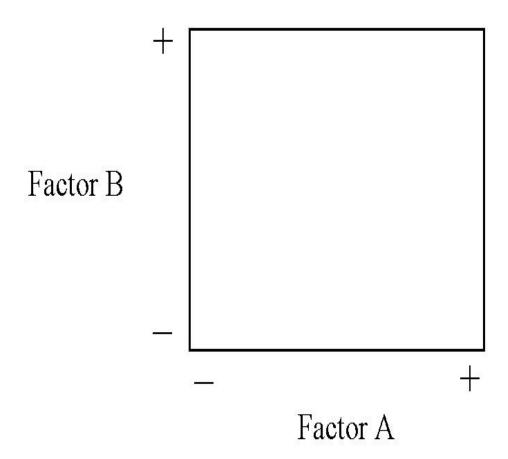
Lecture 9: Factorial Design

Montgomery: chapter 5

Examples

Example I. Two factors (A, B) each with two levels (-, +)



Three Data for Example I

Ex.I-Data 1

	A	Ą
В	_	+
+	27,33	51,51
_	18,22	39,41

EX.I-Data 2

	A	Ą
В	_	+
+	38,42	10,14
	19,21	53,47

EX.I-Data 3

Example II: Battery life experiment

An engineer is studying the effective life of a certain type of battery. Two factors, plate material and temperature, are involved. There are three types of plate materials (1, 2, 3) and three temperature levels (15, 70, 125). Four batteries are tested at each combination of plate material and temperature, and all 36 tests are run in random order. The experiment and the resulting observed battery life data are given below.

		temperature	
material	15	70	125
1	130,155,74,180	34,40,80,75	20,70,82,58
2	150,188,159,126	136,122,106,115	25,70,58,45
3	138,110,168,160	174,120,150,139	96,104,82,60

Example III: Bottling Experiment

A soft drink bottler is interested in obtaining more uniform fill heights in the bottles produced by his manufacturing process. An experiment is conducted to study three factors of the process, which are

the percent carbonation (A): 10, 12, 14 percent

the operating pressure (B): 25, 30 psi

the line speed (C): 200, 250 bpm

The response is the deviation from the target fill height. Each combination of the three factors has two replicates and all 24 runs are performed in a random order. The experiment and data are shown below.

	pressure(B)				
	25 psi		30 psi		
	LineSp	peed(C)	LineS	peed(C)	
Carbonation(A)	200	250	200	250	
10	-3,-1	-1,0	-1,0	1, 1	
12	0, 1	2,1	2,3	6,5	
14	5,4	7,6	7,9	10,11	

Factorial Design

- a number of factors: F_1, F_2, \ldots, F_r .
- each with a number of levels: l_1, l_2, \ldots, l_r
- ullet number of all possible level combinations (treatments): $l_1 imes l_2 \ldots imes l_r$
- interested in (main) effects, 2-factor interactions (2fi), 3-factor interactions (3fi), etc.

One-factor-a-time design as the opposite of factorial design.

Advantages of factorial over one-factor-a-time

- more efficient (runsize and estimation precision)
- able to accommodate interactions
- results are valid over a wider range of experimental conditions

Statistical Model (Two Factors: A and B)

Statistical model is

$$y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \epsilon_{ijk}$$

$$\begin{cases}
i = 1, 2, \dots, a \\
j = 1, 2, \dots, b \\
k = 1, 2, \dots, n
\end{cases}$$

 μ - grand mean

 au_i - ith level effect of factor A (ignores B) (main effects of A)

 β_j - jth level effect of factor B (ignores A) (main effects of B)

 $(aueta)_{ij}$ - interaction effect of combination ij (Explain variation not explained by main effects)

$$\epsilon_{ijk} \sim N(0, \sigma^2)$$

• Over-parameterized model: must include certain parameter constraints. Typically

$$\sum_{i} \tau_{i} = 0 \qquad \sum_{j} \beta_{j} = 0 \qquad \sum_{i} (\tau \beta)_{ij} = 0 \qquad \sum_{j} (\tau \beta)_{ij} = 0$$

Estimates

Rewrite observation as:

$$y_{ijk} = \overline{y}_{...} + (\overline{y}_{i..} - \overline{y}_{...}) + (\overline{y}_{.j.} - \overline{y}_{...}) + (\overline{y}_{ij.} - \overline{y}_{i...} - \overline{y}_{.j.} + \overline{y}_{...}) + (y_{ijk} - \overline{y}_{ij.})$$

result in estimates

$$\begin{split} \widehat{\mu} &= \overline{y}_{...} \\ \widehat{\tau}_i &= \overline{y}_{i..} - \overline{y}_{...} \\ \widehat{\beta}_j &= \overline{y}_{.j.} - \overline{y}_{...} \\ \widehat{(\tau\beta)}_{ij} &= \overline{y}_{ij.} - \overline{y}_{i..} - \overline{y}_{.j.} + \overline{y}_{...} \end{split}$$

ullet predicted value at level combination ij is

$$\widehat{y}_{ijk} = \overline{y}_{ij.}$$

Residuals are

$$\hat{\epsilon}_{ijk} = y_{ijk} - \overline{y}_{ij.}$$

Partitioning the Sum of Squares

Based on

$$y_{ijk} = \overline{y}_{...} + (\overline{y}_{i..} - \overline{y}_{...}) + (\overline{y}_{.j.} - \overline{y}_{...}) + (\overline{y}_{ij.} - \overline{y}_{i..} - \overline{y}_{i..} - \overline{y}_{.j.} + \overline{y}_{...}) + (y_{ijk} - \overline{y}_{ij.})$$

- Calculate $SS_T = \sum (y_{ijk} \overline{y}_{...})^2$
- Right hand side simplifies to

$$SS_{A}: bn \sum_{i} (\overline{y}_{i..} - \overline{y}_{...})^{2} + df = a - 1$$

$$SS_{B}: an \sum_{j} (\overline{y}_{.j.} - \overline{y}_{...})^{2} + df = b - 1$$

$$SS_{AB}: n \sum_{i} \sum_{j} (\overline{y}_{ij.} - \overline{y}_{i.} - \overline{y}_{.j} + \overline{y}_{..})^{2} + df = (a - 1)(b - 1)$$

$$SS_{E}: \sum_{i} \sum_{j} \sum_{k} (y_{ijk} - \overline{y}_{ij.})^{2} df = ab(n - 1)$$

- \bullet SS_T=SS_A + SS_B + SS_{AB} + SS_E
- Using SS/df leads to MS_A, MS_B, MS_{AB} and MS_E .

Testing Hypotheses

- 1 Main effects of A: $H_0: \tau_1 = \ldots = \tau_a = 0$ vs $H_1:$ at least one $\tau_i \neq 0$.
- 2 Main effects of $B: H_0: \beta_1 = \ldots = \beta_b = 0$ vs $H_1:$ at least one $\beta_i \neq 0$.
- 3 Interaction effects of AB:

$$H_0: (\alpha\beta)_{ij}=0$$
 for all i,j vs $H_1:$ at least one $(\tau\beta)_{ij}\neq 0$.

• E(MS_E)= σ^2

$$\mathsf{E}(\mathsf{MS}_{\mathrm{A}}) = \sigma^2 + bn \sum \tau_i^2/(a-1)$$

$$E(MS_B) = \sigma^2 + an \sum \beta_j^2/(b-1)$$

$$E(MS_{AB}) = \sigma^2 + n \sum_{ij} (\tau \beta)_{ij}^2 / (a-1)(b-1)$$

Use F-statistics for testing the hypotheses above:

1:
$$F_0 = \frac{SS_A/(a-1)}{SS_E/(ab(n-1))}$$
 2: $F_0 = \frac{SS_B/(b-1)}{SS_E/(ab(n-1))}$ 3: $F_0 = \frac{SS_{AB}/(a-1)(b-1)}{SS_E/(ab(n-1))}$

Analysis of Variance Table

Source of	Sum of	Degrees of	Mean	F_0
Variation	Squares	Freedom	Square	
Factor A	SS_{A}	a-1	MS_{A}	F_0
Factor B	${\sf SS}_{ m B}$	b-1	MS_B	F_0
Interaction	${\sf SS}_{ m AB}$	(a-1)(b-1)	MS_{AB}	F_0
Error	SS_{E}	ab(n-1)	MS_{E}	
Total	SS_{T}	abn-1		

$$\begin{split} \mathrm{SS}_{\mathrm{T}} &= \sum \sum y_{ijk}^2 - y_{...}^2/abn; \ \ \mathrm{SS}_{\mathrm{A}} = \frac{1}{bn} \sum y_{i...}^2 - y_{...}^2/abn \\ \mathrm{SS}_{\mathrm{B}} &= \frac{1}{an} \sum y_{.j.}^2 - y_{...}^2/abn; \ \ \mathrm{SS}_{\mathrm{subtotal}} = \frac{1}{n} \sum \sum y_{ij.}^2 - y_{...}^2/abn \\ \mathrm{SS}_{\mathrm{AB}} &= \mathrm{SS}_{\mathrm{subtotal}} - \mathrm{SS}_{\mathrm{A}} - \mathrm{SS}_{\mathrm{B}}; \ \ \mathrm{SS}_{\mathrm{E}} = \mathrm{Subtraction} \end{split}$$

 $df_E > 0$ only if n > 1. When n = 1, no SS_E is available so we cannot test the effects. If we can assume that the interactions are negligible $((\tau \beta)_{ij} = 0)$, MS_{AB} becomes a good estimate of σ^2 and it can be used as MS_E . Caution: if the assumption is wrong, then error and interaction are confounded and testing results can go wrong.

Battery Life Example

```
data battery;
input mat temp life;
datalines;
1 1 130
1 1 155
1 1 74
: : :
: : :
3 3 104
3 3 82
3 3 60
proc glm;
class mat temp;
model life=mat temp mat*temp;
output out=batnew r=res p=pred;
run;
```

Dependent	Variable:	life				
		Sum of				
Source	DF	Squares	Mean	Square	F Value	Pr > F
Model	8	59416.222	22 7427	.02778	11.00	<.0001
Error	27	18230.750	00 675.	21296		
Cor Total	35	77646.972	22			
R-Square	Coeff '	Var Ro	ot MSE	life	Mean	
0.765210	24.62	372 25	.98486	105.	5278	
Source	DF	Type I SS	Mean	Square	F Value	Pr > F
mat	2	10683.72222	534	1.86111	7.91	0.0020
temp	2	39118.72222	1955	9.36111	28.97	<.0001
mat*temp	4	9613.77778	240	3.44444	3.56	0.0186

Checking Assumptions

1 Errors are normally distributed

Histogram or QQplot of residuals

2 Constant variance

Residuals vs \hat{y}_{ij} plot, Residuals vs factor A plot and Residuals vs factor B

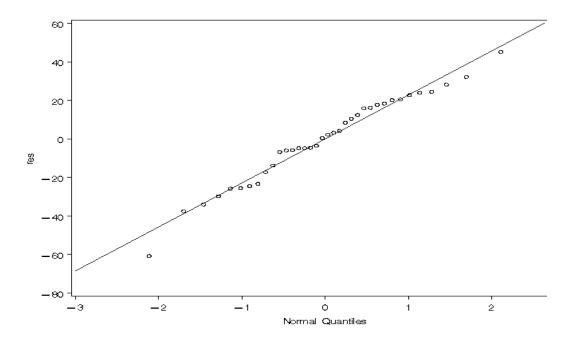
3 If n=1, no interaction.

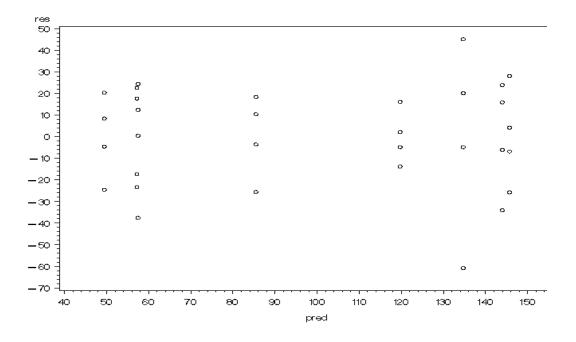
Tukey's Test of Nonadditivity Assume $(\tau\beta)_{ij} = \gamma \tau_i \beta_j$. $H_0: \gamma = 0$.

$$SS_N = \frac{\left[\sum \sum y_{ij} y_{i.} y_{.j} - y_{..} (SS_A + SS_B + y_{..}^2/ab)\right]^2}{abSS_A SS_B}$$

$$F_0 = \frac{SS_N/1}{(SS_E - SS_N)/((a-1)(b-1) - 1)} \sim F_{1,(a-1)(b-a)-1}$$

the convenient procedure used for RCBD can be employed.





Effects Estimation (Battery Experiment)

- 0. $\hat{\mu} = \bar{y}_{...} = 105.5278$
- 1. Treatment mean response, or cell mean, or predicted value,

$$\hat{y}_{ij} = \hat{\mu}_{ij} = \bar{y}_{ij} = \hat{\mu} + \hat{\tau}_i + \hat{\beta}_j + (\hat{\tau\beta})_{ij}$$

temperature

material	1	2	3
1	134.75	57.25	57.50
2	155.75	119.75	49.50
3	144.00	145.75	85.50

2. Factor level means

row means $\bar{y}_{i..}$ for A; column means $\bar{y}_{.j.}$ for B.

material : $\bar{y}_{1..} = 83.166, \ \bar{y}_{2..} = 108.3333, \ \bar{y}_{3..} = 125.0833$

temperature : $\bar{y}_{.1.} = 144.8333, \ \bar{y}_{.2.} = 107.5833, \ \bar{y}_{.3.} = 64.1666$

3. Main effects estimates

$$\hat{\tau}_1 = -22.3612, \hat{\tau}_2 = 2.8055, \hat{\tau}_3 = 19.555$$

$$\hat{\beta}_1 = 39.3055, \hat{\beta}_2 = 2.0555, \hat{\beta}_3 = -41.3611$$

4. Interactions $((\hat{\tau \beta})_{ij})$

temperature

Understanding Interactions

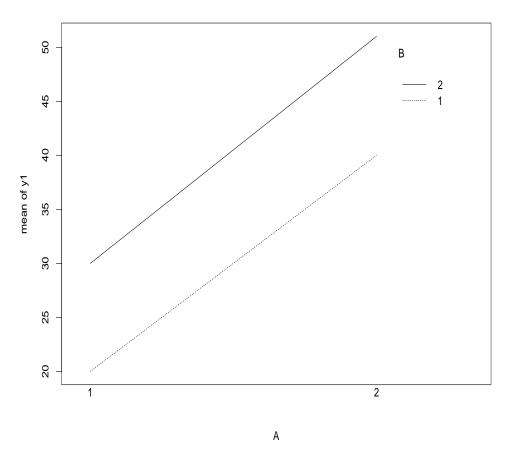
Example I Data 1:

```
A B resp;
1 1 18
1 1 22
1 2 27
1 2 33
2 1 39
2 1 41
2 2 51
2 2 51
```

Dependent Variable: resp

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
A	1	840.5000000	840.5000000	120.07	0.0004
В	1	220.5000000	220.5000000	31.50	0.0050
A*B	1	0.500000	0.5000000	0.07	0.8025
Error	4	28.000000	7.00000		
Cor Total	7	1089.500000			

Interaction plot for \boldsymbol{A} and \boldsymbol{B} (No Interaction)



Difference between level means of B (with A fixed at a level) does not depend on the level of A; demonstrated by two parallel lines.

Example I Data 2

A B resp

1 1 19

1 1 21

1 2 38

1 2 42

2 1 53

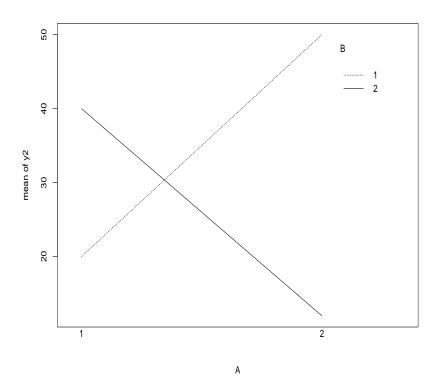
2 1 47

2 2 10

2 2 14

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
A	1	2.00000	2.00000	0.22	0.6619
В	1	162.000000	162.000000	18.00	0.0132
A*B	1	1682.000000	1682.000000	186.89	0.0002
Error	4	36.000000	9.000000		
Cor Total	7	1882.000000			

Interaction Plot for A and B (Antagonistic Interaction from B to A)



Difference between level means of B (with A fixed at a level) depends on the level of A. If the trend of mean response over A reverses itself when B changes from one level to another, the interaction is said to be antagonistic from B to A. Demonstrated by two lines with slopes of opposite signs.

Example I Data 3

A B resp

1 1 21

1 1 21

1 2 27

1 2 33

2 1 62

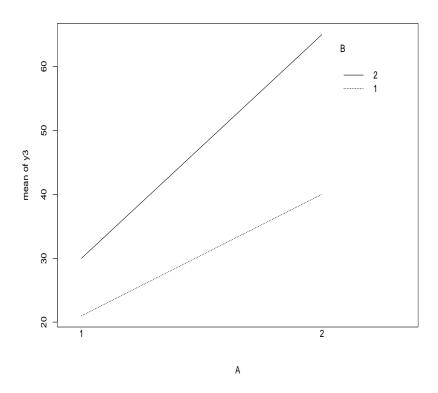
2 1 67

2 2 38

2 2 42

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
A	1	1431.125000	1431.125000	148.69	0.0003
В	1	120.125000	120.125000	12.48	0.0242
A*B	1	561.125000	561.125000	58.30	0.0016
Error	4	38.500000	9.625000		
Co Total	7	2150.875000			

Interaction Plot for A and B (Synergistic Interaction from B to A)

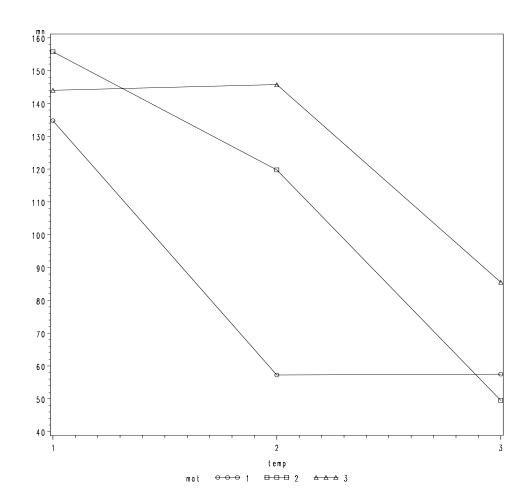


Difference between level means of B (with A fixed at a level) depends on the level of A. If the trend of mean response over A do not change when B changes from one level to another, the interaction is said to be synergistic; demonstrated by two unparalleled lines with slopes of the same sign.

Interaction Plot: Battery Experiment

```
data battery;
input mat temp life;
datalines;
1 1 130
. . . . . . .
. . . . . . .
3 3 60;
proc means noprint;
var life;
by mat temp;
output out=batterymean mean=mn;
symbol1 v=circle i=join;
symbol2 v=square i=join;
symbol3 v=triangle i=join;
proc gplot;
plot mn*temp=mat;
run;
```

Interaction Plot for Material and Temperature



Multiple comparison when factors don't interact

When factors don't interact, i.e., the F test for interaction is not significant in the ANOVA, factor level means can be compared to draw conclusions regarding their effects on response.

•
$$\operatorname{Var}(\bar{y}_{i..}) = \frac{\sigma^2}{nb}$$
, $\operatorname{Var}(\bar{y}_{.j.}) = \frac{\sigma^2}{na}$

$$\text{For } A \text{ or rows}: \text{Var}(\bar{y}_{i..} - \bar{y}_{i'..}) = \frac{2\sigma^2}{nb}; \quad \text{For } B \text{ or columns} \ : \text{Var}(\bar{y}_{.j.} - \bar{y}_{.j'.}) = \frac{2\sigma^2}{na}$$

• Tukey's method

For rows: CD =
$$\frac{q_{\alpha}(a,ab(n-1))}{\sqrt{2}}\sqrt{\mathrm{MSE}\frac{2}{nb}}$$

For columns: CD = $\frac{q_{\alpha}(b,ab(n-1))}{\sqrt{2}}\sqrt{\mathrm{MSE}\frac{2}{na}}$

ullet Bonferroni method: CD $=t_{lpha/2m,ab(n-1)}$ S.E., where S.E. depends on whether for rows or columns.

Level mean comparison when ${\cal A}$ and ${\cal B}$ interact: An Example

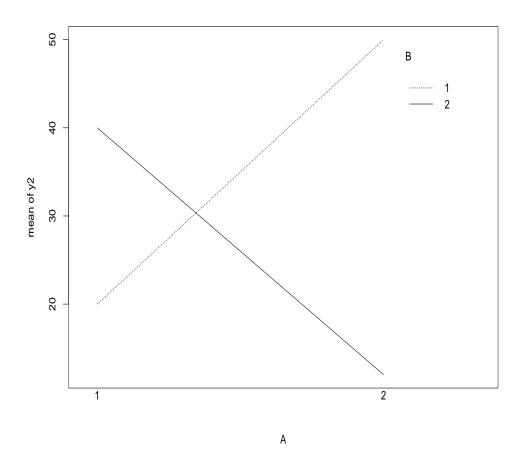
B
A 1 2
1 19,21 38,42
2 53,47 10,14

Compare factor level means of A:

$$\bar{y}_{1..} = (19 + 21 + 38 + 42)/4 = 30$$

$$\bar{y}_{2..} = (53 + 47 + 10 + 14)/4 = 31 = \bar{y}_{1..}$$

Does Factor A have effect on the response?



When interactions are present, be careful interpreting factor level means (row or column) comparisons because it can be misleading. Usually, we will directly compare treatment means (or cell means) instead.

Multiple comparisons when factors interact: treatment (cell) mean comparison

When factors interact, multiple comparison is usually directly applied to treatment means

$$\mu_{ij} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} \text{ vs } \mu_{i'j'} = \mu + \tau_{i'} + \beta_{j'} + (\tau \beta)_{i'j'}$$

- ullet $\hat{\mu}_{ij}=ar{y}_{ij}$ and $\hat{\mu}_{ij}=ar{y}_{i'j'}$
- $\operatorname{Var}(\bar{y}_{ij.} \bar{y}_{i'j'.}) = \frac{2\sigma^2}{n}$
- there are ab treatment means and $m_0 = \frac{ab(ab-1)}{2}$ pairs.
- Tukey's method:

$$\mathrm{CD} = \frac{q_{\alpha}(ab, ab(n-1))}{\sqrt{2}} \sqrt{\mathrm{MSE} \frac{2}{n}}$$

Bonferroni's method.

$$\mathrm{CD} = t_{\alpha/2m,ab(n-1)} \sqrt{\mathrm{MSE} \frac{2}{n}}$$

SAS Code and Output

```
proc glm data=battery;
class mat temp;
model life=mat temp mat*temp;
means mat|temp /tukey lines;
lsmeans mat | temp/tdiff adjust=tukey;
run;
The GLM Procedure
Least Squares Means
Adjustment for Multiple Comparisons: Tukey
                          LSMEAN
        life LSMEAN
                          Number
mat
          83.166667
         108.333333
         125.083333
```

```
Least Squares Means for Effect mat
t for H0: LSMean(i)=LSMean(j) / Pr > |t|
```

Dependent Variable: life

3	2	1	i/j
-3.95132	-2.37236		1
0.0014	0.0628		
-1.57896		2.372362	2
0.2718		0.0628	
	1.578956	3.951318	3
	0.2718	0.0014	

Output (continued)

```
Least Squares Means
Adjustment for Multiple Comparisons: Tukey
                           LSMEAN
         life LSMEAN
                          Number
temp
          144.833333
1
          107.583333
3
           64.166667
     Least Squares Means for Effect temp
   t for H0: LSMean(i)=LSMean(j) / Pr > |t|
           Dependent Variable: life
i/j
                          3.51141
                                       7.604127
                           0.0044
                                         <.0001
          -3.51141
                                       4.092717
            0.0044
                                         0.0010
   3
          -7.60413
                         -4.09272
            < .0001
                           0.0010
```

Output (continued)

The GLM Procedure
Least Squares Means

Adjustment for Multiple Comparisons: Tukey

			LSMEAN
mat	temp	life LSMEAN	Number
1	1	134.750000	1
1	2	57.250000	2
1	3	57.500000	3
2	1	155.750000	4
2	2	119.750000	5
2	3	49.500000	6
3	1	144.000000	7
3	2	145.750000	8
3	3	85.500000	9

Output

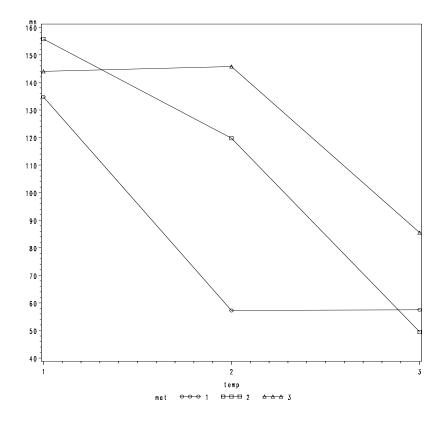
i/j	1	2	3	4	5
1		4.2179	4.204294	-1.14291	0.816368
		0.0065	0.0067	0.9616	0.9953
2	-4.2179		-0.01361	-5.36082	-3.40153
	0.0065		1.0000	0.0003	0.0460
3	-4.20429	0.013606		-5.34721	-3.38793
	0.0067	1.0000		0.0004	0.0475
4	1.142915	5.360815	5.347209		1.959283
	0.9616	0.0003	0.0004		0.5819
5	-0.81637	3.401533	3.387926	-1.95928	
	0.9953	0.0460	0.0475	0.5819	
6	-4.63969	-0.42179	-0.4354	-5.78261	-3.82332
	0.0022	1.0000	1.0000	0.0001	0.0172
7	0.503427	4.721327	4.707721	-0.63949	1.319795
	0.9999	0.0018	0.0019	0.9991	0.9165
8	0.59867	4.81657	4.802964	-0.54425	1.415038
	0.9995	0.0014	0.0015	0.9997	0.8823
9	-2.68041	1.537493	1.523887	-3.82332	-1.86404
	0.2017	0.8282	0.8347	0.0172	0.6420

Output (continued)

i/j	6	7	8	9
1	4.63969	-0.50343	-0.59867	2.680408
	0.0022	0.9999	0.9995	0.2017
2	0.42179	-4.72133	-4.81657	-1.53749
	1.0000	0.0018	0.0014	0.8282
3	0.435396	-4.70772	-4.80296	-1.52389
	1.0000	0.0019	0.0015	0.8347
4	5.782605	0.639488	0.544245	3.823323
	0.0001	0.9991	0.9997	0.0172
5	3.823323	-1.31979	-1.41504	1.86404
	0.0172	0.9165	0.8823	0.6420
6		-5.14312	-5.23836	-1.95928
		0.0006	0.0005	0.5819
7	5.143117		-0.09524	3.183834
	0.0006		1.0000	0.0743
8	5.23836	0.095243		3.279077
	0.0005	1.0000		0.0604
9	1.959283	-3.18383	-3.27908	
	0.5819	0.0743	0.0604	

Fitting Response Curves or Surfaces

Battery Experiment:



Goal: Model the functional relationship between lifetime and temperature at every material level.

- Material is qualitative while temperature is quantitative
- Want to fit the response using effects of material, temperature and their interactions
- Temperature has quadratic effect. Could use orthogonal polynomials as before. Here we will simply t and t^2 .
- Levels of material need to be converted to dummy variables denoted by x_1 and x_2 as follows.

mat	x_1	x_2
1	1	0
2	0	1
3	-1	-1

• For convenience, convert temperature to -1,0 and 1 using

$$t = \frac{\text{temperature} - 70}{55}$$

Fitting Response Curve: Model matrix

ma	t temp	==> x1	x2	t	t^2	x1*t	x2*t	x1*t^2	x2*t^2
			_				_		_
1	15	1	0	-1	1	-1	0	1	0
1	70	1	0	0	0	0	0	0	0
1	125	1	0	1	1	1	0	1	0
2	15	0	1	-1	1	0	1	0	1
2	70	0	1	0	0	0	0	0	0
2	125	0	1	1	1	0	-1	0	1
3	15	-1	-1	-1	1	1	-1	-1	-1
3	70	-1	-1	0	0	0	0	0	0
3	125	-1	-1	1	1	-1	1	-1	-1

The following model is used:

$$y_{ijk} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 t + \beta_4 x_1 t + \beta_5 x_2 t + \beta_6 t^2 + \beta_7 x_1 t^2 + \beta_8 x_2 t^2 + \epsilon_{ijk}$$

Want to estimate the coefficients: β_0 , β_1 , β_2 , . . . , β_8 using regression

SAS Code: Battery Life Experiment

```
data life;
 input mat temp y @@;
if mat=1 then x1=1;
if mat=1 then x2=0;
if mat=2 then x1=0;
if mat=2 then x2=1;
if mat=3 then x1=-1;
if mat=3 then x2=-1;
t = (temp - 70) / 55;
t2=t*t; x1t=x1*t; x2t=x2*t;
x1t2=x1*t2; x2t2=x2*t2;
datalines;
1 15 130 1 15 155 1 70 34 1 70 40 1 125 20 1 125
                                                     70
     74 1 15 180 1 70
                       80 1 70 75 1 125
                                           82 1 125
                                                     58
2 15 150 2 15 188 2 70 136 2 70 122 2 125
                                           25 2 125
                                                     70
2 15 159 2 15 126 2 70 106 2 70 115 2 125
                                           58 2 125
                                                     45
3 15 138 3 15 110 3 70 174 3 70 120 3 125
                                           96 3 125 104
3 15 168 3 15 160 3 70 150 3 70 139 3 125
                                           82 3 125 60
proc reg;
model y=x1 x2 t x1t x2t t2 x1t2 x2t2;
run;
```

SAS output

Analysis of Variance							
		Sum of	Mean				
Source	D	F Squares	Square	F Value	Pr > F		
Model		8 59416	7427.02778	11.0	0 <.0001		
Error	2	18231	675.21296				
CorrectedTo	tal 3	5 77647					
		Parameter	Estimates				
		Parameter	Standard				
Variable	DF	Estimate	Error	t Value	Pr > t		
Intercept	1	107.58333	7.50118	14.34	<.0001		
x1	1	-50.33333	10.60827	-4.74	<.0001		
x2	1	12.16667	10.60827	1.15	0.2615		
t	1	-40.33333	5.30414	-7.60	<.0001		
x1t	1	1.70833	7.50118	0.23	0.8216		
x2t	1	-12.79167	7.50118	-1.71	0.0996		
t2	1	-3.08333	9.18704	-0.34	0.7398		
x1t2	1	41.95833	12.99243	3.23	0.0033		
x2t2	1	-14.04167	12.99243	-1.08	0.2894		

Results

From the SAS output, the fitted model is

$$\hat{y} = 107.58 - 50.33x_1 - 12.17x_2 - 40.33t + 1.71x_1t - 12.79x_2t$$
$$-3.08t^2 + 41.96x_1t^2 - 14.04x_2t^2$$

Note that terms with insignificant coefficients are still kept in the fitted model here. In practice, model selection may be employed to remove unimportant terms and choose the best fitted model. But we will not pursue it in this course.

The model above are in terms of both x_1 , x_2 and t. We can specify the level of material, that is, the values of dummy variable x_1 and x_2 , to derive fitted response curves for material at different levels.

Fitted Response Curves

Three response curves:

• Material at level 1 ($x_1 = 1, x_2 = 0$)

$$E(y_{1t}) = 57.25 - 38.62t + 38.88t^2$$

• Material at level 2 ($x_1 = 0, x_2 = 1$)

$$E(y_{2t}) = 119.75 - 53.12t - 17.12t^2$$

• Material at level 3 ($x_1 = -1, x_2 = -1$)

$$E(y_{3t}) = 145.74 - 29.25t - 31t^2$$

Where
$$t = \frac{\text{temperature} - 70}{55}$$
.

These curves can be used to predict lifetime of battery at any temperature between 15 and 125 degree. But one needs to be careful about extrapolation. For example, the fitted curve at Material level 1 suggests that lifetime of a battery can be infinity when temperature goes to infinity, which is clearly false.

General Factorial Design and Model

- Factorial Design including all possible level combinations
- ullet a levels of Factor A, b levels of Factor B, . . .
- (Straightforward ANOVA if all **fixed effects**)
- In 3 factor model ightarrow nabc observations
- Need n > 1 to test for all possible interactions
- Statistical Model (3 factor)

$$y_{ijkl} = \mu + \tau_i + \beta_j + \gamma_k + (\tau \beta)_{ij} + (\beta \gamma)_{jk} + (\tau \gamma)_{ik} + (\tau \beta \gamma)_{ijk} + \epsilon_{ijkl}$$

$$\begin{cases} i = 1, 2, \dots, a \\ j = 1, 2, \dots, b \\ k = 1, 2, \dots, c \\ l = 1, 2, \dots, n \end{cases}$$

Analysis of Variance Table

Source of	Sum of	Degrees of	Mean	$\overline{F_0}$
Variation	Squares	Freedom	Square	
Factor A	SS_{A}	a-1	MS_{A}	$\overline{F_0}$
Factor B	SS_B	b-1	MS_B	F_0
Factor C	SS_{C}	c-1	MS_{C}	F_0
AB	SS_{AB}	(a-1)(b-1)	MS_{AB}	F_0
AC	SS_{AC}	(a-1)(c-1)	MS_{AC}	F_0
ВС	SS_{BC}	(b-1)(c-1)	MS_{BC}	F_0
ABC	SS_{ABC}	(a-1)(b-1)(c-1)	MS_{ABC}	F_0
Error	SS_E	abc(n-1)	MS_{E}	
Total	SS_{T}	abcn-1		

Bottling Experiment: SAS Code

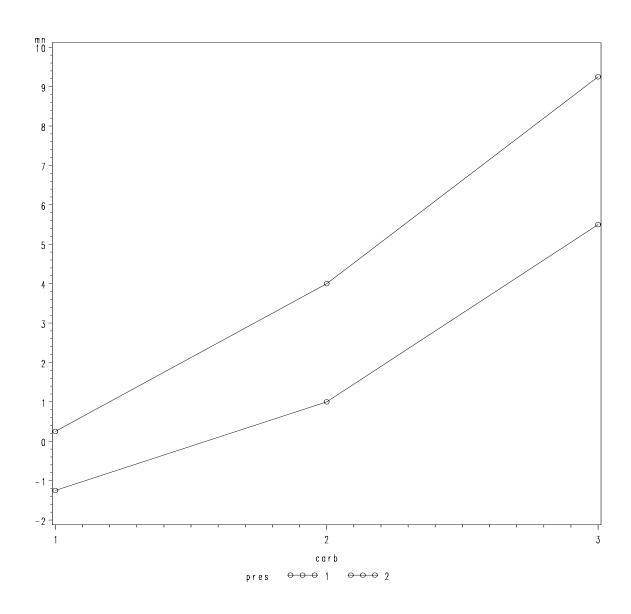
```
option nocenter
data bottling;
input carb pres spee devi;
datalines;
  1 1 -3
1 1 1 -1
1 1 2 -1
1 1 2 0
3 2 1 9
    2 10
3
 2
    2 11
proc glm;
class carb pres spee;
model devi=carb|pres|spee;
run;
```

Bottling Experiment: SAS Output

Dependent Variable: devi

Dependence (arrabic	acvi				
			Sum of			
Source	DF		Squares	Mean Square	F Value	Pr > F
Model	11	328.	1250000	29.8295455	42.11	<.0001
Error	12	8.	5000000	0.7083333		
Co Total	23	336.	6250000			
R-Square	Coeff	Var	Root MSE	devi Mean		
0.974749	26.93	3201	0.841625	3.125000		
Source	DF	Ty	pe I SS	Mean Square	F Value	Pr > F
carb	2	252.	7500000	126.3750000	178.41	<.0001
pres	1	45.	3750000	45.3750000	64.06	<.0001
carb*pres	2	5.	2500000	2.6250000	3.71	0.0558
spee	1	22.	0416667	22.0416667	31.12	0.0001
carb*spee	2	0.	5833333	0.2916667	0.41	0.6715
pres*spee	1	1.	0416667	1.0416667	1.47	0.2486
carb*pres*s	spee 2	1.	0833333	0.5416667	0.76	0.4869

Interaction Plot for Carb and Pressure



General Factorial Model

- Usual assumptions and diagnostics
- Multiple comparisons: simple extensions of the two-factor case
- Often higher order interactions are negligible.
- Beyond three-way interactions difficult to picture.
- Pooled together with error (increase df_E)

Blocking in Factorial Design: Example

Battery Life Experiment:

An engineer is studying the effective lifetime of some battery. Two factors, plate material and temperature, are involved. There are three types of plate materials (1, 2, 3) and three temperature levels (15, 70, 125). Four batteries are tested at each combination of plate material and temperature, and all 36 tests are run in random order. The experiment and the resulting observed battery life data are given below.

		temperature	
material	15	70	125
1	130,155,74,180	34,40,80,75	20,70,82,58
2	150,188,159,126	136,122,106,115	25,70,58,45
3	138,110,168,160	174,120,150,139	96,104,82,60

If we assume further that four operators (1,2,3,4) were hired to conduct the experiment. It is known that different operators can cause systematic difference in battery lifetime. Hence operators should be treated as blocks

The blocking scheme is every operator conduct a single replicate of the full factorial design

For each treatment (treatment combination), the observations were in the order of the operators 1, 2, 3, and 4.

This is a blocked factorial design

Statistical Model for Blocked Factorial Experiment

$$y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \delta_k + \epsilon_{ijk}$$

 $i=1,2,\ldots,a,$ $j=1,2,\ldots,b$ and $k=1,2,\ldots,n,$ δ_k is the effect of the kth block.

- randomization restriction is imposed. (complete block factorial design).
- interactions between blocks and treatment effects are assumed to be negligible.
- The previous ANOVA table for the experiment should be modified as follows:
 Add: Block Sum of Square

$$SS_{Blocks} = \frac{1}{ab} \sum_k y_{..k}^2 - \frac{y_{...}^2}{abn}$$
 D.F. $n-1$

Modify: Error Sum of Squares:

(new)
$$SS_E = (\text{old})SS_E - SS_{\mbox{\footnotesize{Blocks}}}$$
 D.F. $(ab-1)(n-1)$

other inferences should be modified accordingly.

SAS Code and Output

```
data battery;
input mat temp oper life;
dataline;
1 1 1 130
..........
3 3 4 60
;
proc glm;
class mat temp oper;
model life=oper mat | temp;
output out=new1 r=resi p=pred;
```

Dependent Variable: life

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	11	59771.19444	5433.74495	7.30	<.0001
Error	24	17875.77778	744.82407		
CorTotal	35	77646.97222			
Source	DF	Type I SS	Mean Square	F Value	Pr > F
oper	3	354.97222	118.32407	0.16	0.9229
mat	2	10683.72222	5341.86111	7.17	0.0036
temp	2	39118.72222	19559.36111	26.26	<.0001
mat*temp	4	9613.77778	2403.44444	3.23	0.0297

Factorial Experiment with Two blocking factors

Use Latin square as blocking scheme

1. Suppose the experimental factors are F1 and F2. A has three levels (1,2, 3) and B has 2 levels. There are 3*2=6 treatment combinations. These treatments can be represented by Latin letters

F1	F2	Treatment
1	1	A
1	2	В
2	1	С
2	2	D
3	1	E
3	2	F

Two blocking factors are Block1 and Block2, each with 6 blocks.

2. A 6×6 Latin square can be used as the blocking scheme:

			Bloc	ck1		
Block2	1	2	3	4	5	6
1	A	В	С	D	E	F
2	В	C	D	E	F	A
3	С	D	E	F	A	В
4	D	E	F	A	В	C
5	E	F	A	В	С	D
6	F	A	В	С	D	E

3. Statistical Model

$$y_{ijkl} = \mu + \alpha_i + \tau_j + \beta_k + (\tau \beta)_{jk} + \theta_l + \epsilon_{ijkl}$$

where, α_i and θ_l are blocking effects, τ_j , β_k and $(\tau\beta)_{jk}$ are the treatment main effects and interactions