Lecture 4. Checking Model Assumptions: Diagnostics and Remedies

Montgomery: 3-4, 15-1.1

Model Assumptions

- Model Assumptions
 - 1 Model is correct
 - 2 Independent observations
 - 3 Errors normally distributed
 - 4 Constant variance

$$y_{ij} = (\overline{y}_{..} + (\overline{y}_{i.} - \overline{y}_{..})) + (y_{ij} - \overline{y}_{i.})$$

$$y_{ij} = \hat{y}_{ij} + \hat{\epsilon}_{ij}$$
observed = predicted + residual

- Note that the predicted response at treatment i is $\hat{y}_{ij} = \bar{y}_{i}$.
- Diagnostics use predicted responses and residuals.

Diagnostics

- Normality
 - Histogram of residuals
 - Normal probability plot / QQ plot (refer to Lecture 3)
 - Shapiro-Wilk Test (refer to Lecture 3)
- Constant Variance
 - Plot $\hat{\epsilon}_{ij}$ vs \hat{y}_{ij} (residual plot)
 - Bartlett's or Levene's Test
- Independence
 - Plot $\hat{\epsilon}_{ij}$ vs time/space (refer to Lecture 3)
 - Plot $\hat{\epsilon}_{ij}$ vs variable of interest
- Outliers

Constant Variance

 \bullet In some experiments, error variance (σ_i^2) depends on the mean response

$$E(y_{ij}) = \mu_i = \mu + \tau_i.$$

So the constant variance assumption is violated.

- Size of error (residual) depends on mean response (predicted value)
- Residual plot
 - Plot $\hat{\epsilon}_{ij}$ vs \hat{y}_{ij}
 - Is the range constant for different levels of \hat{y}_{ij}
- More formal tests:
 - Bartlett's Test
 - Modified Levene's Test.

Bartlett's Test

- Uses sample variances as estimates of population variances
- $H_0: \sigma_1^2 = \sigma_2^2 = \ldots = \sigma_a^2$
- \bullet Test statistic: $\chi_0^2=2.3026q/c\,$, where

$$q = (N - a)\log_{10} S_p^2 - \sum_{i=1}^a (n_i - 1)\log_{10} S_i^2$$

$$c = 1 + \frac{1}{3(a-1)} \left(\sum_{i=1}^a (n_i - 1)^{-1} - (N - a)^{-1}\right)$$

$$S_i^2 = rac{\sum_{j=1}^{n_i} (y_{ij} - ar{y}_{i.})^2}{n_i - 1}$$
 (sample variance at treatment i)

$$S_p^2 = \frac{\sum_{i=1}^a (n_i - 1) S_i^2}{N - a} = \mathrm{MS_E}$$
 (pooled variance)

• Decision Rule: reject H_0 when $\chi_0^2 > \chi_{\alpha,a-1}^2$. Remark: sensitive to normality assumption.

Modified Levene's Test

- Use mean absolution deviations as estimates of population variances
- For each fixed i, calculate the median (Modified Levene) m_i of $y_{i1}, y_{i2}, \dots, y_{in_i}$.
- Compute the absolute deviation of observation from sample median:

$$d_{ij} = |y_{ij} - m_i|$$

for
$$i=1,2,\ldots,a$$
 and $j=1,2,\ldots,n_i$,

- ullet Apply ANOVA to the deviations: d_{ij}
- Use the usual ANOVA F-statistic for testing $H_0: \sigma_1^2 = \ldots = \sigma_a^2$.

```
options ls=80 ps=65;
title1 'Diagnostics Example';
data one;
 infile 'c:\saswork\data\tensile.dat';
 input percent strength time;
proc glm data=one;
 class percent;
model strength=percent;
means percent / hovtest=bartlett hovtest=levene hovtest=bf;
 output out=diag p=pred r=res;
proc sort; by pred;
symbol1 v=circle i=sm50; title1 'Residual Plot';
proc gplot; plot res*pred/frame; run;
proc univariate data=diag normal noprint;
var res; qqplot res / normal (L=1 mu=est sigma=est);
histogram res / normal; run;
```

```
run;
proc sort; by time;
symbol1 v=circle i=sm75;
title1 'Plot of residuals vs time';
proc gplot; plot res*time / vref=0 vaxis=-6 to 6 by 1;
run;

symbol1 v=circle i=sm50;
title1 'Plot of residuals vs time';
proc gplot; plot res*time / vref=0 vaxis=-6 to 6 by 1;
run;
```

Diagnostics Example

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	4	475.7600000	118.9400000	14.76	<.0001
Error	20	161.2000000	8.0600000		
Corrected Total	24	636.9600000			

Bartlett's Test for Homogeneity of strength Variance

Source DF Chi-Square Pr > ChiSq percent 4 0.9331 0.9198

Levene's Test for Homogeneity of strength Variance ANOVA of Squared Deviations from Group Means

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
percent	4	91.6224	22.9056	0.45	0.7704
Error	20	1015.4	50.7720		

Brown and Forsythe's Test for Homogeneity of strength Variance ANOVA of Absolute Deviations from Group Medians

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
percent	4	4.9600	1.2400	0.32	0.8626
Error	20	78.0000	3.9000		

Non-constant Variance: Impact and Remedy

At different treatments ($i=1,2,\ldots,a$), variances $(\sigma_i^2)'s$ are different; in particular, the variance (σ_i^2) 's depend on treatment means (μ_i) 's, i.e. $\sigma_i^2=g(\mu_i)$.

- Does not affect F-test dramatically when experiment is balanced
- Why concern?
 - Further comparison of treatments depends on ${
 m MS_E}$
 - Lead to comparison results and confidence intervals.
- Variance-Stabilizing Transformations
 - Transform data y_{ij} to $f(y_{ij})$, e.g. y_{ij} to $\sqrt{y_{ij}}$, with the hope that the transformed data $f(y_{ij})$ do not violate the constant variance assumption.
 - f is called a variance-stabilizing transformation; \sqrt{y} , $\log(y)$, 1/y, $\arcsin(\sqrt{y})$, and $1/\sqrt{y}$ are some commonly used transformations.
 - Transformations are also used as remedies for nonnormality

Ideas for Finding Proper Transformations

- Consider response Y with mean $E(Y)=\mu$ and variance $Var(Y)=\sigma^2$.
- That σ^2 depends on μ leads to nonconstant variances for different μ .
- \bullet Let f be a transformation and $\tilde{Y}=f(Y);$ What is the mean and variance of \tilde{Y} ?
- ullet Approximate f(Y) by a linear function (Delta Method):

$$f(Y) \approx f(\mu) + (Y - \mu)f'(\mu)$$

Mean
$$\tilde{\mu}=\mathrm{E}(\tilde{Y})=\mathrm{E}(f(Y))\approx\mathrm{E}(f(\mu))+\mathrm{E}((Y-\mu)f'(\mu))=f(\mu)$$
 Variance $\tilde{\sigma}^2=\mathrm{Var}(\tilde{Y})\approx[f'(\mu)]^2\mathrm{Var}(Y)=[f'(\mu)]^2\sigma^2$

• f is a good transformation if $\tilde{\sigma}^2$ does not depend on $\tilde{\mu}$ anymore. So, \tilde{Y} has constant variance for different $f(\mu)$.

Transformations

- $\bullet \,$ Suppose σ^2 is a function of μ , that is $\sigma^2 = g(\mu)$
- Want to find transformation f such that $\tilde{Y}=f(Y)$ has constant variance: ${\rm Var}(\tilde{Y})$ does not depend on μ .
- Have shown $\mathrm{Var}(\tilde{Y}) \approx [f'(\mu)]^2 \sigma^2 = [f'(\mu)]^2 g(\mu)$
- Need to choose f such that $[f'(\mu)]^2 g(\mu) = \text{constant}$
- ullet When $g(\mu)$ is known, f can be derived explicitly.

Examples (c is some unknown constant)

$$g(\mu)=c\mu \qquad \qquad \text{(Poisson)} \qquad f(Y)=\int \frac{1}{\sqrt{\mu}}d\mu \to f(Y)=\sqrt{Y}$$

$$g(\mu)=c\mu(1-\mu) \qquad \qquad \text{(Binomial)} \qquad f(Y)=\int \frac{1}{\sqrt{\mu(1-\mu)}}d\mu \to f(Y)=\arcsin(\sqrt{Y})$$

$$g(\mu)=c\mu^{2\beta}(\beta\neq 1) \qquad \qquad \text{(Box-Cox)} \qquad f(Y)=\int \mu^{-\beta}d\mu \to f(Y)=Y^{1-\beta}$$

$$g(\mu)=c\mu^2 \qquad \qquad \text{(Box-Cox)} \qquad f(Y)=\int \frac{1}{\mu}d\mu \to f(Y)=\log Y$$

Box-Cox Transformations

• Assume $\sigma^2 = c\mu^{2\beta}$, then the variance-stabilizing transform should be

$$f(Y) = \begin{cases} Y^{1-\beta} & \beta \neq 1; \\ \log Y & \beta = 1 \end{cases}$$

These transformations are referred to as Box-Cox transformations.

Clearly it is crucial to know what β is.

As a matter of fact, β can be regarded as a parameter, and it can be estimated (identified) from data.

Identify Box-Cox Transformations: An Approximate Method

 \bullet From the assumption $\sigma^2=c\mu^{2\beta}$, we have

$$\sigma_i^2 = c\mu_i^{2\beta}$$
 for treatments $i=1,2,\ldots,a$.

Take logarithm of both sides,

$$\log \sigma_i = \frac{1}{2} \log c + \beta \log \mu_i$$

• Let s_i and \bar{y}_i be the sample standard deviations and means. Because $\hat{\sigma}_i = s_i$ and $\hat{\mu}_i = \bar{y}_i$, approximately,

$$\log s_i = \text{constant } + \beta \log \bar{y}_{i.},$$

where $i = 1, \ldots, a$.

• We can plot $\log s_i$ against $\log \bar{y}_i$, fit a straight line and use the slope to estimate β .

Identify Box-Cox Transformation: A Formal Method

Basic idea: try all possible transformations and choose the best one. For example, consider λ in an interval, e.g. [-2, 2].

1 . Fix λ , transform data y_{ij} as follows,

$$y_{ij,\lambda} = \begin{cases} \frac{y_{ij}^{\lambda} - 1}{\lambda \dot{y}^{\lambda - 1}} & \lambda \neq 0 \\ & \text{where } \dot{y} = \left(\prod_{i=1}^{a} \prod_{j=1}^{n_i} y_{ij}\right)^{1/N} \\ \dot{y} \log y_{ij} & \lambda = 0 \end{cases}$$

- 2 . Step 1 generates a transformed data $y_{ij,\lambda}$. Apply ANOVA to the new data and obtain its SS_E . Because SS_E depends on λ , it is denoted by $SS_E(\lambda)$.
- ullet Repeat 1 and 2 for various λ in [-2,2], and record $\mathrm{SS}_{\mathrm{E}}(\lambda)$
- 3 Find λ_0 that minimizes $SS_E(\lambda)$ and pick up a meaningful λ around λ_0 . Then the transformation is:

$$\tilde{y}_{ij} = y_{ij}^{\lambda_0}$$
 if $\lambda_0 \neq 0$; $\tilde{y}_{ij} = \log y_{ij}$ if $\lambda_0 = 0$.

An Example: boxcox.dat

```
trt response
   0.948916
1
  0.431494
  3.486359
  3.469623
  0.840701
  3.816014
  1.234756
3 10.680733
3 19.453816
  3.810572
3 10.832754
  3.814586
```

Approximate Method: trans.sas

```
options nocenter ps=65 ls=80;
title1 'Increasing Variance Example';
data one;
 infile 'c:\saswork\data\boxcox.dat'; input trt resp;
proc glm data=one; class trt;
model resp=trt; output out=diag p=pred r=res;
title1 'Residual Plot'; symbol1 v=circle i=none;
proc qplot data=diag; plot res*pred /frame;
proc univariate data=one noprint;
var resp; by trt; output out=two mean=mu std=sigma;
data three;
 set two; logmu = log(mu); logsiq = log(siqma);
proc req; model logsig = logmu;
title1 'Mean vs Std Dev'; symbol1 v=circle i=rl;
proc qplot; plot logsig*logmu / regegn; run;
```

Residual Plot

Residual Plot

Plot of ${ m log}s_i$ vs ${ m log}\mu_i$

Mean vs Std Dev

Regression Equation: | loasia = -0.243928 + 1.212067*loamu

Formal Method: trans1.sas

```
options ls=80 ps=65 nocenter;
title1 'Box-Cox Example';
data one;
 infile 'c:\saswork\data\boxcox.dat';
 input trt resp;
 logresp = log(resp);
proc univariate data=one noprint;
var logresp; output out=two mean=mlogresp;
data three;
 set one; if _n_ eq 1 then set two;
ydot = exp(mlogresp);
 do l=-1.0 to 1.0 by .25;
    den = l*ydot**(l-1); if abs(l) eq 0 then den = 1;
   yl=(resp**l-1)/den; if abs(l) < 0.0001 then yl=ydot*log(resp);
    output;
 end;
```

```
keep trt yl 1;
proc sort data=three out=three; by 1;
proc glm data=three noprint outstat=four;
 class trt; model yl=trt; by 1;
data five; set four;
 if _SOURCE_ eq 'ERROR'; keep 1 SS;
proc print data=five;
run;
symbol1 v=circle i=sm50;
proc gplot;
plot SS*1;
run;
```

$extsf{SS}_E(\lambda)$ and λ

OBS	L	SS	OBS	${ m L}$	SS
1	-2.00	2150.06	10	0.25	112.37
2	-1.75	1134.83	11	0.50	154.23
3	-1.50	628.94	12	0.75	253.63
4	-1.25	369.35	13	1.00	490.36
5	-1.00	232.32	14	1.25	1081.29
6	-0.75	158.56	15	1.50	2636.06
7	-0.50	119.28	16	1.75	6924.95
8	-0.25	100.86	17	2.00	19233.39
9	0.00	98.09			

Plot of ${ m SS}_E(\lambda)$ vs λ

Increasing Variance Example

Using Proc Transreg

```
proc transreg data=one;
model boxcox(y/lambda=-2.0 to 2.0 by 0.1)=class(trt); run;
        The TRANSREG Procedure
         Transformation Information
              for BoxCox(y)
        Lambda
                  R-Square Log Like
          -2.0
                      0.10 -108.906
                      :
          -0.5
                      0.18
                              -22.154
          -0.4
                      0.19
                              -19.683
          -0.3
                    0.20
                              -17.814 *
          -0.2
                      0.20
                              -16.593 *
          -0.1
                    0.21
                              -16.067 <
          0.0 +
                      0.21
                              -16.284 *
          0.1
                    0.22
                              -17.289 *
          0.2
                      0.22
                              -19.124
          0.3
                      0.22
                              -21.820
                                          < Best Lambda
                                          * Confidence Interval
           :
                      :
          2.0
                             -174.641
                                          + Convenient Lambda
                      0.10
```

Nonnormality

tr	t nit	rogen			
1	2.80	7.04	0.41	1.73	0.18
2	0.60	1.14	0.14	0.16	1.40
3	0.05	1.07	1.68	0.46	4.87
4	1.20	0.89	3.22	0.77	1.24
5	0.74	0.20	1.62	0.09	2.27
6	1.26	0.26	0.47	0.46	3.26

Test ---Statistic---- Value----Shapiro-Wilk W 0.910027 Pr < W 0.0149

Kruskal-Wallis Test: a Nonparametric alternative

a treatments, H_0 : a treatments are not different.

- ullet Rank the observations y_{ij} in ascending order
- Replace each observation by its rank R_{ij} (assign average for tied observations)
- Test statistic

$$-H = \frac{1}{S^2} \left[\sum_{i=1}^a \frac{R_{i.}^2}{n_i} - \frac{N(N+1)^2}{4} \right] \approx \chi_{a-1}^2$$

- where
$$S^2 = \frac{1}{N-1} \left[\sum_{i=1}^a \sum_{j=1}^{n_i} R_{ij}^2 - \frac{N(N+1)^2}{4} \right]$$

- Decision Rule: reject H_0 if $H > \chi^2_{\alpha,a-1}$.
- ullet Let F_0 be the F-test statistic in ANOVA based on R_{ij} . Then

$$F_0 = \frac{H/(a-1)}{(N-1-H)/(N-a)}$$

```
options nocenter ps=65 ls=80;
data new;
 input strain nitrogen @@;
cards;
1 2.80
       1 7.04
               1 0.41 1 1.73 1
                                   0.18
 0.60
          1.14
                  0.14
                          0.16
                                   1.40
3 0.05 3
          1.07
                  1.68
                        3 0.46
                                3 4.87
4 1.20 4
          0.89
                4 3.22
                        4 0.77 4
                                   1.24
                  1.62
5 0.74 5
          0.20
                        5 0.09 5
                                   2.27
6 1.26 6 0.26
                6 0.47
                           0.46 6
                                   3.26
proc npar1way;
class strain;
var nitrogen;
run;
```

The NPAR1WAY Procedure

Analysis of Variance for Variable nitrogen

Classified by Variable strain

_					
strain		N	Mean		
1		5	2.4320		
2		5	0.6880		
3		5	1.6260		
4		5	1.4640		
5		5	0.9840		
6		5	1.1420		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Among	 5	9.330387	1.866077	0.7373	0.6028
Within	24	60.739600	2.530817	3.7373	0.0020

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable nitrogen
Classified by Variable strain

		Sum of	Expected	Std Dev	Mean
strain	N	Scores	Under H0	Under H0	Score
1	5	93.00	77.50	17.967883	18.60
2	5	57.00	77.50	17.967883	11.40
3	5	78.50	77.50	17.967883	15.70
4	5	93.00	77.50	17.967883	18.60
5	5	68.00	77.50	17.967883	13.60
6	5	75.50	77.50	17.967883	15.10

Average scores were used for ties.

Kruskal-Wallis Test

Chi-Square	2.5709
DF	5
Pr > Chi-Square	0.7658