Lecture 6: Block Designs

Montgomery: Chapter 4

Nuisance Factor (may be present in experiment)

- Has effect on response but its effect is not of interest
- If unknown → Protecting experiment through randomization
- If known (measurable) but uncontrollable → Analysis of Covariance (Chapter 15 or 14 Section 3)
- If known and controllable → Blocking

Penicillin Experiment

In this experiment, four penicillin manufacturing processes (A, B, C and D) were being investigated. Yield was the response. It was known that an important raw material, corn steep liquor, was quite variable. The experiment and its results were given below:

	blend 1	blend 2	blend 3	blend 4	blend 5
\overline{A}	891	844	812	871	79_{3}
B	883	77_{2}	87_{1}	92_{3}	814
C	97_{2}	92_{3}	87_{4}	89_{2}	80_{1}
D	94_{4}	79_{1}	85_{3}	844	88_{2}

- Blend is a nuisance factor, treated as a block factor;
- (Complete) Blocking: all the treatments are applied within each block, and they are compared within blocks.
- Advantage: Eliminate blend-to-blend (between-block) variation from experimental error variance when comparing treatments.
- Cost: degree of freedom.

Randomized Complete Block Design

- b blocks each consisting of (partitioned into) a experimental units
- a treatments are randomly assigned to the experimental units within each block
- Typically after the runs in one block have been conducted, then move to another block.
- Typical blocking factors: day, batch of raw material etc.
- Results in restriction on randomization because randomization is only within blocks.
- Data within a block are related to each other. When a=2, randomized complete block design becomes paired two sample case.

Statistical Model

- b blocks and a treatments
- Statistical model is

$$y_{ij} = \mu + \tau_i + \beta_j + \epsilon_{ij}$$

$$\begin{cases} i = 1, 2, \dots, a \\ j = 1, 2, \dots, b \end{cases}$$

 μ - grand mean

 au_i - ith treatment effect

 β_i - jth block effect

$$\epsilon_{ij} \sim N(0, \sigma^2)$$

- The model is additive because within a fixed block, the block effect is fixed; for a fixed treatment, the treatment effect is fixed across blocks. In other words, blocks and treatments do not interact.
- parameter constraints: $\sum_{i=1}^{a} \tau_i = 0;$ $\sum_{j=1}^{b} \beta_j = 0$

Estimates for Parameters

• Rewrite observation y_{ij} as:

$$y_{ij} = \overline{y}_{..} + (\overline{y}_{i.} - \overline{y}_{..}) + (\overline{y}_{.j} - \overline{y}_{..}) + (y_{ij} - \overline{y}_{i.} - \overline{y}_{.j} + \overline{y}_{..})$$

Compared with the model

$$y_{ij} = \mu + \tau_i + \beta_j + \epsilon_{ij},$$

we have

$$\hat{\mu} = \overline{y}_{..}$$

$$\hat{\tau}_{i} = \overline{y}_{i.} - \overline{y}_{..}$$

$$\hat{\beta}_{j} = \overline{y}_{.j} - \overline{y}_{..}$$

$$\hat{\epsilon}_{ij} = y_{ij} - \overline{y}_{i.} - \overline{y}_{.j} + \overline{y}_{..}$$

Sum of Squares (SS)

• Can partition $SS_T = \sum \sum (y_{ij} - \overline{y}_{..})^2$ into

$$b\sum (\overline{y}_{i.} - \overline{y}_{..})^2 + a\sum (\overline{y}_{.j} - \overline{y}_{..})^2 + \sum \sum (y_{ij} - \overline{y}_{i.} - \overline{y}_{i.} - \overline{y}_{.j} + \overline{y}_{..})^2$$

$$SS_{\text{Treatment}} = b \sum (\overline{y}_{i.} - \overline{y}_{..})^{2} = b \sum \hat{\tau}_{i}^{2} \quad \text{df} = a - 1$$

$$SS_{\text{Block}} = a \sum (\overline{y}_{.j} - \overline{y}_{..})^{2} = a \sum \hat{\beta}_{j}^{2} \quad \text{df} = b - 1$$

$$SS_{\text{E}} = \sum \sum (y_{ij} - \overline{y}_{i} - \overline{y}_{j} + \overline{y}_{.})^{2} = \sum \sum \hat{\epsilon}_{ij}^{2} \quad \text{df} = (a - 1)(b - 1).$$

Hence:

- $SS_T = SS_{Treatment} + SS_{Block} + SS_E$
- The Mean Squares are

$$MS_{Treatment} = SS_{Treatment}/(a-1), MS_{Block} = SS_{Block}/(b-1),$$
 and $MS_{E} = SS_{E}/(a-1)(b-1).$

Testing Basic Hypotheses

- $H_0: \tau_1 = \tau_2 = \ldots = \tau_a = 0$ vs $H_1:$ at least one is not
- Can show:

$$\begin{split} &\mathsf{E}(\mathsf{MS_E}) \texttt{=} \sigma^2 \\ &\mathsf{E}(\mathsf{MS_{Treatment}}) \texttt{=} \ \sigma^2 + b \sum_{i=1}^a \tau_i^2/(a-1) \\ &\mathsf{E}(\mathsf{MS_{Block}}) \texttt{=} \ \sigma^2 + a \sum_{j=1}^b \beta_j^2/(b-1) \end{split}$$

• Use F-test to test H_0 :

$$F_0 = \frac{\text{MS}_{\text{Treatment}}}{\text{MS}_{\text{E}}} = \frac{\text{SS}_{\text{Treatment}}/(a-1)}{\text{SS}_{\text{E}}/((a-1)(b-1))}$$

- Caution testing block effects
 - Usually not of interest.
 - Randomization is restricted: Differing opinions on F-test for testing blocking effects.
 - Can use ratio MS_{Block}/MSE to check if blocking successful.
 - Block effects can be random effects. (considered fixed effects in this chapter)

Analysis of Variance Table

Source of	Sum of	Degrees of	Mean	F_0
Variation	Squares	Freedom	Square	
Blocks	$SS_{ m Block}$	b-1	MS_{Block}	
Treatment	$SS_{\mathrm{Treatment}}$	a-1	$MS_{\mathrm{Treatment}}$	F_0
Error	SS_{E}	(b-1)(a-1)	MS_{E}	
Total	SS_{T}	ab-1		

$$SS_{\mathrm{T}} = \sum \sum y_{ij}^2 - y_{..}^2/N$$

$$SS_{Treatment} = \frac{1}{b} \sum y_{i.}^2 - y_{..}^2 / N$$

$$SS_{\text{Block}} = \frac{1}{a} \sum y_{.j}^2 - y_{..}^2 / N$$

$$SS_E = SS_T - SS_{Treatment} - SS_{Block}$$

Decision Rule: If $F_0 > F_{\alpha,a-1,(b-1)(a-1)}$ then reject H_0

Example

An experiment was designed to study the performance of four different detergents in cleaning clothes. The following "cleanness" readings (higher=cleaner) were obtained with specially designed equipment for three different types of common stains. Is there a difference between the detergents?

	Stain 1	Stain 2	Stain 3
Detergent 1	45	43	51
Detergent 2	47	46	52
Detergent 3	48	50	55
Detergent 4	42	37	49

$$\sum \sum y_{ij} = 565$$
 and $\sum \sum y_{ij}^2 = 26867$

$$y_{1.}=139, y_{2.}=145, y_{3.}=153$$
 and $y_{4.}=128; y_{.1}=182, y_{.2}=176,$ and $y_{.3}=207$

$$SS_T = 26867 - 565^2/12 = 265$$

$$SS_{Trt} = (139^2 + 145^2 + 153^2 + 128^2)/3 - 565^2/12 = 111$$

$$\mathrm{SS}_{\mathrm{Block}} = (182^2 + 176^2 + 207^2)/4 - 565^2/12 = 135$$

$$SS_E = 265 - 111 - 135 = 19;$$
 $F_0 = (111/3)/(19/6) = 11.6;$ P-value < 0.01

Checking Assumptions (Diagnostics)

- Assumptions
 - Model is additive (no interaction between treatment effects and block effects) (additivity assumption)
 - Errors are independent and normally distributed
 - Constant variance
- Checking normality:
 - Histogram, QQ plot of residuals, Shapiro-Wilk Test.
- Checking constant variance
 - Residual Plot: Residuals vs \hat{y}_{ij}
 - Residuals vs blocks
 - Residuals vs treatments

Checking Assumptions (Continued)

- Additivity
 - Residual Plot: residuals vs \hat{y}_{ij}
 - If residual plot shows curvilinear pattern, interaction between treatment and block likely exists
 - Interaction: block effects can be different for different treatments
- Formal test: Tukey's One-degree Freedom Test of Non-additivity
- If interaction exists, usually try transformation to eliminate interaction

Treatments Comparison

- Multiple Comparisons/Contrasts
 - procedures (methods) are similar to those for Completely Randomized
 Design (CRD)

n is replaced by b in all formulas

Degrees of freedom error is (b-1)(a-1)

- Example : Comparison of Detergents
 - Tukey's Method ($\alpha=.05$)

$$q_{\alpha}(a, df) = q_{\alpha}(4, 6) = 4.896.$$

$$CD = \frac{q_{\alpha}(4,6)}{\sqrt{2}} \sqrt{\text{MSE}(\frac{1}{b} + \frac{1}{b})} = 4.896 \sqrt{\frac{19}{6*3}} = 5.001$$

Comparison of Treatment Means

Treatments

4	1	2	3
42.67	46.33	48.33	51.00
Α	Α		
	В	В	В

Using SAS

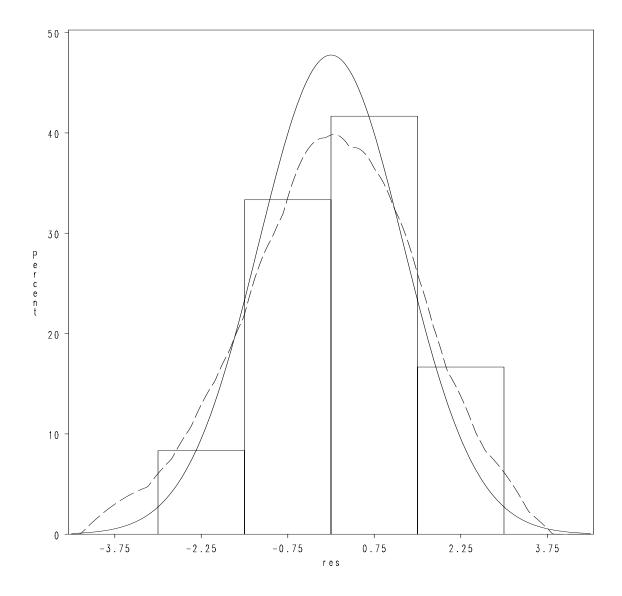
```
options nocenter ls=78;
goptions colors=(none);
symbol1 v=circle; axis1 offset=(5);
data wash;
 input stain soap y @@;
 cards;
1 1 45 1 2 47 1 3 48 1 4 42 2 1 43 2 2 46 2 3 50 2 4 37 3 1 51 3 2
52 3 3 55 3 4 49 ;
proc glm;
 class stain soap;
model y = soap stain;
 means soap / alpha=0.05 tukey lines;
 output out=diag r=res p=pred;
proc univariate noprint normal;
 gqplot res / normal (L=1 mu=0 sigma=est);
histogram res /normal (L=1 mu=0 sigma=est) kernel(L=2 K=quadratic);
```

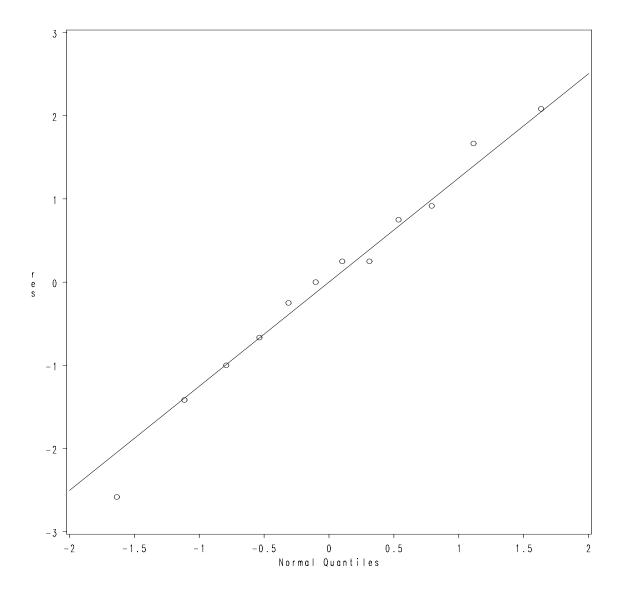
```
run;
proc gplot;
plot res*soap / haxis=axis1;
plot res*stain / haxis=axis1;
plot res*pred;
run;
```

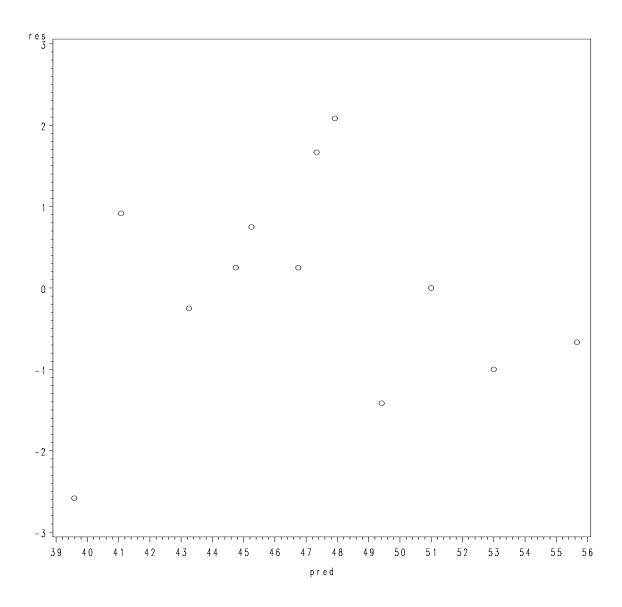
Output

Dependent V	Variable: y				
		Sum	of		
Source	DE	Squa:	res Mean Square	e F Value	Pr > F
Model	5	246.0833	49.216666	7 15.68	0.0022
Error	6	18.8333	3.138888	9	
Corrected 5	Total 11	264.9166	667		
R-Square	Coeff Var	Root M	SE y Mean		
0.928908	3.762883	1.77169	91 47.08333		
Source	DE	Type I	SS Mean Square	e F Value	Pr > F
soap	3	110.9166	36.972222	2 11.78	0.0063
stain	2	2 135.1666	667 67.5833333	3 21.53	0.0018
Source	DE	Type III	SS Mean Square	e F Value	Pr > F
soap	3	3 110.9166	36.972222	2 11.78	0.0063
stain		135.1666	667 67.5833333	3 21.53	0.0018

Tukey's Studentized Range (HSD) Test for res 0.05 Alpha 6 Error Degrees of Freedom Error Mean Square 3.138889 Critical Value of Studentized Range 4.89559 Minimum Significant Difference 5.007 Means with the same letter are not significantly different. Tukey Grouping Mean N soap 51.000 3 Α Α Α 48.333 Α 46.333 3 В Α 1 В 42.667 3 4 В







Tukey's Test for Non-additivity

- Additivity assumption (or no interaction assumption) is crucial for block designs or experiments.
- ullet To check the interaction between block and treatment **fully** needs (a-1)(b-1) degree of freedom. It is not affordable when without replicates.
- Instead consider a special type of interaction. Assume following model (pages 190-193 or pages 178-181)

$$y_{ij} = \mu + \tau_i + \beta_j + \gamma \tau_i \beta_j + \epsilon_{ij}$$

• $H_0: \gamma = 0 \text{ vs } H_1: \gamma \neq 0$

Sum of Squares caused by possible interaction:

$$\mathrm{SS}_N = \frac{\left[\sum_i \sum_j y_{ij} y_{i.} y_{.j} - y_{..} (\mathrm{SS}_{\mathrm{Trt}} + \mathrm{SS}_{\mathrm{Blk}} + y_{..}^2/ab)\right]^2}{ab\mathrm{SS}_{\mathrm{Trt}} \mathrm{SS}_{\mathrm{Blk}}} \quad df = 1.$$

Remaining error SS: $SS'_{E} = SS_{E} - SS_{N}$, df = (a-1)(b-1) - 1

Test Statistic:

$$F_0 = \frac{\mathrm{SS}_N/1}{\mathrm{SS}'_{\mathrm{E}}/[(a-1)(b-1)-1]} \sim F_{1,(a-1)(b-1)-1}$$

• Decision rule: Reject H_0 if $F_0 > F_{\alpha,1(a-1)(b-1)-1}$.

A Convenient Procedure to Calculate SS_N, SS'_E and F_0

- 1 Fit additive model $y_{ij} = \mu + \tau_i + \beta_j + \epsilon_{ij}$
- 2 Obtain \hat{y}_{ij} and $q_{ij} = \hat{y}_{ij}^2$
- 3 Fit the model $y_{ij} = \mu + \tau_i + \beta_j + q_{ij} + \epsilon_{ij}$

Use the test for q_{ij} in the ANOVA table with type III SS and ignore the tests for the treatment and block factors.

Example 5-2 from Montgomery

 Impurity in chemical product is affected by temperature and pressure. We will assume temperature is a blocking factor. The data is shown below. We will test for non-additivity.

		•	100001		
Temp	25	30	35	40	45
100	5	4	6	3	5
125	3	1	4	2	3
150	1	1	3	1	2

Pressure

$$SS_N = 0.0985, SS'_E = 1.9015, F_0 = .36, P - value = 0.566$$

Do Not Reject, there appears to be no interaction between block and treatment.

SAS Code

```
options nocenter ls=75;
data impurity;
input trt blk y @@;
cards;
1 1 5 1 2 3 1 3 1 2 1 4 2 2 1 2 3 1 3 1 6 3 2 4 3 3 3
4 1 3 4 2 2 4 3 1 5 1 5 5 2 3 5 3 2
proc glm;
class blk trt;
model y=blk trt;
output out=one r=res p=pred;
data two;
set one;
q=pred*pred;
proc glm data=two;
class blk trt;
model y=blk trt q/ss3; run;
```

Output

From the first model statement:

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	6	34.93333333	5.8222222	23.29	0.0001
Error	8	2.00000000	0.25000000		
Corrected Total	14	36.93333333			
Source	DF	Type I SS	Mean Square	F Value	Pr > F
blk	2	23.33333333	11.66666667	46.67	<.0001
trt	4	11.60000000	2.90000000	11.60	0.0021

Output

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	7	35.03185550	5.00455079	18.42	0.0005
Error	7	1.90147783	0.27163969		
Corrected Total	14	36.93333333			
Source	DF	Type III SS	Mean Square	F Value	Pr > F
blk	2	1.25864083	0.62932041	2.32	0.1690 XXX
trt	4	1.09624963	0.27406241	1.01	0.4634 XXX
q	1	0.09852217	0.09852217	0.36	0.5660

XXX: not meaningful for testing blocks and treatments

RCBD with Replicates

- a treatments ($i=1,2,\ldots,a$)
- b blocks (j = 1, 2, ..., b)
- ullet n observations for each treatment in each block ($l=1,2,\ldots,n$)

$$y_{ijl} = \mu + \tau_i + \beta_j + \epsilon_{ijl}$$

$$\begin{cases} i = 1, 2, \dots, a \\ j = 1, 2, \dots, b \\ l = 1, 2, \dots, n \end{cases}$$

ullet Similar assumptions as before. N=abn and many more degree of freedom to get around. It allows interaction (but we have to be really careful about the possible interaction)

Assume no interaction between Ttr and Blk: ANOVA

Source of	Sum of	Degrees of	Mean	\overline{F}
Variation	Squares	Freedom	Square	
Blocks	SS_{Block}	b - 1	MS_{Block}	
Treatment	$SS_{\mathrm{Treatment}}$	a-1	$MS_{\mathrm{Treatment}}$	F_0
Error	SS_{E}	abn - b - a + 1	MS_{E}	
Total	SS_{T}	abn-1		

For multiple comparison, df_E becomes abn-a-b+1 and the number of replicates for a fixed treatment now is bn instead of n. Hence, the formulas need to be modified accordingly.

Do not assume no interaction between Trt and Blk: ANOVA

- Assess additivity (no interaction) by Sum of Squares due to interaction SS_{Trt*Blk}.
- Interaction and error are not confounded; their SS's are separated

Source of	Sum of	Degrees of	Mean	\overline{F}
Variation	Squares	Freedom	Square	
Blocks	SS_{Block}	b-1	MS_{Block}	
Treatment	$SS_{\mathrm{Treatment}}$	a-1	$MS_{\mathrm{Treatment}}$	F_0
Blk*Trt	$SS_{Blk*Trt}$	(b-1)(a-1)	$MS_{\mathrm{Blk*Trt}}$	
Error	SS_E	ab(n-1)	$MS_{\mathbf{E}}$	
Total	SS_{T}	abn-1		

Usually, we do not want to see large (significant) SS_{Blk*Trt} because this will

 (1) affect the interpretation of the results and (2) the prediction of the fitted model. Sometimes, transformation is considered to eliminate interaction.