#list the libraries library() #read in built-in dataset data(stackloss) #size of data dim(stackloss) #variables names(stackloss) # first 10 observations stackloss[1:10,] # first column stackloss$Air.Flow stackloss[,1] #single entry stackloss[2,3] stackloss$s[3] # R help help.start() help(stackloss) help(dim) help.search("dimension") #numerical summary summary(stackloss) #mean median quantile c1=stackloss$Air.Flow mean(c1) median(c1) range(c1) quantile(c1) quantile(c1,0.005) var(c1) sd(c1) var vi(var) myvar=vi(var) scale(stackloss$Ai) sort(c1) stackloss[order(stackloss$s),] #correlation + cov cor(stackloss) cov(stackloss) #plots c1=stackloss$Air.Flow #histogram hist(c1) hist(c1,main="title",xlab="x axis label",ylab="y axis label") dev.off() hist(c1,br = 12, col="lightblue", border="pink") dev.off() #boxplot boxplot(c1) dev.off() boxplot(c1,notch=T,horizontal=T,col = "bisque") title("title") dev.off() #scatter plot plot(stackloss$Ai,stackloss$W) plot(stackloss$Ai,stackloss$W,pch=".",col=5) plot(Water.Temp ~ Air.Flow, stackloss, xlab="Air Flow",ylab="Water Temperature",type="p") plot(stackloss) pairs(stackloss) dev.off() plot(density(stackloss$Ai)) plot(sort(stackloss$Ai),pch=".") abline(v=5) abline(10,7) points(20,60,col="red",pch=24) #multiple plots on same page par(mfrow=c(2,2)) boxplot(stackloss$Ai) boxplot(stackloss$W) boxplot(stackloss$Ac) boxplot(stackloss$s) par(mfrow=c(1,1)) matplot(stackloss,col=2:5,pch=c(".",":","+","*")) #vector v1=c(1,2,4) v2=c("1","2","4") v3=5:10 rep(1,5) #select columns and rows stackloss[c(1,2,4),] stackloss[,-1] stackloss[-c(1:20),] stackloss[stackloss$Ai>72,] #----- MATRIX OPERATION---------# library(MASS) library(stats) #read in a file gala=read.table("../DATA/gala.data",h=T) mx = gala$Species #transpose t(mx) #matrix multiplication t(mx) %*% mx k = mx %*% t(mx) #inverse solve(t(mx) %*% mx) #data type mm = gala[,-1] solve(t(mm) %*% mm) mm = as.matrix(mm) solve(t(mm) %*% mm) e=eigen(t(mm) %*% mm) e$val e$vec diag(mx) solve(diag(mx)) sqrt(mx) sum(mx) #------For Loop------# test=numeric(10) for(i in 1:10) { test[i]=i+rnorm(1) test[i]=test[i]/(pi^2) } abs(test) #Normal qq plot t2=rnorm(500) qqnorm(t2,pch=".",col="blue") qqline(t2)