Lecture 5: Comparing Treatment Means

Montgomery: Sections 3.3-5

Linear Combinations of Treatment Means

• ANOVA Model:

 $y_{ij} = \mu + \tau_i + \epsilon_{ij} \quad (\tau_i: \text{ treatment effect})$ $= \mu_i + \epsilon_{ij} \quad (\mu_i: \text{ treatment mean})$

• Linear combination with given coefficients c_1, c_2, \ldots, c_a :

$$L = c_1 \mu_1 + c_2 \mu_2 + \ldots + c_a \mu_a = \sum_{i=1}^a c_i \mu_i,$$

- Want to test: $H_0: L = \sum c_i \mu_i = L_0$
- Examples:
- 1. Pairwise comparison: $\mu_i \mu_j = 0$ for all possible *i* and *j*.
- 2. Compare treatment vs control: $\mu_i \mu_1 = 0$ when treatment 1 is a control and i = 2, ..., a are new treatments.
- 3. General cases such as $\mu_1 2\mu_2 + \mu_3 = 0$, $\mu_1 + 3\mu_2 6\mu_3 = 0$, etc.

• Estimate of *L*:

$$\hat{L} = \sum c_i \hat{\mu}_i = \sum c_i \bar{y}_i.$$

$$\operatorname{Var}(\hat{L}) = \sum c_i^2 \operatorname{Var}(\bar{y}_{i.}) = \sigma^2 \sum \frac{c_i^2}{n_i} \left(= \frac{\sigma^2}{n} \sum c_i^2 \right)$$

• Standard Error of \hat{L}

$$\text{S.E.}_{\hat{L}} = \sqrt{\text{MSE}\sum \frac{c_i^2}{n_i}}$$

• Test statistic

$$t_0 = \frac{(\hat{L} - L_0)}{S.E._{\hat{L}}} \sim t(N - a) \text{ under } H_0$$

Example: Lambs Diet Experiment

• Recall there are three diets and their treatment means are denoted by μ_1 , μ_2 and μ_3 . Suppose one wants to consider

$$L = \mu_1 + 2\mu_2 + 3\mu_3 = 6\mu + \tau_1 + 2\tau_2 + 3\tau_3$$

```
and test H_0: L = 60.

data lambs;

input diet wtgain@@;

cards;

1 8 1 16 1 9 2 9 2 16 2 21

2 11 2 18 3 15 3 10 3 17 3 6

;

proc glm;

class diet;

model wtgain=diet;

means diet;

estimate 'll' intercept 6 diet 1 2 3;

run;
```

Example: Lambs Diet Experiment

• SAS output

Level of		wtga	ain
diet	N	Mean	Std Dev
1	3	11.0000000	4.35889894
2	5	15.0000000	4.94974747
3	4	12.0000000	4.96655481

Dependent Variable: wtgain Standard Parameter Estimate Error t Value Pr > |t|

11 77.000000 8.88506862 8.67 <.0001

•
$$t_0 = (77.0 - 60)/8.89 = 1.91$$

 $P - \text{value} = P(t \le -1.91 \text{ or } t \ge 1.91 | t(12 - 3)) = .088$

• Fail to reject $H_0: \mu_1 + 2\mu_2 + 3\mu_3 = 60$ at $\alpha = 5\%$.

Contrasts

• $\Gamma = \sum_{i=1}^{a} c_i \mu_i$ is a contrast if $\sum_{i=1}^{a} c_i = 0$.

Equivalently, $\Gamma = \sum_{i=1}^{a} c_i \tau_i$.

• Examples

1.
$$\Gamma_1 = \mu_1 - \mu_2 = \mu_1 - \mu_2 + 0\mu_3 + 0\mu_4$$
,
 $c_1 = 1, c_2 = -1, c_3 = 0, c_4 = 0$
Comparing μ_1 and μ_2 .

2. $\Gamma_2 = \mu_1 - 0.5\mu_2 - 0.5\mu_3 = \mu_1 - 0.5\mu_2 - 0.5\mu_3 + 0\mu_4$ $c_1 = 1, c_2 = -0.5, c_3 = -0.5, c_4 = 0$

Comparing μ_1 and the average of μ_2 and μ_3 .

• Estimate of Γ :

$$C = \sum_{i=1}^{a} c_i \bar{y}_{i.}$$

• Test: $H_0: \Gamma = 0$

$$t_0 = \frac{C}{\text{S.E.}_C} \sim t(N-a)$$

$$t_0^2 = \frac{\left(\sum c_i \bar{y}_{i.}\right)^2}{\mathsf{MSE} \sum \frac{c_i^2}{n_i}} = \frac{\left(\sum c_i \bar{y}_{i.}\right)^2 / \sum c_i^2 / n_i}{\mathsf{MSE}} = \frac{\mathsf{SS}_C / 1}{\mathsf{MSE}}$$

Under
$$H_0$$
, $t_0^2 \sim F_{1,N-a}$.

• Contrast Sum of Squares

$$\mathrm{SS}_{C} = \left(\sum c_{i} \overline{y}_{i.}\right)^{2} / \sum \left(c_{i}^{2} / n_{i}\right)$$

 SS_C represents the amount of variation attributable Γ .

SAS Code (cont.sas)

Tensile Strength Example

```
options ls=80;
```

title1 'Contrast Comparisons';

data one; infile 'c:\saswork\data\tensile.dat'; input percent strength time;

```
proc glm data=one;
class percent;
model strength=percent;
contrast 'C1' percent 0 0 0 1 -1;
contrast 'C2' percent 1 0 1 -1 -1;
contrast 'C3' percent 1 0 -1 0 0;
contrast 'C4' percent 1 -4 1 1;
```

Dependent	Variable:	STRENGTH			_
			Sum of	Mean	
Source	DF	Squares	Square	F Value	Pr > F
Model	4	475.76000	118.94000	14.76	0.0001
Error	20	161.20000	8.06000		
Corrected	Total 24	636.96000			
Source	DF	Type I SS	Mean Square	F Value	Pr > F
PERCENT	4	475.76000	118.94000	14.76	0.0001
Contrast	DF	Contrast SS	Mean Square	F Value	Pr > F
C1	1	291.60000	291.60000	36.18	0.0001
C2	1	31.25000	31.25000	3.88	0.0630
C3	1	152.10000	152.10000	18.87	0.0003
C4	1	0.81000	0.81000	0.10	0.7545

Orthogonal Contrasts

• Two contrasts $\{c_i\}$ and $\{d_i\}$ are **Orthogonal** if

$$\sum_{i=1}^{a} \frac{c_i d_i}{n_i} = 0 \quad (\sum_{i=1}^{a} c_i d_i = 0 \text{ for balanced experiments})$$

• Example

$$\Gamma_1 = \mu_1 + \mu_2 - \mu_3 - \mu_4$$
, So $c_1 = 1, c_2 = 1, c_3 = -1, c_4 = -1$.
 $\Gamma_2 = \mu_1 - \mu_2 + \mu_3 - \mu_4$. So $d_1 = 1, d_2 = -1, d_3 = 1, d_4 = -1$
It is easy to verify that both Γ_1 and Γ_2 are contrasts. Furthermore,

$$c_1d_1 + c_2d_2 + c_3d_3 + c_4d_4 =$$

 $1 \times 1 + 1 \times (-1) + (-1) \times 1 + (-1) \times (-1) = 0$. Hence, Γ_1 and Γ_2 are orthogonal to each other.

A complete set of orthogonal contrasts C = {Γ₁, Γ₂, ..., Γ_{a-1}} if contrasts are mutually orthogonal and there does not exist a contrast orthogonal outside of C to all the contrasts in C.

- If there are a treatments, C must contain a 1 contrasts.
- Complete set is not unique. For example, in the tensile strength example

Orthogonal Contrasts

- Orthogonal contrasts (estimates) are independent with each other.
- Suppose $C_1, C_2, \ldots, C_{a-1}$ are the estimates of the contrasts in a complete set of contrasts $\{\Gamma_1, \Gamma_2, \ldots, \Gamma_{a-1}\}$, then

$$SS_{Treatment} = SS_{C_1} + SS_{C_2} + \dots + SS_{C_{a-1}}$$

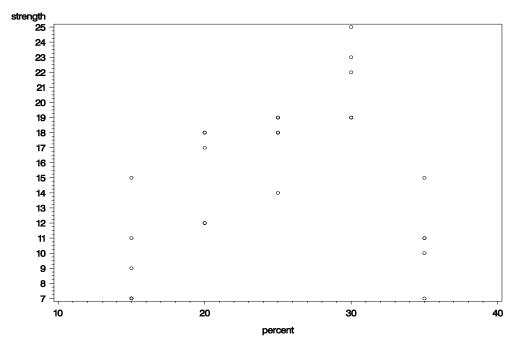
• Recall in ANOVA,
$$F_0 = \frac{\text{MS}_{\text{Treatment}}}{\text{MSE}}$$
,
 $F_0 = \frac{\text{SS}_{C_1}/\text{MSE} + \dots + \text{SS}_{C_{a-1}}/\text{MSE}}{a-1} = \frac{F_{10} + F_{20} + \dots + F_{(a-1)0}}{a-1}$

where F_{i0} is the test statistic used to test contrast Γ_i .

• Example on Slide 9

Tensile Example

Try to model mean response as a function of treatments



Plot of Strength vs Percent Blend

Orthogonal contrasts and orthogonal polynomial model

- Treatments are quantitative (assume a = 4)
- One can use general polynomial model to fit the trend (t: level or treatment).

$$f(t) = a_0 + a_1t + a_2t^2 + a_3t^3$$

Regression can be used to get the estimates for a_1 , a_2 and a_3 .

• We will use orthogonal polynomial model

$$f(t) = \beta_0 + \beta_1 P_1(t) + \beta_2 P_2(t) + \beta_3 P_3(t)$$

where $P_1(t)$, $P_2(t)$ and $P_3(t)$ are pre-specified polynomials of order 1, 2 and 3, respectively. $P_1(t)$ is linear, $P_2(t)$ is quadratic and $P_3(t)$ is cubic. Let t_1, t_2, \ldots, t_a are the treatments (equally spaced), then the polynomials corresponds to the following contrasts:

t	t_1	t_2	• • •	t_a	Contrasts	${\cal D}$
$P_1(t)$	$P_1(t_1)$	$P_1(t_2)$	• • •	$P_1(t_a)$	Γ_1	\mathcal{D}_1
$P_2(t)$	$P_2(t_1)$	$P_2(t_2)$	• • •	$P_2(t_a)$	Γ_2	\mathcal{D}_2
$P_3(t)$	$P_{3}(t_{1})$	$P_3(t_2)$	•••	$P_3(t_a)$	Γ_3	\mathcal{D}_3

where

$$\mathcal{D}_i = P_i(t_1)^2 + P_i(t_2)^2 + \dots + P_i(t_a)^2$$

If Γ_1 , Γ_2 and Γ_3 are orthogonal to each other, then we say $P_1(t)$, $P_2(t)$ and $P_3(t)$ are orthogonal polynomials.

- Coefficients β_i can be estimated and tested by the contrasts Γ_1 , Γ_2 and Γ_3 .
- Predict f(t) when t is not a treatment used in the experiment.

tensile strength example: orthogonal polynomial effects

- Treatment levels t_k : 15, 20, 25, 30, 35; Median: 25; Pace: 5
- Orthogonal polynomials: let x = (t 25)/5.

$$P_{1}(t) = x$$

$$P_{2}(t) = x^{2} - 2$$

$$P_{3}(t) = 5/6[x^{3} - 17x/5]$$

$$P_{4}(t) = 35/12[x^{4} - 31x/7 + 72/35]$$

• Polynomial Contrasts and Effects

t	15	20	25	30	35	Contrast	${\cal D}$	Effect (Trend)
$P_1(t)$	-2	-1	0	1	2	Γ_1	$\mathcal{D}_1 = 10$	linear
$P_2(t)$	2	-1	-2	-1	2	Γ_2	$\mathcal{D}_2 = 14$	quadratic
$P_3(t)$	-1	2	0	-2	1	Γ_3	$\mathcal{D}_3 = 10$	cubic
$p_4(t)$	1	-4	6	-4	1	Γ_4	$\mathcal{D}_4 = 70$	4th order

• The contrasts can be directly derived from Table IX or Table X.

• Want to fit the model

$$f(t) = \beta_0 + \beta_1 P_1(t) + \beta_2 P_2(t) + \beta_3 P_3(t) + \beta_4 P_4(t)$$

- Estimation and Testing
 - β_1 : use Γ_1 ,

$$\hat{\beta}_1 = \frac{c_{11}\bar{y}_{1.} + \dots + c_{15}\bar{y}_{5.}}{\mathcal{D}_1}$$

Test:
$$H_0: \beta_1 = 0, F_{10} = \frac{SS_{C_i}}{MSE} \sim F_{1,N-5}.$$

–
$$\beta_2$$
: use Γ_2 ,

$$\hat{\beta}_2 = \frac{c_{21}\bar{y}_{1.} + \dots + c_{25}\bar{y}_{5.}}{\mathcal{D}_2}$$

Test:
$$H_0: \beta_2 = 0, F_{20} = \frac{SS_{C_i}}{MSE} \sim F_{1,N-5}$$

- Similar for β_3 and β_4
- Question: what is the estimate for β_0 ?

General formulas for orthogonal polynomial of degrees 1-4

One factor of a levels l_1, l_2, \ldots, l_a , equally spaced. Let m be the median, δ be the difference between two consecutive levels:

$$P_1(t) = \lambda_1(\frac{t-m}{\delta})$$

$$P_2(t) = \lambda_2 [(\frac{t-m}{\delta})^2 - \frac{a^2 - 1}{12}]$$

$$P_{3}(t) = \lambda_{3} \left[\left(\frac{t-m}{\delta} \right)^{3} - \left(\frac{t-m}{\delta} \right) \left(\frac{3a^{2}-7}{20} \right) \right]$$

$$P_4(t) = \lambda_4 \left[\left(\frac{t-m}{\delta}\right)^4 - \left(\frac{t-m}{\delta}\right)^2 \left(\frac{3a^2 - 13}{14}\right) + \frac{3(a^2 - 1)(a^2 - 9)}{560} \right]$$

 (λ_i) are constants to make the polynomials have integer values at the treatment levels, they are available from Table IX or Table X.

Tensile Strength Example: m=25, δ = 5, (λ_i)=(1, 1, 5/6, 35/12)

SAS

tensile strength example

```
data one;
 infile 'c:\saswork\data\tensile.dat';
 input percent strength time;
proc qlm data=one;
 class percent;
model strength=percent;
estimate 'C1' percent -2 -1 0 1 2;
 estimate 'C2' percent 2 -1 -2 -1 2;
 estimate 'C3' percent -1 2 0 -2 1;
 estimate 'C4' percent 1 -4 6 -4 1;
contrast 'C1' percent -2 -1 0 1 2;
 contrast 'C2' percent 2 -1 -2 -1 2;
 contrast 'C3' percent -1 2 0 -2 1;
 contrast 'C4' percent 1 -4 6 -4 1;
run;
```

Output

Dependent Variable: strength					
		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	4	475.7600000	118.9400000	14.76	<.0001
Error	20	161.2000000	8.060000		
Corrected	Total 24	636.9600000			
Parameter	Estimate	Error	t Value	Pr > t	
Cl	8.200000	0 4.01497	2.04	0.054	5
C2	-31.000000	0 4.75057	-6.53	<.000	1
C3	-11.400000	0 4.01497	-2.84	0.010	1
C4	-21.800000	0 10.62261	.74 -2.05	0.053	5
Contrast	DF	Contrast SS	Mean Square	F Value	Pr > F
C1	1	33.6200000	33.6200000	4.17	0.0545
C2	1	343.2142857	343.2142857	42.58	<.0001
C3	1	64.9800000	64.9800000	8.06	0.0101
C4	1	33.9457143	33.9457143	4.21	0.0535

Estimates

Hence,

$$\hat{\beta}_1 = 8.20/10 = .82; \ \hat{\beta}_2 = -31/14 = -2.214$$

 $\hat{\beta}_3 = -11.4/10 = -1.14; \ \hat{\beta}_4 = -21.8/70 = -0.311$

So the fitted functional relationship between tensile strength y and cotton percent (*t*) is

$$y = \hat{\beta}_0 + .82P_1(t) - 2.214P_2(t) - 1.14P_3(t) - 0.311P_4(t),$$

where $P_1(t), \ldots, P_4(t)$ are defined on Slide 16.

Testing Multiple Contrasts (Multiple Comparisons) Using Confidence Intervals

• One contrast:

$$H_0: \Gamma = \sum c_i \mu_i = \Gamma_0 \text{ vs } H_1: \Gamma \neq \Gamma_0 \text{ at } \alpha$$

100(1- α) Confidence Interval (CI) for Γ :

$$CI: \sum c_i \bar{y}_{i.} \pm t_{\alpha/2, N-a} \sqrt{MS_E \sum \frac{c_i^2}{n_i}}$$

 $P(CI \text{ not contain } L_0 | H_0) = \alpha(= type I error)$

• Decision Rule: Reject H_0 if CI does not contain Γ_0 .

• Multiple contrasts

 $H_0: \Gamma^1 = \Gamma_0^1, \ldots \Gamma^m = \Gamma_0^m$ vs $H_1:$ at least one does not hold

If we construct CI_1 , CI_2 ,..., CI_m , each with 100(1- α) level, then for each CI_i ,

 $P(CI_i \text{ not contain} \Gamma_0^i \mid H_0) = \alpha, \text{ for } i = 1, \dots, m$

• But the **overall error rate** (probability of type I error for H_0 vs H_1) is inflated and much larger than α , that is,

 $P(\text{at least one } Cl_i \text{ not contain } \Gamma_0^i \mid H_0) >> \alpha$

• One way to achieve small overall error rate, we require much smaller error rate (α') of each individual CI_i.

Bonferroni Method for Testing Multiple Contrasts

• Bonferroni Inequality

P(at least one Cl_i not contain $\Gamma_0^i \mid H_0)$

$$= P(CI_1 \text{ not contain..oror } CI_m \text{ not contain } | H_0)$$

$$\leq P(\operatorname{Cl}_1 \operatorname{not} | H_0) + \dots + P(\operatorname{Cl}_m \operatorname{not} | H_0) = m\alpha'$$

• In order to control overall error rate (or, overall confidence level), let

$$m\alpha'=\alpha,$$
 we have, $\alpha'=\alpha/m$

• Bonferroni Cls:

$$\mathsf{Cl}_i : \sum c_{ij} \bar{y}_{j.} \pm t_{\alpha/2m} (N-a) \sqrt{\mathrm{MS}_E \sum \frac{c_{ij}^2}{n_j}}$$

• When m is large, Bonferroni CIs are too conservative (overall type II error too large).

Scheffe's Method for Testing All Contrasts

- Consider all possible contrasts: $\Gamma = \sum c_i \mu_i$ Estimate: $C = \sum c_i \bar{y}_{i.}$, St. Error: S.E. $_C = \sqrt{MS_E \sum \frac{c_i^2}{n_i}}$
- Critical value: $\sqrt{(a-1)F_{\alpha,a-1,N-a}}$
- Scheffe's simultaneous CI: $C \pm \sqrt{(a-1)F_{\alpha,a-1,N-a}}$ S.E.
- Overall confidence level and error rate for m contrasts

 $P(\text{Cls contain true parameter for any contrast}) \geq 1-\alpha$

 $P(\text{at least one CI does not contain true parameter}) \leq \alpha$

Remark: Scheffe's method is also conservative, too conservative when \boldsymbol{m} is small

Methods for Pairwise Comparisons

- There are a(a-1)/2 possible pairs: $\mu_i \mu_j$ (contrast for comparing μ_i and μ_j). We may be interested in m pairs or all pairs.
- Standard Procedure:
 - 1. Estimation: $\bar{y}_{i.} \bar{y}_{j.}$
 - 2. Compute a **Critical Difference (**CD**)** (based on the method employed)

$$|\bar{y}_{i.} - \bar{y}_{j.}| > \mathrm{CD}$$

or equivalently if the interval

$$(\bar{y}_{i.} - \bar{y}_{j.} - \text{CD}, \ \bar{y}_{i.} - \bar{y}_{j.} + \text{CD})$$

does not contain zero, declare $\mu_i - \mu_j$ significant.

Methods for Calculating CD.

• Least significant difference (LSD):

$$CD = t_{\alpha/2, N-a} \sqrt{MS_E(1/n_i + 1/n_j)}$$

not control overall error rate

• Bonferroni method (for m pairs)

$$CD = t_{\alpha/2m, N-a} \sqrt{MS_E(1/n_i + 1/n_j)}$$

control overall error rate for the m comparisons.

• Tukey's method (for all possible pairs)

$$CD = \frac{q_{\alpha}(a, N-a)}{\sqrt{2}} \sqrt{MS_E(1/n_i + 1/n_j)}$$

 $q_{\alpha}(a, N-a)$ from studentized range distribution (Table VII or Table VIII). Control overall error rate (exact for balanced experiments). (Example 3.7).

Comparing treatments with control (Dunnett's method)

- 1. Assume μ_1 is a control, and μ_2, \ldots, μ_a are (new) treatments
- 2. Only interested in a-1 pairs: $\mu_2 \mu_1, \ldots, \mu_a \mu_1$
- 3. Compare $\mid \bar{y}_{i.} \bar{y}_{1.} \mid$ to

$$CD = d_{\alpha}(a-1, N-a)\sqrt{MS_E(1/n_i + 1/n_1)}$$

where $d_{\alpha}(p, f)$ from Table IX or Table VIII: critical values for Dunnett's test.

4. Remark: control overall error rate. Read Example 3-9 (or 3-10)

For pairwise comparison, which method should be preferred? LSD, Bonferroni, Tukey, Dunnett or others?

SAS Code

```
data one;
infile 'c:\saswork\data\tensile.dat';
input percent strength time;
proc glm data=one;
```

```
class percent;
model strength=precent;
```

```
/* Construct CI for Treatment Means*/
means percent /alpha=.05 lsd clm;
means percent / alpha=.05 bon clm;
```

```
/* Pairwise Comparison*/
means percent /alpha=.05 lines lsd;
means percent /alpha=.05 lines bon;
means percent /alpha=.05 lines scheffe;
means percent /alpha=.05 lines tukey;
means percent /dunnett;
run;
```

The GLM Procedure

t Confidence Intervals for y

Alpha	0.05
Error Degrees of Freedom	20
Error Mean Square	8.06
Critical Value of t	2.08596
Half Width of Confidence Interval	2.648434

			95% Conf	idence
trt	N	Mean	Mean Limits	
30	5	21.600	18.952	24.248
25	5	17.600	14.952	20.248
20	5	15.400	12.752	18.048
35	5	10.800	8.152	13.448
15	5	9.800	7.152	12.448

The GLM Procedure

Bonferroni t Confidence Intervals for y

Alpha	0.05
Error Degrees of Freedom	20
Error Mean Square	8.06
Critical Value of t	2.84534
Half Width of Confidence Interval	3.612573

			Simultane	ous 95%
trt	N	Mean	Confidenc	e Limits
30	5	21.600	17.987	25.213
25	5	17.600	13.987	21.213
20	5	15.400	11.787	19.013
35	5	10.800	7.187	14.413
15	5	9.800	6.187	13.413

t Tests (LSD) for y NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. Alpha 0.05 Error Degrees of Freedom 20 Error Mean Square 8.06 Critical Value of t 2.08596 Least Significant Difference 3.7455

Means with the same letter are not significantly different.

t Grouping	Mean	N	trt
A	21.600	5	30
В	17.600	5	25
В	15.400	5	20
С	10.800	5	35
С	9.800	5	15

	Bonferroni	(Dunn) t 1	rests fo	r y	
This test controls the T	ype I exper	imentwise	error r	ate, bu	it it generall
has a	higher Type	II error	rate th	an REGW	VQ.
Alph	a			0.05	5
Erro	r Degrees o	f Freedom		20)
Error Mean Square				8.06	5
Crit	ical Value	of t		3.15340)
Mini	mum Signifi	cant Diffe	erence	5.6621	L
Means with the	same lette	r are not	signifi	cantly	different.
Bon Grou	ping	Mean	N	trt	
	A	21.600	5	30	
В	A	17.600	5	25	
В	С	15.400	5	20	
	С	10.800	5	35	
	С	9.800	5	15	

	Sche	ffe's Test f	or y		
NOTE: This test controls the Type I experimentwise error rate.					
Alpha				0.05	
Error	Degrees	of Freedom		20	
Error	Mean Squ	are		8.06	
Criti	cal Value	of F		2.86608	
Minim	um Signif	icant Differ	rence	6.0796	
Means with the sa	me letter	are not sig	nifica	antly different.	
Scheffe Group	ing	Mean	N	trt	
	A	21.600	5	30	
	A				
В	A	17.600	5	25	
В					
В	С	15.400	5	20	
	С				
	С	10.800	5	35	
	С				
	С	9.800	5	15	

Tukey'	s Studenti	zed Range (1	HSD) '	Test for y	
This test controls the Type I experimentwise error rate, but it genera					
has a h	igher Type	e II error ra	ate ti	han REGWQ.	
Alpha				0.05	
Error Degrees of Freedom				20	
Error Mean Square				8.06	
Critica	l Value of	5 Studentized	d Rang	ge 4.23186	
Minimum	Significa	ant Differen	ce	5.373	
Means with the	same lette	er are not s	ignif	icantly different.	
Tukey Group	ing	Mean	Ν	trt	
	A	21.600	5	30	
	A				
В	A	17.600	5	25	
В					
В	С	15.400	5	20	
	С				
D	С	10.800	5	35	
D					
D		9.800	5	15	

Dunnett's t Tests for y This test controls the Type I experimentwise error for comparisons of a treatments against a control. Alpha 0.05 Error Degrees of Freedom 20 Error Mean Square 8.06 Critical Value of Dunnett's t 2.65112 Minimum Significant Difference 4.7602 Comparisons significant at the 0.05 level are indicated by ***.

Difference

		DIIIerence			
	trt	Between	Simultane	ous 95%	
Comp	parison	Means	Confidence	e Limits	
30	- 15	11.800	7.040	16.560	* * *
25	- 15	7.800	3.040	12.560	* * *
20	- 15	5.600	0.840	10.360	* * *
35	- 15	1.000	-3.760	5.760	

Determining Sample Size

- More replicates required to detect small treatment effects
- Operating Characteristic Curves for F tests
- Probability of type II error

$$\beta = P(\text{ accept } H_0 \mid H_0 \text{ is false})$$

$$= P(F_0 < F_{\alpha,a-1,N-a} \mid H_1 \text{ is correct })$$

• Under H_1 , F_0 follows a **noncentral** F distribution with noncentrality λ and degrees of freedom, a - 1 and N - a. Let

$$\Phi^2 = \frac{n \sum_{i=1}^a \tau_i^2}{a\sigma^2}$$

• OC curves of β vs n and Φ are included in Chart V for various α and a.

Example 3-10: Experiment Involving 4 Treatments

- Suppose want to detect (at $\alpha = 0.01$) $\mu_1 = 575$, $\mu_2 = 600$, $\mu_3 = 650$, $\mu_4 = 675$, and can assume $\sigma^2 = 25$.
- How many replicates per treatment is needed such that $\beta < 0.10$?
- We have $\tau_1 = -50$, $\tau_2 = -25$, $\tau_3 = 25$, $\tau_4 = 50$, and

$$\Phi^2 = \frac{n \sum_{i=1}^{a} \tau_i^2}{a\sigma^2} = \frac{6250n}{4(25)^2} = 2.5n,$$

• $\nu_1 = a - 1 = 3, \nu_2 = N - a = 4(n - 1), \text{ and } \beta = f(\alpha, \nu_1, \nu_2)$	$,n,\Phi)$:
---	--------------

n	Φ^2	Φ	ν_2	eta	Power
3	7.5	2.74	8	0.25	0.75
4	10.0	3.16	12	0.04	0.04
5	12.5	3.54	16	< 0.01	>0.99

Another Approach

- Suppose want to guarantee $\beta < 0.10$ when there is at least one pair of treatments that differ by D(e.g. $\mu_1 \mu_2 \ge D$).
- $\bullet\,$ The smallest Φ^2 is

$$\Phi^2 = \frac{nD^2}{2a\sigma^2}$$

• In Example 3.10, consider D=75 and assume $\sigma^2=25,$

$$\Phi^2 = \frac{n(75)^2}{2(4)(25^2)} = 1.125n$$

• $\nu_1 = a - 1 = 3$, $\nu_2 = N - a = 4(n - 1)$, and $\beta = f(\alpha, \nu_1, \nu_2, n, \Phi)$:

n	Φ^2	Φ	$ u_2$	eta	Power
4	4.5	2.12	12	0.35	0.65
5	5.625	2.37	16	0.20	0.80
6	6.75	2.60	20	<0.10	>0.90