Lecture 8: Balanced Incomplete Block Design

Montgomery Section 4.4

Catalyst Experiment

Four catalysts are being investigated in an experiment. The experimental procedure consists of selecting a batch raw material, loading the pilot plant, applying each catalyst in a separate run and observing the reaction time. The batches of raw material are considered as blocks, however each batch is only large enough to permit three catalysts to be run.

Block(raw material)						
Catalyst	1	2	3	4	y_i .	
1	73	74	-	71	218	
2	-	75	67	72	214	
3	73	75	68	-	216	
4	75	-	72	75	222	
$y_{.j}$	221	224	207	218	870= <i>y</i>	

Balanced Incomplete Block Design (BIBD)

Example 1.

		block				
treatment	1	2	3			
А	Α	-	Α	1	0	1
В	В	В	-	1	1	0
С	-	С	С	0	1	1

$$a = 3, b = 3, k = 2, r = 2, \lambda = 1$$

Incidence Matrix: $\mathcal{N}=(n_{ij})_{a\times b}$ where $n_{ij}=1$, if treatment i is run in block j; =0 otherwise.

Example 2.

			blo	ock								
treatment	1	2	3	4	5	6						
Α	А	Α	Α	-	-	-	1	1	1	0	0	0
В	В	-	-		В							
С	-	С	-	С	-	С	0	1	0	1	0	1
D	-	-	D	-	D	D	0	0	1	0	1	1

$$a = 4, b = 6, k = 2, r = 3, \lambda = 1, \mathcal{N} = (n_{ij})_{4 \times 6}$$

BIBD: Design Properties

- ullet there are a treatments and b blocks.
- ullet each block contains k (different) treatments.
- each treatment appears in r blocks.
- ullet each pair of treatments appears together in λ blocks.

a, b, k, r, and λ are not independent

• N = ar = bk, where N is the total number of runs;

- $\lambda(a-1) = r(k-1)$:
 - 1. for any fixed treatment i_0
 - 2. two different ways to count the total number of pairs including treatment i_0 in the experiment.
 - I. a-1 possible pairs, each appears in λ blocks, so $\lambda(a-1)$;
 - II. treatment i_0 appears in r blocks. Within each block, there are k-1 pairs including i_0 , so r(k-1)
- $b \ge a$ (a brainteaser for math/stat students).
- Nonorthogonal design

Extensive list of BIBDs can be found in Fisher and Yates (1963) and Cochran and Cox (1957).

BIBD: Statistical Model

Statistical Model

$$y_{ij} = \mu + \tau_i + \beta_j + \epsilon_{ij}$$

$$\begin{cases} i = 1, 2, \dots, a \\ j = 1, 2, \dots, b \end{cases}$$

- additive model (without interaction)
- Not all y_{ij} exist because of incompleteness
- Usual treatment and block restrictions : $\sum \tau_i = 0$; $\sum \beta_i = 0$
- Nonorthogonality of treatments and blocks

Use Type III Sums of Squares and Ismeans

Model Estimates

• Least squares estimates for μ , etc.

$$\hat{\mu} = \frac{y_{..}}{N}; \qquad \hat{\tau}_i = \frac{kQ_i}{\lambda a}; \qquad \hat{\beta}_j = \frac{rQ_j'}{\lambda b}$$

where

$$Q_i = y_{i.} - \frac{1}{k} \sum_{i,j} n_{ij} y_{.j};$$
 $Q'_j = y_{.j} - \frac{1}{r} \sum_{i,j} n_{ij} y_{i.}$

$$Var(Q_i) = Var(y_{i.}) + Var\left(\frac{1}{k}\sum n_{ij}y_{.j}\right) - 2Cov\left(y_{i.}, \frac{1}{k}\sum n_{ij}y_{ij}\right)$$

$$= r\sigma^2 + \frac{r}{k^2}k\sigma^2 - \frac{2}{k}r\sigma^2$$

$$= \frac{(k-1)r}{k}\sigma^2$$

•
$$\operatorname{Var}(\hat{\tau}_i) = \left(\frac{k}{\lambda a}\right)^2 \operatorname{Var}(Q_i) = \left(\frac{k}{\lambda a}\right)^2 \frac{(k-1)r}{k} \sigma^2 = \frac{k(a-1)}{\lambda a^2} \sigma^2; \text{ S.E.}_{\hat{\tau}_i} =?$$

•
$$\operatorname{Var}(\hat{\tau}_i - \hat{\tau}_j) = \frac{2k\sigma^2}{\lambda a}$$
; S.E. $\hat{\tau}_i - \hat{\tau}_j = ?$

Analysis of Variance Table

Source of	Sum of	Degrees of	Mean	$\overline{F_0}$
Variation	Squares	Freedom	Square	
Blocks	SS_{Block}	b - 1	MS_{Block}	
Treatment	$SS_{\mathrm{Treatment}}$	a-1	$MS_{\mathrm{Treatment}}$	F_0
Error	SS_E	N-a-b+1	MS_{E}	
Total	SS_T	N-1		

$$\bullet$$
 $\mathrm{SS}_{\mathrm{T}} = \sum y_{ij}^2 - y_{..}^2/N$

$$\bullet$$
 $\mathrm{SS}_{\mathrm{Block}} = \frac{1}{k} \sum y_{.j}^2 - y_{..}^2/N$

• SS_{Treatments} needs adjustment for incompleteness

$$Q_i = y_{i.} - \frac{1}{k} \sum_{j=1}^b n_{ij} y_{.j}$$
 where $n_{ij} = \begin{cases} 1 & \text{if trt } i \text{ in blk } j \\ 0 & \text{otherwise} \end{cases}$

- trt *i*'s **total** minus trt *i*'s block averages
- $-\sum Q_i=0$

$$SS_{Treatment(adjusted)} = k \sum Q_i^2 / \lambda a = \frac{\lambda a}{k} \sum \hat{\tau}_i^2$$

- ullet SS_{E} by subtraction
- If $F_0 > F_{\alpha,a-1,N-a-b+1}$ then reject H_0

Mean Tests and Contrasts

- Must compute adjusted means (Ismeans)
- ullet Adjusted mean is $\widehat{\mu}+\widehat{ au}_i$
- Standard error of adjusted mean is $\sqrt{\mathrm{MS_E}(\frac{k(a-1)}{\lambda a^2} + \frac{1}{N})}$
- Contrasts based on adjusted treatment totals

For a contrast: $\sum c_i \mu_i$

Its estimate: $\sum c_i \hat{\tau}_i = \frac{k}{\lambda a} \sum c_i Q_i$

Contrast sum of squares:

$$SS_C = \frac{k(\sum_{i=1}^a c_i Q_i)^2}{\lambda a \sum_{i=1}^a c_i^2}$$

Pairwise Comparison

- Pairwise comparison $\tau_i \tau_j$:
 - 1. Bonferroni:

$$CD = t_{\alpha/2m, ar-a-b+1} \sqrt{MS_E \frac{2k}{\lambda a}}.$$

2. Tukey:

$$CD = \frac{q_{\alpha}(a, ar - a - b + 1)}{\sqrt{2}} \sqrt{MS_{E} \frac{2k}{\lambda a}}$$

SAS Code and output

```
options nocenter ps=60 ls=75;
data example;
 input trt block resp @@;
datalines;
1 1 73 1 2 74 1 4 71 2 2 75 2 3 67 2 4 72
3 1 73 3 2 75 3 3 68 4 1 75 4 3 72 4 4 75
proc glm;
class block trt;
model resp = block trt;
lsmeans trt / tdiff pdiff adjust=bon stderr;
lsmeans trt / pdiff adjust=tukey;
contrast 'a' trt 1 -1 0 0;
estimate 'b' trt 0 0 1 -1;
run;
```

SAS output

Dependent	Variable:	resp
-----------	-----------	------

Dependent variable. resp					
		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	6	77.7500000	12.95833333	19.94	0.0024
Error	5	3.25000000	0.6500000		
Corrected Total	11	81.0000000			
Source	DF	Type I SS	Mean Square	F Value	Pr > F
block	3	55.00000000	18.33333333	28.21	0.0015
trt	3	22.75000000	7.58333333	11.67	0.0107
Source	DF	Type III SS	Mean Square	F Value	Pr > F
block	3	66.08333333	22.02777778	33.89	0.0010
trt	3	22.75000000	7.58333333	11.67	0.0107

Least Squares Means

Adjustment for Multiple Comparisons: Bonferroni

		Standard		LSMEAN
trt	resp LSMEAN	Error	Pr > t	Number
1	71.3750000	0.4868051	<.0001	1
2	71.6250000	0.4868051	<.0001	2
3	72.0000000	0.4868051	<.0001	3
4	75.0000000	0.4868051	<.0001	4

Bonferr	oni Method:			
i/j	1	2	3	4
1		-0.35806	-0.89514	-5.19183
		1.0000	1.0000	0.0209
2	0.358057		-0.53709	-4.83378
	1.0000		1.0000	0.0284
3	0.895144	0.537086		-4.29669
	1.0000	1.0000		0.0464
4	5.191833	4.833775	4.296689	
	0.0209	0.0284	0.0464	
Tukey's	Method:			
i/j	1	2	3	4
1		0.9825	0.8085	0.0130
2	0.9825		0.9462	0.0175
3	0.8085	0.9462		0.0281
4	0.0130	0.0175	0.0281	

Dependent Variable: resp

Contrast	DF	Contrast SS	Mean Square	F Value	Pr > F
c1	1	0.08333333	0.08333333	0.13	0.7349

Standard

Parameter	Estimate	Error	t Value	Pr > t
b	-3.0000000	0.69821200	-4.30	0.0077

Other Incomplete Designs

- Youden Square
- Partially Balanced Incomplete Block Design
- Cyclic Designs
- Square, Cubic, and Rectangular Lattices