
Statistics 514: Compare Treatment Means

Lecture 5: Comparing Treatment Means

Montgomery: Sections 3.3-5
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Linear Combinations of Treatment Means

• ANOVA Model:

yij = µ + τi + εij (τi: treatment effect)

= µi + εij (µi: treatment mean)

• Linear combination with given coefficients c1, c2, . . . , ca:

L = c1µ1 + c2µ2 + . . . + caµa =
a∑

i=1

ciµi,

• Want to test: H0 : L =
∑

ciµi = L0

• Examples:

1. Pairwise comparison: µi − µj = 0 for all possible i and j.

2. Compare treatment vs control: µi − µ1 = 0 when treatment 1 is a control

and i = 2, ..., a are new treatments.

3. General cases such as µ1 − 2µ2 + µ3 = 0, µ1 + 3µ2 − 6µ3 = 0, etc.
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• Estimate of L:

L̂ =
∑

ciµ̂i =
∑

ciȳi.

Var(L̂) =
∑

c2
i Var(ȳi.) = σ2

∑ c2
i

ni

(
=

σ2

n

∑
c2
i

)

• Standard Error of L̂

S.E.L̂ =

√
MSE

∑ c2
i

ni

• Test statistic

t0 =
(L̂ − L0)
S.E.L̂

∼ t(N − a) under H0
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Example: Lambs Diet Experiment

• Recall there are three diets and their treatment means are denoted by µ1, µ2

and µ3. Suppose one wants to consider

L = µ1 + 2µ2 + 3µ3 = 6µ + τ1 + 2τ2 + 3τ3

and test H0 : L = 60.

data lambs;

input diet wtgain@@;

cards;

1 8 1 16 1 9 2 9 2 16 2 21

2 11 2 18 3 15 3 10 3 17 3 6

;

proc glm;

class diet;

model wtgain=diet;

means diet;

estimate ’l1’ intercept 6 diet 1 2 3;

run;
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Example: Lambs Diet Experiment

• SAS output

Level of ------------wtgain-----------

diet N Mean Std Dev

1 3 11.0000000 4.35889894

2 5 15.0000000 4.94974747

3 4 12.0000000 4.96655481

Dependent Variable: wtgain

Standard

Parameter Estimate Error t Value Pr > |t|

l1 77.0000000 8.88506862 8.67 <.0001

• t0 = (77.0 − 60)/8.89 = 1.91

P − value = P (t ≤ −1.91 or t ≥ 1.91|t(12 − 3)) = .088

• Fail to reject H0 : µ1 + 2µ2 + 3µ3 = 60 at α = 5%.
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Contrasts

• Γ =
∑a

i=1 ciµi is a contrast if
∑a

i=1 ci = 0.

Equivalently, Γ =
∑a

i=1 ciτi.

• Examples

1. Γ1 = µ1 − µ2 = µ1 − µ2 + 0µ3 + 0µ4,

c1 = 1, c2 = −1, c3 = 0, c4 = 0
Comparing µ1 and µ2.

2. Γ2 = µ1 − 0.5µ2 − 0.5µ3 = µ1 − 0.5µ2 − 0.5µ3 + 0µ4

c1 = 1, c2 = −0.5, c3 = −0.5, c4 = 0
Comparing µ1 and the average of µ2 and µ3.

• Estimate of Γ:

C =
∑a

i=1 ciȳi.
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• Test: H0 : Γ = 0

t0 =
C

S.E.C
∼ t(N − a)

t20 =
(
∑

ciȳi.)2

MSE
∑ c2

i

ni

=
(
∑

ciȳi.)2/
∑

c2
i /ni

MSE
=

SSC/1
MSE

Under H0, t20 ∼ F1,N−a.

• Contrast Sum of Squares

SSC =
(∑

ciyi.

)2

/
∑

(c2
i /ni)

SSC represents the amount of variation attributable Γ.
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SAS Code (cont.sas)
Tensile Strength Example

options ls=80;

title1 ’Contrast Comparisons’;

data one;

infile ’c:\saswork\data\tensile.dat’;

input percent strength time;

proc glm data=one;

class percent;

model strength=percent;

contrast ’C1’ percent 0 0 0 1 -1;

contrast ’C2’ percent 1 0 1 -1 -1;

contrast ’C3’ percent 1 0 -1 0 0;

contrast ’C4’ percent 1 -4 1 1 1;
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___________________________________________________________

Dependent Variable: STRENGTH

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 4 475.76000 118.94000 14.76 0.0001

Error 20 161.20000 8.06000

Corrected Total 24 636.96000

Source DF Type I SS Mean Square F Value Pr > F

PERCENT 4 475.76000 118.94000 14.76 0.0001

Contrast DF Contrast SS Mean Square F Value Pr > F

C1 1 291.60000 291.60000 36.18 0.0001

C2 1 31.25000 31.25000 3.88 0.0630

C3 1 152.10000 152.10000 18.87 0.0003

C4 1 0.81000 0.81000 0.10 0.7545
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Orthogonal Contrasts

• Two contrasts {ci} and {di} are Orthogonal if

a∑
i=1

cidi

ni
= 0 (

a∑
i=1

cidi = 0 for balanced experiments)

• Example

Γ1 = µ1 + µ2 − µ3 − µ4, So c1 = 1, c2 = 1, c3 = −1, c4 = −1.

Γ2 = µ1 − µ2 + µ3 − µ4. So d1 = 1, d2 = −1, d3 = 1, d4 = −1
It is easy to verify that both Γ1 and Γ2 are contrasts. Furthermore,

c1d1 + c2d2 + c3d3 + c4d4 =
1 × 1 + 1 × (−1) + (−1) × 1 + (−1) × (−1) = 0. Hence, Γ1 and Γ2

are orthogonal to each other.

• A complete set of orthogonal contrasts C = {Γ1, Γ2, . . . ,Γa−1} if

contrasts are mutually orthogonal and there does not exist a contrast

orthogonal outside of C to all the contrasts in C.
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• If there are a treatments, C must contain a − 1 contrasts.

• Complete set is not unique. For example, in the tensile strength example

C1 : includes :

Γ1 = (0, 0, 0, 1, −1)

Γ2 = (1, 0, 1, −1, −1)

Γ3 = (1, 0, −1, 0, 0)

Γ4 = (1, −4, 1, 1, 1)

C2 : includes :

Γ′
1 = (−2, −1, 0, 1, 2)

Γ′
2 = (2, −1, −2, −1, 2)

Γ′
3 = (−1, 2, 0, −2, 1)

Γ′
4 = (1, −4, 6, −4, 1)
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Orthogonal Contrasts

• Orthogonal contrasts (estimates) are independent with each other.

• Suppose C1, C2, . . . , Ca−1 are the estimates of the contrasts in a

complete set of contrasts {Γ1, Γ2, . . . ,Γa−1}, then

SSTreatment = SSC1 + SSC2 + · · · + SSCa−1

• Recall in ANOVA, F0 =
MSTreatment

MSE ,

F0 =
SSC1/MSE + · · · + SSCa−1/MSE

a − 1
=

F10 + F20 + · · · + F(a−1)0

a − 1

where Fi0 is the test statistic used to test contrast Γi.

• Example on Slide 9
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Tensile Example

Try to model mean response as a function of treatments
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Orthogonal contrasts and orthogonal polynomial model

• Treatments are quantitative (assume a = 4)

• One can use general polynomial model to fit the trend (t: level or treatment).

f(t) = a0 + a1t + a2t
2 + a3t

3

Regression can be used to get the estimates for a1, a2 and a3.

• We will use orthogonal polynomial model

f(t) = β0 + β1P1(t) + β2P2(t) + β3P3(t)

where P1(t), P2(t) and P3(t) are pre-specified polynomials of order 1, 2

and 3, respectively. P1(t) is linear, P2(t) is quadratic and P3(t) is cubic.

Let t1, t2, . . . , ta are the treatments (equally spaced), then the polynomials

corresponds to the following contrasts:
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t t1 t2 · · · ta Contrasts D
P1(t) P1(t1) P1(t2) · · · P1(ta) Γ1 D1

P2(t) P2(t1) P2(t2) · · · P2(ta) Γ2 D2

P3(t) P3(t1) P3(t2) · · · P3(ta) Γ3 D3

where

Di = Pi(t1)2 + Pi(t2)2 + · · · + Pi(ta)2

If Γ1, Γ2 and Γ3 are orthogonal to each other, then we say P1(t), P2(t) and

P3(t) are orthogonal polynomials.

• Coefficients βi can be estimated and tested by the contrasts Γ1, Γ2 and Γ3.

• Predict f(t) when t is not a treatment used in the experiment.
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tensile strength example: orthogonal polynomial effects

• Treatment levels tk : 15, 20, 25, 30, 35; Median: 25; Pace: 5

• Orthogonal polynomials: let x = (t − 25)/5.

P1(t) = x

P2(t) = x2 − 2

P3(t) = 5/6[x3 − 17x/5]

P4(t) = 35/12[x4 − 31x/7 + 72/35]

• Polynomial Contrasts and Effects

t 15 20 25 30 35 Contrast D Effect (Trend)

P1(t) -2 -1 0 1 2 Γ1 D1 = 10 linear

P2(t) 2 -1 -2 -1 2 Γ2 D2 = 14 quadratic

P3(t) -1 2 0 -2 1 Γ3 D3 = 10 cubic

p4(t) 1 -4 6 -4 1 Γ4 D4 = 70 4th order

• The contrasts can be directly derived from Table IX or Table X.
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• Want to fit the model

f(t) = β0 + β1P1(t) + β2P2(t) + β3P3(t) + β4P4(t)

• Estimation and Testing

– β1: use Γ1,

β̂1 =
c11ȳ1. + · · · + c15ȳ5.

D1

Test: H0 : β1 = 0, F10 =
SSCi

MSE ∼ F1,N−5.

– β2: use Γ2,

β̂2 =
c21ȳ1. + · · · + c25ȳ5.

D2

Test: H0 : β2 = 0, F20 =
SSCi

MSE ∼ F1,N−5

– Similar for β3 and β4

• Question: what is the estimate for β0?
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General formulas for orthogonal polynomial of degrees 1-4

One factor of a levels l1, l2, . . . , la, equally spaced. Let m be the median, δ be the

difference between two consecutive levels:

P1(t) = λ1(
t − m

δ
)

P2(t) = λ2[(
t − m

δ
)2 − a2 − 1

12
]

P3(t) = λ3[(
t − m

δ
)3 − (

t − m

δ
)(

3a2 − 7

20
)]

P4(t) = λ4[(
t − m

δ
)4 − (

t − m

δ
)2(

3a2 − 13

14
) +

3(a2 − 1)(a2 − 9)

560

(λi) are constants to make the polynomials have integer values at the treatment levels,

they are available from Table IX or Table X.

Tensile Strength Example: m=25, δ = 5, (λi)=(1, 1, 5/6, 35/12)
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SAS
tensile strength example

data one;

infile ’c:\saswork\data\tensile.dat’;

input percent strength time;

proc glm data=one;

class percent;

model strength=percent;

estimate ’C1’ percent -2 -1 0 1 2;

estimate ’C2’ percent 2 -1 -2 -1 2;

estimate ’C3’ percent -1 2 0 -2 1;

estimate ’C4’ percent 1 -4 6 -4 1;

contrast ’C1’ percent -2 -1 0 1 2;

contrast ’C2’ percent 2 -1 -2 -1 2;

contrast ’C3’ percent -1 2 0 -2 1;

contrast ’C4’ percent 1 -4 6 -4 1;

run;
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Output

Dependent Variable: strength

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 4 475.7600000 118.9400000 14.76 <.0001

Error 20 161.2000000 8.0600000

Corrected Total 24 636.9600000

----------------------------------------------------------------------- -

Parameter Estimate Error t Value Pr > |t|

C1 8.2000000 4.0149720 2.04 0.0545

C2 -31.0000000 4.7505789 -6.53 <.0001

C3 -11.4000000 4.0149720 -2.84 0.0101

C4 -21.8000000 10.6226174 -2.05 0.0535

-----------------------------------------------------------------------

Contrast DF Contrast SS Mean Square F Value Pr > F

C1 1 33.6200000 33.6200000 4.17 0.0545

C2 1 343.2142857 343.2142857 42.58 <.0001

C3 1 64.9800000 64.9800000 8.06 0.0101

C4 1 33.9457143 33.9457143 4.21 0.0535
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Estimates

Hence,

β̂1 = 8.20/10 = .82; β̂2 = −31/14 = −2.214

β̂3 = −11.4/10 = −1.14; β̂4 = −21.8/70 = −0.311

So the fitted functional relationship between tensile strength y and cotton percent

(t) is

y = β̂0 + .82P1(t) − 2.214P2(t) − 1.14P3(t) − 0.311P4(t),

where P1(t), . . . , P4(t) are defined on Slide 16.
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Testing Multiple Contrasts (Multiple Comparisons) Using Confidence

Intervals

• One contrast:

H0 : Γ =
∑

ciµi = Γ0 vs H1 : Γ 6= Γ0 at α

100(1-α) Confidence Interval (CI) for Γ:

CI :
∑

ciȳi. ± tα/2,N−a

√
MSE

∑ c2
i

ni

P (CI not contain L0|H0) = α(= type I error)

• Decision Rule: Reject H0 if CI does not contain Γ0.
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• Multiple contrasts

H0 : Γ1 = Γ1
0, . . .Γ

m = Γm
0 vs H1 : at least one does not hold

If we construct CI1, CI2,..., CIm, each with 100(1-α) level, then for each CIi,

P (CIi not containΓi
0 | H0) = α, for i = 1, . . . , m

• But the overall error rate (probability of type I error for H0 vs H1) is inflated

and much larger than α, that is,

P (at least one CIi not contain Γi
0 | H0) >> α

• One way to achieve small overall error rate, we require much smaller error

rate (α′) of each individual CIi.
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Bonferroni Method for Testing Multiple Contrasts

• Bonferroni Inequality

P ( at least one CIi not contain Γi
0 | H0)

= P (CI1 not contain..or ....or CIm not contain | H0)

≤ P ( CI1 not | H0) + · · · + P ( CIm not | H0) = mα′

• In order to control overall error rate (or, overall confidence level), let

mα′ = α, we have, α′ = α/m

• Bonferroni CIs:

CIi :
∑

cij ȳj. ± tα/2m(N − a)

√
MSE

∑ c2
ij

nj

• When m is large, Bonferroni CIs are too conservative ( overall type II error too large).
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Scheffe’s Method for Testing All Contrasts

• Consider all possible contrasts: Γ =
∑

ciµi

Estimate: C =
∑

ciȳi., St. Error: S.E.C =
√

MSE

∑ c2
i

ni

• Critical value:
√

(a − 1)Fα,a−1,N−a

• Scheffe’s simultaneous CI: C ± √
(a − 1)Fα,a−1,N−a S.E.C

• Overall confidence level and error rate for m contrasts

P (CIs contain true parameter for any contrast) ≥ 1 − α

P (at least one CI does not contain true parameter) ≤ α

Remark: Scheffe’s method is also conservative, too conservative when m is

small
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Methods for Pairwise Comparisons

• There are a(a − 1)/2 possible pairs: µi − µj (contrast for comparing µi

and µj ). We may be interested in m pairs or all pairs.

• Standard Procedure:

1. Estimation: ȳi. − ȳj.

2. Compute a Critical Difference ( CD) (based on the method employed)

3. If

| ȳi. − ȳj. |> CD

or equivalently if the interval

(ȳi. − ȳj. − CD, ȳi. − ȳj. + CD)

does not contain zero, declare µi − µj significant.
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Methods for Calculating CD.

• Least significant difference (LSD):

CD = tα/2,N−a

√
MSE(1/ni + 1/nj)

not control overall error rate

• Bonferroni method (for m pairs)

CD = tα/2m,N−a

√
MSE(1/ni + 1/nj)

control overall error rate for the m comparisons.

• Tukey’s method (for all possible pairs)

CD =
qα(a, N − a)√

2

√
MSE(1/ni + 1/nj)

qα(a, N − a) from studentized range distribution (Table VII or Table VIII).

Control overall error rate (exact for balanced experiments). (Example 3.7).
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Comparing treatments with control (Dunnett’s method)

1. Assume µ1 is a control, and µ2, . . . , µa are (new) treatments

2. Only interested in a − 1 pairs: µ2 − µ1, . . . , µa − µ1

3. Compare | ȳi. − ȳ1. | to

CD = dα(a − 1, N − a)
√

MSE(1/ni + 1/n1)

where dα(p, f) from Table IX or Table VIII: critical values for Dunnett’s test.

4. Remark: control overall error rate. Read Example 3-9 (or 3-10)

For pairwise comparison, which method should be preferred? LSD,

Bonferroni, Tukey, Dunnett or others?
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SAS Code

data one;

infile ’c:\saswork\data\tensile.dat’;

input percent strength time;

proc glm data=one;

class percent;

model strength=precent;

/* Construct CI for Treatment Means*/

means percent /alpha=.05 lsd clm;

means percent / alpha=.05 bon clm;

/* Pairwise Comparison*/

means percent /alpha=.05 lines lsd;

means percent /alpha=.05 lines bon;

means percent /alpha=.05 lines scheffe;

means percent /alpha=.05 lines tukey;

means percent /dunnett;

run;
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The GLM Procedure

t Confidence Intervals for y

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 8.06

Critical Value of t 2.08596

Half Width of Confidence Interval 2.648434

95% Confidence

trt N Mean Limits

30 5 21.600 18.952 24.248

25 5 17.600 14.952 20.248

20 5 15.400 12.752 18.048

35 5 10.800 8.152 13.448

15 5 9.800 7.152 12.448
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The GLM Procedure

Bonferroni t Confidence Intervals for y

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 8.06

Critical Value of t 2.84534

Half Width of Confidence Interval 3.612573

Simultaneous 95%

trt N Mean Confidence Limits

30 5 21.600 17.987 25.213

25 5 17.600 13.987 21.213

20 5 15.400 11.787 19.013

35 5 10.800 7.187 14.413

15 5 9.800 6.187 13.413
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t Tests (LSD) for y

NOTE: This test controls the Type I comparisonwise error rate, not the

experimentwise error rate.

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 8.06

Critical Value of t 2.08596

Least Significant Difference 3.7455

Means with the same letter are not significantly different.

t Grouping Mean N trt

A 21.600 5 30

B 17.600 5 25

B 15.400 5 20

C 10.800 5 35

C 9.800 5 15
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Bonferroni (Dunn) t Tests for y

This test controls the Type I experimentwise error rate, but it general l

has a higher Type II error rate than REGWQ.

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 8.06

Critical Value of t 3.15340

Minimum Significant Difference 5.6621

Means with the same letter are not significantly different.

Bon Grouping Mean N trt

A 21.600 5 30

B A 17.600 5 25

B C 15.400 5 20

C 10.800 5 35

C 9.800 5 15
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Scheffe’s Test for y

NOTE: This test controls the Type I experimentwise error rate.

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 8.06

Critical Value of F 2.86608

Minimum Significant Difference 6.0796

Means with the same letter are not significantly different.

Scheffe Grouping Mean N trt

A 21.600 5 30

A

B A 17.600 5 25

B

B C 15.400 5 20

C

C 10.800 5 35

C

C 9.800 5 15
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Tukey’s Studentized Range (HSD) Test for y

This test controls the Type I experimentwise error rate, but it genera l

has a higher Type II error rate than REGWQ.

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 8.06

Critical Value of Studentized Range 4.23186

Minimum Significant Difference 5.373

Means with the same letter are not significantly different.

Tukey Grouping Mean N trt

A 21.600 5 30

A

B A 17.600 5 25

B

B C 15.400 5 20

C

D C 10.800 5 35

D

D 9.800 5 15
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Dunnett’s t Tests for y

This test controls the Type I experimentwise error for comparisons of a

treatments against a control.

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 8.06

Critical Value of Dunnett’s t 2.65112

Minimum Significant Difference 4.7602

Comparisons significant at the 0.05 level are indicated by ***.

Difference

trt Between Simultaneous 95%

Comparison Means Confidence Limits

30 - 15 11.800 7.040 16.560 ***

25 - 15 7.800 3.040 12.560 ***

20 - 15 5.600 0.840 10.360 ***

35 - 15 1.000 -3.760 5.760
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Determining Sample Size

• More replicates required to detect small treatment effects

• Operating Characteristic Curves for F tests

• Probability of type II error

β = P ( accept H0 | H0 is false)

= P (F0 < Fα,a−1,N−a | H1 is correct )

• Under H1, F0 follows a noncentral F distribution with noncentrality λ and degrees

of freedom, a − 1 and N − a. Let

Φ2 =
n

∑a
i=1 τ2

i

aσ2

• OC curves of β vs n and Φ are included in Chart V for various α and a.
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Example 3-10: Experiment Involving 4 Treatments

• Suppose want to detect (at α = 0.01) µ1 = 575, µ2 = 600, µ3 = 650,

µ4 = 675, and can assume σ2 = 25.

• How many replicates per treatment is needed such that β < 0.10?

• We have τ1 = −50, τ2 = −25, τ3 = 25, τ4 = 50, and

Φ2 =
n

∑a
i=1 τ2

i

aσ2
=

6250n

4(25)2
= 2.5n,

• ν1 = a − 1 = 3, ν2 = N − a = 4(n − 1), and β = f(α, ν1, ν2, n, Φ):

n Φ2 Φ ν2 β Power

3 7.5 2.74 8 0.25 0.75

4 10.0 3.16 12 0.04 0.04

5 12.5 3.54 16 <0.01 >0.99
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Another Approach

• Suppose want to guarantee β < 0.10 when there is at least one pair of treatments

that differ by D(e.g. µ1 − µ2 ≥ D).

• The smallest Φ2 is

Φ2 =
nD2

2aσ2

• In Example 3.10, consider D = 75 and assume σ2 = 25,

Φ2 =
n(75)2

2(4)(252)
= 1.125n

• ν1 = a − 1 = 3, ν2 = N − a = 4(n − 1), and β = f(α, ν1, ν2, n, Φ):

n Φ2 Φ ν2 β Power

4 4.5 2.12 12 0.35 0.65

5 5.625 2.37 16 0.20 0.80

6 6.75 2.60 20 <0.10 >0.90
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