , ‘ Single Leader
Single Follower
Test Data

%Adversary\
random x* only x* and x
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Nested Stackelberg Game Framework

Leader: SLSF Follower:
Learning Adversary
Model corrupting data
Component Followers:
Strategies Adversaries of
various types

Leader:
learning model
playing a mixed
strategy
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Single Leader Single Follower Stackelberg  Game

o Learner commits its strategy that is
observable to the adversary
e Adversary plays its optimal strategy

— Maximize learner’s loss
— Minimize adversary’s loss

argminargmax L (w,X,0, )
% 3

X

st. o, OargminL, (w,x,9,)
S,

FEARLESS engineering [UT|D|




SLMF Bayesian Stackelberg Game

Problem Definition:

Given the payoff matrices Bnd R of the leader an
the m followers of n different types, find the leader’s
optimal mixed strategy

*All followers know the leader’s strategy when
optimizing their rewards.

*The leader’s pure strategies consist of a set of
generalized linear learning models (p(X),w).

*The followers’ pure strategies include a set of vectors
performing data transformation X — X + AX.

PURDUE
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SLMF Bayesian Stackelberg Game

 The leader makes its decision prior to the followers’
decisions.

 The leader does not know the exact type of the
adversary while solving its optimization problem.

« The followers play their optimal responses to
maximize the payoffs given the leader’s strategy.
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Mixed Strategy Classification

X:input
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APPLICATIONS
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Malicious PDF Detection using Metadata and

Structural Features

« PDF Basics L Header J
%°DF- 1. 1
— Tree structure
— Root note_: /Catalog Body
— Other valid elements are Sequence of
In the downward path of objects
/Catalog - /
Cross Reference Table
xr ef
{ Trailer J
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Malicious PDF Exploitation

 PDF Document Exploitation

— Malicious PDFs may contain the complete malware
payload or small size code for downloading other
malware components

— Suspicious elements
« Javascript
Embedded PDFs
Malformed objects
Malicious patterns
Encryption
Suspicious actions: /Actions, /OpenAction, /Names, et. al.
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Feature Extraction

« Static analysis on features based on
document structure and metadata.

— works well even on encrypted documents each
object/stream is encrypted individually in PDF,
leaving structure and metadata to be extracted the
same as normal documents.
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Dual Classifier

e Dual classifier

A
input

— One differentiates ) 4
benignfrom malicious. <ge/n,;;~.>

— The other classifier |
differentiates i 4
opportunisticfrom <(;pp,t;;>
targetedmalicious 1/
documents. P 2 2 2

. ben opp tar
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Data & Classifier Performance

« Contagio& Operationaldatasets
— Subsample of Contagiofor training
— Test classifier on Operational

Training | Testing/Operational
benign (ben) 5,000 99,703
opportunistic (opp) | 4,802 286
targeted (tar) 198 11
total 10,000 100,000

 10-fold cross-validation on training data

Classifier Error Rate Train Time Classify Time
Naive Bayes 27% 2 sec 95 sec
Random Forest 19% 92 sec 1 sec

Support Vector Machine 17% 218 sec 33 sec
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Classification & Detection Performance

ROC for Training Set (ben/mal) ROC for Training Set (opp/tar)

=
=] ] —
E & [_/_/ 3 o
g g
3 - g
- Q _|
g o~ f =
2 J o
g2 o -
7] @]
£ &5
g N 2
= . E=
N | O
(@)} ]
o | I I I I = T I T T
000 002 004 006 008 0.0 0.000 0.005 0.010 0.015 0.020
False Positive Rate (ben as mal) False Positive Rate (opp as tar)

FEARLESS engineering [UT|D]




Practical Evasion of a Learning -Based

Classifier: A Case Study [11

Attack on previous work!

sInvestigate a real learning-based system—
PDFRATE

— Random Forest classifier
* Not resilient to malicious noise
 Periodic retraining is not implemented in the system.

— The attacker modifies the submitted PDF file, with
Its malicious functionality intact, and decrease the
probabilistic score returned by PDFRATE.

 Insert dummy content into PDF files
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Modification of PDF Docs

Original PDF Modified PDF
Header Header
Body Body
Cross-reference Cross-reference
table table

Trailer je
C
Trailer

PDF readers jump from Trailer directly to the Cross-
reference tableskipping injected content completely.
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Attacks

 Mimicry Attack

— transform a malicious sample so that it mimics a
chosen benign sample as much as possible.

o Gradient Descent and Kernel Density
Estimation (GD- KDE) Attack

— require the knowledge of a specific learned model
and a set of benign samples

— only applicable to differentiable classifiers, such as
SVM, artificial neural network
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Results

 Baseline: results before attacks, all but 3 receives
100% PDF Score.

« Except for mimicry F, 75% of the attacks would be
classified as benign if a 50% threshold over
classification scores were used for decision making.

1.0 L i
09 s s e = ............................................................................................................................
0.8} s .
0.7 ! =
5 : La
o e e e T S e i R (e e e Y S e e it el B e ! e (b e e Tare b e e R e T e PO AT S OE NP oo 1% P e SR R R AR A
o : " ' | I
% 015 s snan st v T T A € A AT A s e : ....................... B B A S Y A A S A (e
{ — | — |
"Q" O . e : ............................................................... : ,,,,,,,,,,,,,,,,,,,,,, oo
o : :
0-3,_ ' ..‘,I ....................... I. | ,,,,,
BB Lo mcorom e e camomasem e : ..................... —t— T T T : ...........
! I
01 ................................................................................................................................................................
. . . . - _-—]
S Baseline : Mimicry GD-KDE ; Mimicry : Mimicry GD-KDE : Mimicry
. Scenario F * Scenario FC - Scenario FT * Scenario FTC
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Defensive Measures

e Vaccination defense

— modify a fraction of malicious samples in the
training dataset in such a way that they are more
similar to expectedattack samples.

— Only effective against correctly anticipatechttacks
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Practical Adversarial Detection of Malicious

Crowdsourcing Workers

* |nvestigating robustness of machine learning
based approaches to detecting adversaries in
crowdsourcing
— Envision attack
— Poisoning attack
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Experimental Setup

e Datasets

— Extract from Sina Welbo, China’s microblogging
network
e 28,947 crowdturfing workers
e 71890 authenticated users
e 371,588 active users with at least 50 followers and 10
tweets
— Classify these accounts using SVMs, Bayesian,
Decision Trees and Random Forests.

Category | # Weibo IDs | # (Re) Tweets | # Comments
Turfing 28,947 18,473,903 15,970,215
Authent. | 71,890 7,600,715 13,985,118
Active 371,588 34,164,885 75,335,276
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Classifier Performance

« Authenticated+Turfing Dataset:

— 28K turfing accounts, 28K randomly sampled “authenticated”
users.

o Active+Turfing Dataset:
— 28K turfing accounts, 28K randomly sampled “active” users.

) —
>~ 50 | False Positive |
= False Negative
T 40| ﬂ
o
G 30} (Auth.+Turfing) (Active+Turfing) i
=
S 20+ |
[4y)
O
N dddd
17)]

% Yo S @1,47 &, Y ONEA 6’% 6‘% &, Y

7 0 r

Algorithms
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Impact of Evasion Attacks

« Optimal Evasion Attack:

— Per-worker optimal evasion: exhaustive search for
optimal data modification

— Global evasion: exhaustive search for global
optimal strategy

— Feature-aware evasion: alter the (known) most
Important features

100 - — 100 100

80 | 80 |

60 [ 60 |
i. 4 '.i"
st f a0 ¢

20

Worker Evasion Ratio (%)
8
Worker Evasion Ratio (%)
Worker Evasion Ratio (%)

SVMp e | 20 Ll s
RF

0 ‘.\‘ ) LR IR ) 0 N ) X 0 o . N
0 1 2 3 4 5 0 5 10 15 20 25 30 35 0 5 i0 15 20 25 30 35
# of Features Changed # of Features Changed # of Features Changed

(a) Per-worker Optimal Evasion (b) Global Optimal Evasion (c) Feature Importance Aware Evasion
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Worker Evasion Ratio (%)
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Impact of Evasion Attacks (cont.)

 Practical Evasion Attack:
— Random evasion
— Value distance-aware evasion

— Distribution distance-aware evasion

- “
o o
o wn
Tl

0

5

10 15 20 25
# of Features Changed

(a) Random Evasion Strategy (Random)
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Impact of Poisoning Attacks

e Training data used to build ML classifiers is
contaminated.

— Poisoning training dataset by injecting random
normal user samples to the turfing class.

_ 25 — 148 4 . _ 25
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o 20 SVMr —e— . s 20|
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o . o

3 5/ d 3 5

© 4]

L I
i st : : ) b : :

0.01 0.1 1 0.01 0.1 1
Ratio of Poison-to-Turfing Ratio of Poison-to-Turfing

(a) Professional Workers (b) All Workers
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Impact of Poisoning Attacks (cont.)

e Training data used to build ML classifiers is
contaminated.

— Adversaries inject specific type of normal users to
the turfing class (all workers).

~ 45| J48 -4 ~ 45| J48 -4
2 35 tSVMr —e— . 2 35
T e " T 30
S 25 2 5¢
3 20 | ? 20 |
o 15} a 15
S 51 S 5}
e : : 0 — : :
0.01 0.1 1 0.01 0.1 1
Ratio of Poison-to-Turfing Ratio of Poison-to-Turfing

(a) Injecting Accounts with > 50% (b) Injecting Accounts with < 150
tweets commented followers
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Impact of Poisoning Attacks (cont.)

e Training data used to build ML classifiers is
contaminated.

— Poisoning training dataset by adding turfing
samples to normal class .
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Impact of Poisoning Attacks (cont.)

* |nstead of adding data to the training set,
data in the training set is altered.
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Behavioral Detection of Malware on Mobile

Handsets [12

e Mobile Malware Detection

— signature-based solutions are not efficient for
resource-constrained mobile devices

— behavioral detection solution to detecting mobile
worms, viruses and Trojans

e Monitor the run-time behavior of an application (e.g., file
accesses, API calls)

» More resilient to polymorphic worms and code
obfuscation

« Database of behavior profiles is much smaller than that
needed for storing payload signatures
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Challenges

* Behavior specification
— temporal logic of causal knowledge

* Online reconstruction of suspicious behavior

— Train a SVM to differentiate partial signatures for
malicious behavior from those of normal
applications.

— The resulting SVM model and the malicious
signature database are preloaded onto the
handset.
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System Overview

/ 4
SmartPhone
Normal Response Agent
Application
Behavior Machine _ ) t
patterns learning Classifier & , Behavior Monitor
algorithm g:g;abt:srz Detection Agent |<— Agent
Malware (SVM) 2\
Behavior ) -
database Manufacturer or File PAN Messaging | | Telephony
Service Provider System || Bluetooh,IR ||| SMS, MMS ||| GSM COMA
Kernel, Device drivers 0S
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Behavior Signature of Commwarrior Worm

f: commw sis
ReceiveFM:Sf,mode, mode: Bluetooth or MMS
typ type: SIS
Y

f: commw.sis
InstallApp(f.files,dir) files: commwarrior.exe, commrec.mdl
dir: \system and subdirectories

LaunchProcess(p, p: commwarrior.exe
parent) parent: Symbian installer

f: \system\updates\commw sis

MakeSIS(ffiles) files: commwarrior.exe, commrec.dll
00:00 <t < 01:00 : ;
d == moa:1d:yy 00:00 <t < 06:59
08:00 <t < 23:50
Y
d: RANDOM a: RANDOM
ResetDevice(action) BTFindDevice(d) MMSFindAddress(a)
. I
oBExsendFite(f,d) |9 RANDOM™ ysSendMessagef,a) | 2 RANDOM
f: commw.sis f: commw sis
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Two-stage Runtime Behavior Signhature

Construction

open (“c:\system\apps\ frocess 1
nbe\canbe app”,* r") MakeSIS (caribe.sis...)
open (“c:\system\apps\ . .

e ——— MakeSIS(caribe.sis,..)

1=open(“c\system\apps\
caribe\caribe.sis ", “w")

e Stage 1.
generation of
dependency

g ra p h InterE:(oess MalseSIS'
Aggregate to @e.ms,..)
‘j_/
Process 2 < >

OBEXSendFile

(Caribe.sis,..) CObexClient::NewL
s Plocass (obexProtocolinfo )
Link
CObexClient::
Connect ()
CObexFileObject
:: InitFromFileL (cabir.sis
CObexClient ::
Put(FileObject)
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Two-stage Runtime Behavior Signhature

Construction cont.

open (“c:\system\apps\ frocess 1
nbe\canbe app”,* r") MakeSIS (caribe.sis...)
open (“c:\system\apps\ . .

e ——— MakeSIS(caribe.sis,..)

1=open(“c\system\apps\
caribe\caribe.sis ", “w")

e Stage 2: graph
pruning and
aggregation

Inter::rc:(oess MakeSIS
in i i
(caribe.sis,..)
close(f1) Aggregate to \

— < >
Process 2
OBEXSex®’

OBEXSendFile

(Caribe.sis,..) CObexClient::NewL

s Plocass (obexProtocolinfo )
Link ™~ (Caribe.sis,..)
CObexClient::
Connect ()
CObexFileObject

:: InitFromFileL (cabir.sis
CObexClient ::
Put(FileObject)

OBEXSendFile
(Caribe sis,..)
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Malware Detection on Mobile Devices using

Distributed Machine Learning [13

* The distributed SVM for detecting mobile
malware:
— lightweight in terms of bandwidth usage
— preserve the privacy of the participating users

— automatically generate a general behavioral
signhature of malware
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Distributed SVM Learning

« Divide the quadratic SVM binary classification
problem into multiple sub-problems by
relaxing it using a penalty function.

« Next, distributed continuous- and discrete-
time gradient algorithms are applied to solve
the relaxed problem iteratively.
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Empirical Results

B contaminated samples

B normal samples
e MIT Reality Mining [ I
user data .
— 897922 communication ‘:0,3'
l0gs collected from 97 g o HI I0 IR H0 MR
users o W HWWHH
— Infect half of data set  §
with malware T o200
symptoms

1-5 6-10 11-1516-20 1-20
Number of malware SMSs
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Computational Requirement

avg. computation time/client avg. number of updates /client
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Outside the closed world: On using machine

learning for network intrusion detection

e Network Intrusion Detection:

— Misuse detection — precise descriptions of known
malicious behavior.

— Anomaly detection — flag deviations from normal
activities.
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Machine Learning in Intrusion Detection

« Well-known problems:
— High false positive rate

— Lack of attack-free data for training

 Theoretical results indicate this is should not be an issue
for big data

— Attackers can foil the system to evade detection

* More resistant techniques now available as we
discussed before

— Difficulties with Evaluation

FEARLESS engineering [UT|D|




Machine Learning in Intrusion Detection

e Challenges of ML for NID

— Outlier Detection

— High Cost of Errors

— Semantic Gap (interpretation of results)
— Diversity of Network Traffic
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Recommendations for Using Machine Learning

Understand what the system is doing!

‘Recommendations:

— Understanding the Threat Model
* What kind of environment does the system target?
 What do missed attacks cost?
* What skills and resources will attackers have?
 What concern does evasion pose?

— Keep the Scope Narrow
— Reducing the Costs

— Evaluation
« Working with data
« Understanding results
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Summary of [9]

 Domain-specific challenge:

— An extensive amount of research on machine
learning-based anomaly detection, versus the lack
of operational deployments of such systems.

« Now start-ups are trying to change that.

e Follow a set of guidelines for applying ML to
network intrusion detection

— obtain insightinto the operation of an anomaly
detection system from an operational point of view

— Semantiainderstanding of the gain on ROC curves
IS crucial.
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CONCLUSIONS
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L essons Learned

« Data Mining for Cyber Security requires
better understanding of attacker.
— Game theory provides natural tools for such
modeling
« Dynamic adaptation, cost of adaptation, utility
of the attacker and defender needs to be
considered.

e Other issues not discussed but important:
— Provenance of data
— Class Imbalance
— Adversarial Active Learning
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* “If you know the enemy and know yourself, you
need not fear the result of a hundred battles. If you
know yourself but not the enemy, for every victory
gained you will also suffer a defeat. If you know
neither the enemy nor yourself, you will succumb in
every battle.” — Sun Tzu, The Art of War

 Choose the features carefully.
— Understand attacker capabilities and potential adaptation

e Use robust machine learning technigues
e Scale to large data
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Choosing right features for classification

e As game theoretical models indicate, good
features are:

— Hard for attacker to manipulate; and
— Indicative of the attack
 Example: Malware detection

— Focus on more behavioral features than syntactic
features extracted from binary ?
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Choosing the right machine learning tool

e Trying large set of tools are critical
— Random forest
— SVM
— Neural networks
— Deep belief networks etc.
— Ad-Svm
— Others ??
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Scaling to large data

 Efficient distributed processing systems
— Hadoop/MapReduce
— Spark
— Storm
— Others
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Apache Spark

 |s a fast and general-purpose cluster
computing system.

e provides high-level APIs in Java, Scala and
Python, and an optimized engine that
supports general execution graphs.

e supports a rich set of higher-level tools:

— Spark SOL for SQL and structured data
processing

— MLIib for machine learning,
e Many algorithms..

— GraphX for graph processing, and
— Spark Streaming.
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