Statistics 514: Factorial Design

Lecture 9: Factorial Design

Montgomery: chapter 5
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Examples

Example |. Two factors (A, B) each with two levels (—, +)

Factor B

Factor A
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Three Data for Example |

Ex.l-Data 1
A
B | — +
+ | 27,33 51,51
— 18,22 39,41
EX.I-Data 2
A
B | - +
+ | 38,42 10,14
— 19,21 53,47
EX.I-Data 3
A
B | - +

+ 27,33 62,68

— 21,21 38,42
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Example II: Battery life experiment

An engineer is studying the effective life of a certain type of battery. Two factors, plate
material and temperature, are involved. There are three types of plate materials (1, 2, 3)
and three temperature levels (15, 70, 125). Four batteries are tested at each combination
of plate material and temperature, and all 36 tests are run in random order. The experiment

and the resulting observed battery life data are given below.

temperature
material 15 70 125
1 130,155,74,180 34,40,80,75 20,70,82,58
2 150,188,159,126  136,122,106,115 25,70,58,45
3 138,110,168,160 174,120,150,139  96,104,82,60
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Example III: Bottling Experiment
A soft drink bottler is interested in obtaining more uniform fill heights in the bottles
produced by his manufacturing process. An experiment is conducted to study

three factors of the process, which are

the percent carbonation (A): 10, 12, 14 percent
the operating pressure (B): 25, 30 psi
the line speed (C): 200, 250 bpm
The response is the deviation from the target fill height. Each combination of the

three factors has two replicates and all 24 runs are performed in a random order.

The experiment and data are shown below.
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pressure(B)

25 psi 30 psi

LineSpeed(C) LineSpeed(C)

Carbonation(A) | 200 250 200 250
10 -3,-1 -1,0 -1,0 1,1
12 0,1 2,1 2,3 6,5
14 5,4 7,6 7,9 10,11
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Factorial Design
e a number of factors: F{, Fo, ..., F,.
e each with a number of levels: 1, lo, ..., [,
e number of all possible level combinations (treatments): {1 X [y ... X [,

e interested in (main) effects, 2-factor interactions (2fi), 3-factor interactions
(3fi), etc.

One-factor-a-time design as the opposite of factorial design.

Advantages of factorial over one-factor-a-time
e more efficient (runsize and estimation precision)
e able to accommodate interactions

e results are valid over a wider range of experimental conditions
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Statistical Model (Two Factors: A and B)

e Statistical model is

i=1,2,....a
Yijk = p+ 7+ 85 +(78)ij + € < j=1,2,...,b

[ - grand mean

T, - 1th level effect of factor A (ignores B) (main effects of A)

B; - 7th level effect of factor B (ignores A) (main effects of B)

(73):; - interaction effect of combination 45 (Explain variation not explained by
main effects)

2
€ijk ™ N(O, (0} )
e Over-parameterized model: must include certain parameter constraints. Typically

=0 Y, 8=0 Y, (18)y=0 3,(78)y=0
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Estimates

® Rewrite observation as:

Yijk =Y.+ ;. —Y..)+ @.j. —y..)+ (yz'j. —Yi.. — Y., +v..)+ (Yijk — gij.)

® result in estimates

=1
=Y — Y.
i =Y, — Y.

(Tﬁ)ij =Yij. —Yi. — Y TY.
e predicted value at level combination 27 is
Yijk = Yij.
e Residuals are

€ijk = Yijk — Yij.
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Partitioning the Sum of Squares

e Based on

Yijk =Y.+ U, —Y..)+ @.j. —y..)+ (yz’j. — Y.~ Y, +9..) + (Yijk — @;j.)

e Calculate SST = Z (yijk: — ?...)2

e Right hand side simplifies to

SSa bn >, (T, —9..)"+ df =a—1
SSp : and (G, —7 )+ df =b—1

SSap: 3,3 Uy — U — Y +5.)H df =(a—1)(b—1)
SSE > ok Wik —Fy5.)° df = ab(n —1)

e SST=SSA + SSg + SSAB + SSE

e Using SS/df leads to MSa,MSg, MSag and MSg.
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Testing Hypotheses
1 Main effectsof A: Hy : 4 = ... =71, = 0vs H; : atleast one 7; # O.
2 Main effects of B: Hy : 1 = ... = (3, = 0vs H; : atleastone 3; # 0.
3 Interaction effects of AB:
Hy : (af);; =0foralli, jvs Hy : atleastone (73);; # 0.

e E(MSp)=c2

EMSA)=0?+bnd 77/(a—1)

E(MSp)=0? +any_ 5;/(b—1)

E(MSaB)=0” +n) (76)};/(a—1)(b—1)
e Use F-statistics for testing the hypotheses above:

o SSa/(a=1) o SSp/(b—1) o SSap/(a—1)(b—1)
L Fo = ssp ooty 2P0 = ssp ey 3 F0 = 55 tabn- D)
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Analysis of Variance Table

Source of Sum of Degrees of Mean Fo
Variation Squares Freedom Square

Factor A SSA a—1 MS A Fo
Factor B SSp b—1 MSR Fo

Interaction ~ SSAB (a—1)(b—1) MsSap Fp
Error SSg ab(n — 1) MSg

Total SST abn — 1
1
SST = 3. > Y — Y. /abn; SSA = -3 yi —y? Jabn
ssp = = 3 y% — 12 Jabn; SSeubtotal = = 3. Y42 — 2 Jabn
SSAB = SSgsubtotal — O9A — SSB; SSg=Subtraction

dfg > Oonlyifn > 1. Whenn = 1, no SSg is available so we cannot test the effects. If
we can assume that the interactions are negligible ((T/B)ij = 0), MS 4 becomes a
good estimate of o2 and it can be used as MS 5. Caution: if the assumption is wrong,

then error and interaction are confounded and testing results can go wrong.
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Battery Life Example

data battery;

input mat temp life;
datalines;

11 130

1 1 155

1174

3 3 104
3 3 82
3 3 60

proc glm;

class mat temp;

model life=mat temp mat*temp;
output out=batnew r=res p=pred,;
run;
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Dependent Variable: life

Source
Model
Error

Cor Total

R-Square
0.765210

Source
mat

temp
mat*temp

Sum of

DF Squares Mean Square F Value Pr > F

8 59416.22222 7427.02778 11.00 <.0001
27 18230.75000 675.21296
35 77646.97222
Coeff Var Root MSE life Mean
24.62372 25.98486 105.5278
DF Type | SS Mean Square F Value Pr > F
2 10683.72222 5341.86111 7.91 0.0020
2 39118.72222 19559.36111 28.97 <.0001
4 9613.77778 2403.44444 3.56 0.0186
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Checking Assumptions
1 Errors are normally distributed
Histogram or QQplot of residuals
2 Constant variance
Residuals vs Qij, plot, Residuals vs factor A plot and Residuals vs factor B
3 If n=1, no interaction.

Tukey's Test of Nonadditivity Assume (73);; = v7;3;. Hp : v = 0.

D> vijyiy; —y..(SSa + SSp + y? /ab)]?

SN = abSS 4SS

SSn /1

H0= 85, — s/ (a—Db—1) - 1)~ Fia-ne-a-

— the convenient procedure used for RCBD can be employed.
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Effects Estimation (Battery Experiment)
0. [i=y.. =105.5278

1.Treatment mean response, or cell mean, or predicted value,
Yij = fij = Uij. = fp+ 7, + B + (708),

temperature
material 1 2 3
1 134.75 57.25 57.50
2 155.75 119.75 49.50
3 144.00 145.75 85.50

2. Factor level means
row means y; . for A; column means Yy 4. for B.

material : y;.. = 83.160, yo.. = 108.3333, y3.. = 125.0833
temperature : 1. = 144.8333, yo. = 107.5833, y.3. = 64.1666
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3. Main effects estimates

71 = —22.3612, 7, = 2.8055, 73 = 19.555

B, = 39.3055, 3y = 2.0555, 33 = —41.3611

4. Interactions ((TAﬂ)ij)

temperature
material 1 2 3
1 12.2779 -27.9721 15.6946
2 8.1112 9.3612 -17.4722
3 -20.3888 18.6112 1.7779
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Understanding Interactions
Example | Data 1:

A B resp;
11 18

11 22
12 27
12 33
2 1 39
2 1 41
2 2 51
2 2 51

Dependent Variable: resp

Sum of
Source DF Squares Mean Square F Value Pr > F
A 1 840.5000000 840.5000000 120.07 0.0004
B 1 220.5000000 220.5000000 31.50 0.0050
A*B 1 0.5000000 0.5000000  0.07 0.8025
Error 4 28.000000 7.000000
Cor Total 7 1089.500000
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Interaction plot for A and B (No Interaction)

40 45 50

mean of y1
35

30
|

25

20

A

Difference between level means of B (with A fixed at a level) does not depend on

the level of A; demonstrated by two parallel lines.
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Example | Data 2

A B resp
11 19
1121
1 2 38
1 2 42
2 1 53
2 1 47
2 2 10
2 2 14
Sum of
Source DF Squares Mean Square F Value Pr > F
A 1 2.000000 2.000000 0.22 0.6619
B 1 162.000000  162.000000 18.00 0.0132
A*B 1 1682.000000 1682.000000  186.89 0.0002
Error 4 36.000000 9.000000
Cor Total 7 1882.000000
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Interaction Plot for A and B (Antagonistic Interaction from B to A)

30 40
| |

mean of y2

20
L

A

Difference between level means of B (with A fixed at a level) depends on the level of A. If
the trend of mean response over A reverses itself when B changes from one level to

another, the interaction is said to be antagonistic from B to A. Demonstrated by two lines

with slopes of opposite signs.
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Example | Data 3

A B resp
1121
1121
12 27
12 33
2 1 62
2 1 67
2 2 38
2 2 42
Sum of
Source DF Squares Mean Square F Value Pr > F
A 1 1431.125000 1431.125000 148.69 0.0003
B 1 120.125000 120.125000 12.48 0.0242
A*B 1 561.125000 561.125000  58.30 0.0016
Error 4 38.500000 9.625000
Co Total 7 2150.875000
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Interaction Plot for A and B (Synergistic Interaction from B to A)

60
|

50

mean of y3
40
|

30
|

20
L

Difference between level means of B (with A fixed at a level) depends on the
level of A. If the trend of mean response over A do not change when B changes
from one level to another, the interaction is said to be synergistic; demonstrated

by two unparalleled lines with slopes of the same sign.
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Interaction Plot: Battery Experiment

data battery;

input mat temp life;
datalines;

11 130

proc means noprint;

var life;

by mat temp;

output out=batterymean mean=mn;

symboll v=circle i=join;

symbol2 v=square i=join;
symbol3 v=triangle i=join;
proc gplot;

plot mn*temp=mat;

run;
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Interaction Plot for Material and Temperature

1501

N

40

temp

mat Sancan=a| 888 ) AAA ]
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Multiple comparison when factors don’t interact
When factors don't interact, i.e., the F' test for interaction is not significant in the ANOVA,
factor level means can be compared to draw conclusions regarding their effects on

response.

o Var(y;. ) = 7, Var(y.;.) = 7
o

20'2 B B 20_2
For B or columns : Var(y.;. — Y. j/.) = —

For A or rows : Var(gi,, — 3]1-/,,) = —F;
nb na

e Tukey’s method
. _ 4« (a7ab(n_1)) 2
For rows: CD = 75 \/MSE%

. __ ga(b,ab(n—1)) / 2
For columns: CD = e MSE%

e Bonferroni method: CD = 1 /2/m,ab(n—1)S.E., where S.E. depends on whether for

rows or columns.
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Level mean comparison when A and B interact: An Example

B
A 1 2
1 19,21 38,42

2 53,47 10,14

Compare factor level means of A:

1. = (19 + 21 + 38 4 42) /4 = 30

Jo.. = (53 +47+ 10+ 14)/4 =31 = 71 .

Does Factor A have effect on the response?
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mean of y2
40 50
|

20

When interactions are present, be careful interpreting factor level means (row or column)
comparisons because it can be misleading. Usually, we will directly compare treatment

means (or cell means) instead.
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Multiple comparisons when factors interact: treatment (cell) mean
comparison

When factors interact, multiple comparison is usually directly applied to treatment means
pig = p+ 7 + B + (78)iz vs piryr = p+ 7 + By + (78)ir

® [lij = Yij. and fii; = Yir 7.

_ . 2
o Var(y;j. — yz-/j/.):%
ab(ab—1)

e there are ab treatment means and mo = 5

pairs.

e Tukey’s method:

— go(ab,ab(n — 1)) MSEE

V2 n

e Bonferroni’'s method.

2
CDh = ta/Qm,ab(n—l) \/MSE_
n
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SAS Code and Output

proc glm data=battery;

class mat temp;

model life=mat temp mat*temp;
means mat|temp /tukey lines;
Ismeans mat|temp/tdiff adjust=tukey;
run;

The GLM Procedure
Least Squares Means
Adjustment for Multiple Comparisons: Tukey

LSMEAN
mat life LSMEAN Number
1 83.166667 1
2 108.333333 2
3 125.083333 3
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Least Squares Means for Effect mat
t for HO: LSMean(i)=LSMean(j) / Pr

Dependent Variable: life

il 1
1
2 2.372362
0.0628
3 3.951318
0.0014

-2.37236
0.0628

1.578956
0.2718

> |t]

-3.95132
0.0014

-1.57896
0.2718
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Output (continued)

Least Squares Means
Adjustment for Multiple Comparisons: Tukey

LSMEAN
temp life LSMEAN Number
1 144.833333 1
2 107.583333 2
3 64.166667 3

Least Squares Means for Effect temp
t for HO: LSMean(i)=LSMean(j) / Pr > [t
Dependent Variable: life

il 1 2 3
1 3.51141 7.604127
0.0044 <.0001
2 -3.51141 4.092717
0.0044 0.0010
3 -7.60413 -4.09272
<.0001 0.0010
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Output (continued)

The GLM Procedure
Least Squares Means
Adjustment for Multiple Comparisons: Tukey

LSMEAN
mat temp life LSMEAN Number
1 1 134.750000 1
1 2 57.250000 2
1 3 57.500000 3
2 1 155.750000 4
2 2 119.750000 5
2 3 49.500000 6
3 1 144.000000 7
3 2 145.750000 8
3 3 85.500000 9
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Output

-4.2179
0.0065
-4.20429
0.0067
1.142915
0.9616
-0.81637
0.9953
-4.63969
0.0022
0.503427
0.9999
0.59867
0.9995
-2.68041
0.2017

4.2179
0.0065

0.013606
1.0000
5.360815
0.0003
3.401533
0.0460
-0.42179
1.0000
4.721327
0.0018
4.81657
0.0014
1.537493
0.8282

4.204294
0.0067

-0.01361
1.0000

5.347209
0.0004
3.387926
0.0475
-0.4354
1.0000
4.707721
0.0019
4.802964
0.0015
1.523887
0.8347

4
-1.14291 0.816368
0.9616 0.9953
-5.36082 -3.40153
0.0003 0.0460
-5.34721 -3.38793
0.0004 0.0475
1.959283
0.5819
-1.95928
0.5819
-5.78261 -3.82332
0.0001 0.0172
-0.63949 1.319795
0.9991 0.9165
-0.54425 1.415038
0.9997 0.8823
-3.82332 -1.86404
0.0172 0.6420
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Output (continued)

il

6

4.63969
0.0022
0.42179
1.0000
0.435396
1.0000
5.782605
0.0001
3.823323
0.0172

5.143117
0.0006
5.23836
0.0005
1.959283
0.5819

-0.50343
0.9999
-4.72133
0.0018
-4.70772
0.0019
0.639488
0.9991
-1.31979
0.9165
-5.14312
0.0006

0.095243
1.0000

-3.18383
0.0743

-0.59867
0.9995
-4.81657
0.0014
-4.80296
0.0015
0.544245
0.9997
-1.41504
0.8823
-5.23836
0.0005
-0.09524
1.0000

-3.27908
0.0604

2.680408
0.2017
-1.53749
0.8282
-1.52389
0.8347
3.823323
0.0172
1.86404
0.6420
-1.95928
0.5819
3.183834
0.0743
3.279077
0.0604
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Fitting Response Curves or Surfaces

Battery Experiment:

180
160
140
1307

120

100
907
807
707
60

N

401

temp
mat eee i B88) AAAJ

Goal: Model the functional relationship between lifetime and temperature at every

material level.
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e Material is qualitative while temperature is quantitative

e \Want to fit the response using effects of material, temperature and their
interactions

e Temperature has quadratic effect. Could use orthogonal polynomials as
before. Here we will simply ¢ and t2.

e Levels of material need to be converted to dummy variables denoted by
and xo as follows.

mat | r{y I9

1 1 0
2 0 1
3 -1 -1

e For convenience, convert temperature to -1,0 and 1 using

_ temperature — 70
- 55
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Fitting Response Curve: Model matrix

mat temp ==> x1 x2 t 72 x1*t  x2* X1*2 Xx2*t2

1 15 1 0 -1 1 -1 0 1 0

1 70 1 0 0 0 0 0 0 0
1 125 1 0 1 1 1 0 1 0
2 15 0 1 -1 1 0 1 0 1
2 70 0 1 0 0 0 0 0 0
2 125 0 1 1 1 0 -1 0 1
3 15 -1 -1 -1 1 1 -1 -1 -1

3 70 -1 -1 0 0 0 0 0 0

3 125 -1 -1 1 1 -1 1 -1 -1

The following model is used:
Yiik = Bo + Bix1 + Boxo + Bat + Baxit + Psxat + Bet” + Brait® + Bswat” + €5k
Want to estimate the coefficients: 3o, (81, (2, . . ., s using regression
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SAS Code: Battery Life Experiment

data life;

input mat temp vy @Q@;

if mat=1
if mat=1
if mat=2
if mat=2
if mat=3
if mat=3

then
then
then
then
then
then

t=(temp-70)/55;
t2=t*t; x1t=x1*t; X2t=x2*t;

x1t2=x1*t2;
datalines;

1 15 130 1 15
115 74 1 15
2 15 150 2 15
2 15 159 2 15
3 15 138 3 15
3 15 168 3 15
proc reg;

x1=1;
x2=0;
x1=0;
x2=1;
x1=-1,
x2=-1;

X212=x2*t2;

1551 70 34 1 70 40 1 125
180 1 70 80 1 70 75 1 125
188 2 70 136 2 70 122 2 125
126 2 70 106 2 70 115 2 125
110 3 70 174 3 70 120 3 125
160 3 70 150 3 70 139 3 125

model y=x1 x2 t x1t x2t t2 x1t2 x2t2;

run;

20 1 125 70
82 1 125 58
25 2 125 70
58 2 125 45
96 3 125 104
82 3 125 60
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SAS output
Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F
Model 8 59416 7427.02778 11.00 <.0001
Error 27 18231 675.21296
CorrectedTotal 35 77647

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |[f|
Intercept 1 107.58333 7.50118 14.34 <.0001
x1 1 -50.33333 10.60827 -4.74 <.0001
X2 1 12.16667 10.60827 1.15 0.2615
t 1 -40.33333 5.30414 -7.60 <.0001
x1t 1 1.70833 7.50118 0.23 0.8216
x2t 1 -12.79167 7.50118 -1.71 0.0996
t2 1 -3.08333 9.18704 -0.34 0.7398
x1t2 1 41.95833 12.99243 3.23 0.0033
x2t2 1 -14.04167 12.99243 -1.08 0.2894
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Results
From the SAS output, the fitted model is

:& = 107.58 — 5033%1 — 1217%2 — 40.33¢ + 1.71$1t — 1279$2t
—3.08t%2 4+ 41.96x21t% — 14.04x512

Note that terms with insignificant coefficients are still kept in the fitted model here,
In practice, model selection may be employed to remove unimportant terms and

choose the best fitted model. But we will not pursue it in this course.
The model above are in terms of both &1, 29 and t. We can specify the level of

material, that is, the values of dummy variable x{ and x 2, to derive fitted

response curves for material at different levels.
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Fitted Response Curves

Three response curves:

e Material atlevel 1 (x1 = 1, x2 = 0)

E(y1:) = 57.25 — 38.62t + 38.88¢t"

e Material atlevel 2 (x1 = 0,22 = 1)

E(ya:) = 119.75 — 53.12t — 17.12¢°

e Material atlevel 3 (x1 = —1,x2 = —1)
E(ys;) = 145.74 — 29.25t — 31¢°

Where ¢ — temper?éure—m.

These curves can be used to predict lifetime of battery at any temperature between 15 and

125 degree. But one needs to be careful about extrapolation. For example, the fitted curve
at Material level 1 suggests that lifetime of a battery can be infinity when temperature goes

to infinity, which is clearly false.
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General Factorial Design and Model
e Factorial Design - including all possible level combinations
e a levels of Factor A, b levels of Factor B, . ..
e (Straightforward ANOVA if all fixed effects )
e In 3 factor model — nabc observations
e Need n > 1 to test for all possible interactions

e Statistical Model (3 factor)

Yijkt = 1+ 7 + 85 + 6 + (78)ig + (8Y) ik + (77)ix + (787)ijr + €ijri

1=1,2,...,a
< 7=1,2,...,b
k=1,2,...,c
L (=1,2,...,n
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Analysis of Variance Table

Source of  Sum of Degrees of Mean Fy
Variation  Squares Freedom Square
Factor A SSa a—1 MS A Fy
Factor B SSy b—1 MSg Fy
Factor C SSc c—1 MSc Fy
AB SSAB (a—1)(b—-1) MSag  Fo
AC SSAC (a—1)(c—1) MSac  Fp
BC SSpC (b—1)(c—1) MSgc  Fp
ABC SSapc  (a—1)(b—1)(c—1) MSasc Fo
Error SSg abc(n — 1) MSg
Total SST abcn — 1
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Bottling Experiment: SAS Code

option nocenter
data bottling;
input carb pres spee devi;

datalines;

1 1 1 -3
1 1 1 -1
1 1 2 -1
1 1 2 O
3 1 9
3 2 10
3 2 2 11
proc gim;

class carb pres spee;
model devi=carb|pres|spee;
run;
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Bottling Experiment: SAS Output

Dependent Variable: devi

Sum of
Source DF Squares
Model 11 328.1250000
Error 12 8.5000000
Co Total 23 336.6250000
R-Square Coeff Var Root MSE
0.974749 26.93201 0.841625
Source DF Type | SS
carb 2 252.7500000
pres 1 45.3750000
carb*pres 2 5.2500000
spee 1 22.0416667
carb*spee 2 0.5833333
pres*spee 1 1.0416667
carb*pres*spee 2 1.0833333

Mean Square
29.8295455
0.7083333

devi Mean
3.125000

Mean Square
126.3750000
45.3750000
2.6250000
22.0416667
0.2916667
1.0416667
0.5416667

F Value
42.11

F Value
178.41
64.06
3.71
31.12
0.41
1.47
0.76

Pr
<.00

Pr

> F
01

> F

<.0001
<.0001
0.0558
0.0001
0.6715
0.2486

0.4869

Page 48



Statistics 514: Factorial Design

Interaction Plot for Carb and Pressure

=
oS
L

>
[N
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General Factorial Model
e Usual assumptions and diagnostics
e Multiple comparisons: simple extensions of the two-factor case
e Often higher order interactions are negligible.
e Beyond three-way interactions difficult to picture.

e Pooled together with error (increase dfg)
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Blocking in Factorial Design: Example

Battery Life Experiment:

An engineer is studying the effective lifetime of some battery. Two factors, plate material
and temperature, are involved. There are three types of plate materials (1, 2, 3) and three
temperature levels (15, 70, 125). Four batteries are tested at each combination of plate
material and temperature, and all 36 tests are run in random order. The experiment and

the resulting observed battery life data are given below.
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temperature
material 15 70 125
1 130,155,74,180 34,40,80,75 20,70,82,58
2 150,188,159,126  136,122,106,115 25,70,58,45
3 138,110,168,160 174,120,150,139  96,104,82,60

If we assume further that four operators (1,2,3,4) were hired to conduct the
experiment. It is known that different operators can cause systematic difference in

battery lifetime. Hence operators should be treated as blocks

The blocking scheme is every operator conduct a single replicate of the full factorial

design

For each treatment (treatment combination), the observations were in the order of

the operators 1, 2, 3, and 4.

This is a blocked factorial design
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Statistical Model for Blocked Factorial Experiment

Yijk = W+ Ti + 05 + (78)ij + 0k + €ijk

1=1,2,...,a,75=1,2,... ,band k = 1,2,... ,n, 0 is the effect of the kth
block.

randomization restriction is imposed. (complete block factorial design).
interactions between blocks and treatment effects are assumed to be negligible.

The previous ANOVA table for the experiment should be modified as follows:
Add: Block Sum of Square

Modify: Error Sum of Squares:
(new)SSE = (0ld)SSE — SSgjgcks D-F (ab — 1)(n — 1)

other inferences should be modified accordingly.
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SAS Code and Output

data battery;

input mat temp oper life;
dataline;

111 130

proc glm;

class mat temp oper;

model life=oper mat|temp;
output out=newl r=resi p=pred;
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Dependent Variable: life

Source
Model
Error
CorTotal

Source
oper

mat

temp
mat*temp

DF

11
24
35

DF

N

Sum of
Squares

59771.19444
17875.77778
77646.97222

Type | SS

354.97222
10683.72222
39118.72222
9613.77778

Mean Square
5433.74495
744.82407

Mean Square
118.32407
5341.86111
19559.36111
2403.44444

F Value
7.30

F Value
0.16
7.17

26.26
3.23

Pr > F
<.0001

Pr >
0.9229
0.0036
<.0001
0.0297

F
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Use Latin square as blocking scheme
1. Suppose the experimental factors are F1 and F2. A has three levels (1,2, 3) and B has 2

levels. There are 3*2=6 treatment combinations. These treatments can be represented by

Latin letters

F1

W W NN PP

Factorial Experiment with Two blocking factors

F2

N P NP DN

Treatment

A

mmoQO W

Page 56



Statistics 514: Factorial Design

Two blocking factors are Blockl and Block2, each with 6 blocks.

2. A 6 X6 Latin square can be used as the blocking scheme:

Blockl
Block?2 1 2 3 4 5 6
1 A B C D E F
2 B C D E F A
3 C D E F A B
4 D E F A B C
5 E F A B C D
6 F A B C D E

3. Statistical Model
Yijki = b+ i + 75 + Br + (78) k. + 01 + €K1

where, o; and 6; are blocking effects, 7;, Ok and (73) % are the treatment main effects

and interactions
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