Statistics 514: Model Adequacy

Lecture 4. Checking Model Assumptions: Diagnostics and Remedies
Montgomery: 3-4, 15-1.1
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Model Assumptions

e Model Assumptions
1 Model is correct
2 Independent observations
3 Errors normally distributed

4 Constant variance

vij = @W.+®@.—v)) + (Wii—7:)
Yij = Ui + €ij
observed = predicted + residual

e Note that the predicted response at treatment ¢ is @ij = ;.

e Diagnostics use predicted responses and residuals.
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Diagnostics

e Normality
— Histogram of residuals
— Normal probability plot / QQ plot (refer to Lecture 3)

— Shapiro-Wilk Test (refer to Lecture 3)

e Constant Variance
— Plot €;; vs ¥;; (residual plot)
— Bartlett’s or Levene’s Test
e Independence
— Plot éij vs time/space (refer to Lecture 3)

— Plot €;; vs variable of interest

e Qutliers
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Constant Variance

® |In some experiments, error variance (0?) depends on the mean response
E(yij) = pi = p+ 7.

So the constant variance assumption is violated.
e Size of error (residual) depends on mean response (predicted value)

e Residual plot

— Plot €;; Vs U

— Is the range constant for different levels of y; ;
e More formal tests:

— Bartlett’'s Test

— Modified Levene’s Test.
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Bartlett's Test

e Uses sample variances as estimates of population variances

e Hy:0f{=05=...=0"

e Test statistic: Yz = 2.3026¢q/c , where
q = (N —a)logynS; — > i (n; — 1)logyS;
c=1+4 350 (i —1)7 = (N —a)™)

Uz = \2
9 > :j:1(yz’j — ¥i.) _ :
SZ- = | ( sample variance at treatment 7 )
n; —

a 2
- (n; — 1)S;
Sz — 2 iz (" )5 — MSg (pooled variance)
N —a
e Decision Rule: reject Hy when x3 > Xa,a_l.

Remark: sensitive to normality assumption.
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Modified Levene’s Test

e Use mean absolution deviations  as estimates of population variances

e For each fixed 7, calculate the median (Modified Levene) m; of

Yil, Yi2s - -+ s Yin, -
e Compute the absolute deviation of observation from sample median:
dij = |yij — ™l
forer =1,2,... ,aandj) =1,2,...,n,,
e Apply ANOVA to the deviations: d;;

e Use the usual ANOVA F'-statistic for testing H : O'% = ...

|
Q
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options [s=80 ps=65;
titlel ’'Diagnostics Example’;

data one;
Infile ’c:\saswork\data\tensile.dat’;
input percent strength time;

proc glm data=one;

class percent;

model strength=percent;

means percent / hovtest=bartlett hovtest=levene hovtest=bf;
output out=diag p=pred r=res;

proc sort; by pred;
symboll v=circle i=sm50; titlel 'Residual Plot’;
proc gplot; plot res*pred/frame; run;

proc univariate data=diag normal noprint;
var res; qgplot res / normal (L=1 mu=est sigma=est);
histogram res / normal; run;
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run,

proc sort; by time;

symboll v=circle i=sm75;

titlel 'Plot of residuals vs time’;

proc gplot; plot res*time / vref=0 vaxis=-6 to 6 by 1,
run;

symboll v=circle i=sm50;

tittel 'Plot of residuals vs time’;

proc gplot; plot res*time / vref=0 vaxis=-6 to 6 by 1;
run;
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Diagnostics Example

Sum of
Source DF Squares Mean Square F Value Pr > F
Model 4  475.7600000 118.9400000 14.76 <.0001
Error 20 161.2000000 8.0600000
Corrected Total 24  636.9600000

Bartlett's Test for Homogeneity of strength Variance
Source DF Chi-Square Pr > ChiSq
percent 4 0.9331 0.9198

Levene’s Test for Homogeneity of strength Variance
ANOVA of Squared Deviations from Group Means

Sum of Mean
Source DF Squares Square F Value Pr > F
percent 4 91.6224 22.9056 0.45 0.7704
Error 20 1015.4 50.7720
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Brown and Forsythe’'s Test for Homogeneity of strength Variance
ANOVA of Absolute Deviations from Group Medians

Sum of Mean
Source DF Squares Square F Value Pr > F
percent 4 4.9600 1.2400 0.32 0.8626
Error 20 78.0000 3.9000
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Non-constant Variance: Impact and Remedy
At different treatments (: = 1,2, ... ,a), variances (o7)’s are different; in

particular, the variance (O'Z-Q 's) depend on treatment means ((4;’s), i.€.
2 __

o; = g(s)-
e Does not affect F-test dramatically when experiment is balanced

e \Why concern?
— Further comparison of treatments depends on MSg

— Lead to comparison results and confidence intervals.

e Variance-Stabilizing Transformations

— Transform data y;; to f(vi;), €.9. Yi; to \/Yi;, with the hope that the

transformed data f(;;) do not violate the constant variance assumption.

— [ is called a variance-stabilizing transformation; | /vy, log(y), 1/y,

arcsin(,/y), and 1/,/y are some commonly used transformations.

— Transformations are also used as remedies for nonnormality
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|deas for Finding Proper Transformations

Consider response Y with mean E(Y )=/ and variance Var(Y)=02.

That 02 depends on W leads to nonconstant variances for different L.

Let f be a transformation and Y = f(Y'); What is the mean and variance of
Y?

Approximate f(Y') by a linear function (Delta Method):

fY) = f(u) + (Y —p) f' (1)

~

Mean o =E(Y) =E(f(Y)) = E(f(1)) +E(Y —p)f' () = f(1)
Variance 62 = Var(Y) = [f(u)]?*Var(Y) = [f'(u)]?0?

f is a good transformation if &2 does not depend on ft anymore. So, Y has

constant variance for different f(11).
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Transformations

2 2

® Suppose o

is a function of y, thatis 0 = g(u)

e \Want to find transformation f such that Y = f(Y') has constant variance:

Var(f/) does not depend on L.
e Have shown Var(Y)~ [f'(1)]%02 = [£'(1)]?g(1)
e Need to choose f such that [f/(u)]*g(p) = constant
e When g() is known, f can be derived explicitly.

Examples (cis some unknown constant)
= cl (Poisson)  f(Y)= [ #d,u — f(Y)=VY
. . , : _ 1 . _ .
= cu(1 — p) (Binomial)  f(Y) = [ —md,u f(Y) = arcsin(V
=P (B#1) BoxCox) f(Y)= [pldu— f(Y)=Y"F
= cp? (Box-Cox) f(Y)= ] %d,u — f(Y) =logY
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Box-Cox Transformations

2

® Assume 0 = c,u25, then the variance-stabilizing transform should be

YI=F 3#1;

Y) =
) logY (=1

These transformations are referred to as Box-Cox transformations.
Clearly it is crucial to know what (3 is.

As a matter of fact, 3 can be regarded as a parameter, and it can be

estimated (identified) from data.
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|dentify Box-Cox Transformations: An Approximate Method

2

® From the assumption 0 = c,uw, we have

af = c,u,?ﬁ for treatments7 = 1,2, ... ,a.

Take logarithm of both sides,

1
logo; = ilogc + Blogpt;
e Let s; and y; be the sample standard deviations and means. Because
0; = s; and [i; = y; , approximately |,

logs; = constant + (logy; .,

where? =1,... ,a.

e We can plot logs; against logy; , fit a straight line and use the slope to

estimate [3.

Page 15



Statistics 514: Model Adequacy

|dentify Box-Cox Transformation: A Formal Method

Basic idea: try all possible transformations and choose the best one. For

example, consider A in an interval, e.g. [-2, 2].

1 . Fix A, transform data y;; as follows,

(sl x40 o\ UN

Ayr—1 a mn;
Yij X = where 7 = H H Yij

| ylogy;; A=0 e

2 . Step 1 generates a transformed data y;; . Apply ANOVA to the new data
and obtain its SSg. Because SSg depends on A, it is denoted by SSg ().

e Repeat 1 and 2 for various A in [-2,2], and record SSg ()

3 Find \g that minimizes SS g () and pick up a meaningful A around A\g. Then
the transformation is:

gij — y;‘jo if )\0 7é 0; z]ij = 10g Yij if )\0 = 0.
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An Example: boxcox.dat

trt response

1 0.948916
1 0.431494
1 3.486359

3.469623
0.840701
3.816014
1.234756

N N NN

3 10.680733
3 19.453816
3 3.810572
3 10.832754
3 3.814586
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Approximate Method: trans.sas

options nocenter ps=65 [s=80;

titlel ’'Increasing Variance Example’;

data one;

infile 'c:\saswork\data\boxcox.dat’; input trt resp;
proc glm data=one; class trt;

model resp=trt; output out=diag p=pred r=res;

titlel 'Residual Plot’; symboll v=circle i=none;
proc gplot data=diag; plot res*pred /frame;

proc univariate data=one noprint;

var resp; by trt; output out=two mean=mu std=sigma;
data three;

set two; logmu = log(mu); logsig = log(sigma);

proc reg; model logsig = logmu;

titlel 'Mean vs Std Dev’; symboll v=circle i=rl;
proc gplot; plot logsig*¥logmu / regeqn; run;
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Residual Plot
Residual Plot

[e)e}

o
e}
OOaD
a

L 1
@@ OO O

@oo @ O O

Page 19



Statistics 514: Model Adequacy

Plot of logs; vs logu;

Mean vs Std Dev
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Formal Method: transl.sas

options Is=80 ps=65 nocenter;
titlel 'Box-Cox Example’;

data one;

infile 'c:\saswork\data\boxcox.dat’;
input trt resp;

logresp = log(resp);

proc univariate data=one noprint;
var logresp; output out=two mean=mlogresp;

data three;

set one; if _n_ eq 1 then set two;

ydot = exp(mlogresp);

do |1=-1.0 to 1.0 by .25;
den = P*ydot**(I-1); if abs(l) eq 0 then den = 1;
yl=(resp**l -1)/den; if abs(l) < 0.0001 then yl=ydot*log(resp);
output;

end;
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keep trt yl I;

proc sort data=three out=three; by I;
proc glm data=three noprint outstat=four;
class trt; model yl=trt; by I;

data five; set four:
if SOURCE_ eq 'ERROR’; keep | SS;

proc print data=five;
run;

symboll v=circle i=sm50;
proc gplot;

plot SS*I;

run;

Page 22



Statistics 514: Model Adequacy

)
0p)
&

OBS

O© 00 ~NOoO O b WDN P

and \

-2.00
-1.75
-1.50
-1.25
-1.00
-0.75
-0.50
-0.25
0.00

2150.06
1134.83
628.94
369.35
232.32
158.56
119.28
100.86
98.09

10
11
12
13
14
15
16
17

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

112.37
154.23
253.63
490.36
1081.29
2636.06
6924.95
19233.39

SS
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Plot of SS g(A) vs A

Increasing Variance Example

400

300

2007
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Using Proc Transreg

proc transreg data=one;
model boxcox(y/lambda=-2.0 to 2.0 by 0.1)=class(trt); run;
The TRANSREG Procedure
Transformation Information
for BoxCox(y)

Lambda R-Square Log Like
-2.0 0.10 -108.906
-0.5 0.18 -22.154
-0.4 0.19 -19.683
-0.3 0.20 -17.814 *
-0.2 0.20 -16.593 *
-0.1 0.21 -16.067 <
0.0 + 0.21 -16.284 *
0.1 0.22 -17.289 *
0.2 0.22 -19.124
0.3 0.22 -21.820 < Best Lambda
; ; ; * Confidence Interval
2.0 0.10 -174.641 + Convenient Lambda
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Nonnormality

trt

O 01 B~ WN P

nitrogen

280 7.04
0.60 1.14
0.05 1.07
1.20 0.89
0.74  0.20
1.26 0.26

0.41
0.14
1.68
3.22
1.62
0.47

1.73
0.16
0.46
0.77
0.09
0.46

0.18
1.40
4.87
1.24
2.27
3.26
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Normal Quantiles

Test ---Statistic----  ----- p Value-----
Shapiro-Wilk W 0.910027 Pr < W 0.0149

Page 27



Statistics 514: Model Adequacy

Kruskal-Wallis Test: a Nonparametric alternative

a treatments, Hy: a treatments are not different.
e Rank the observations y;; in ascending order

® Replace each observation by its rank Rz-j (assign average for tied

observations)

e Test statistic
-H=g [Z?ﬂ i_Q B N<—N4+1)2 N Xa-1
— where S? = ﬁ {Z?Zl Z?":l R%j — N(NTW
e Decision Rule: reject Hy if H > Xa,a—l-
e Let Iy be the ['-test statistic in ANOVA based on 1?;;. Then

H/(a—1)

e N T om(V —a)
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options nocenter ps=65 [s=80;

data new;

input strain nitrogen @@;

cards;

1 280 1 704 1 041 1 173 1 0.18
2 060 2 114 2 014 2 016 2 1.40
3 005 3 107 3 168 3 046 3 4.87
4 120 4 089 4 322 4 077 4 124
5 074 5 020 5 162 5 0.09 5 227
6 126 6 026 6 047 6 046 6 3.26

proc nparlway;
class strain;

var nitrogen;

run;
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The NPAR1IWAY Procedure
Analysis of Variance for Variable nitrogen
Classified by Variable strain

strain N Mean

1 5 2.4320

2 5 0.6880

3 5 1.6260

4 5 1.4640

5 5 0.9840

6 5 1.1420
Source DF Sum of Squares Mean Square
Among 5 9.330387

Within 24 60.739600 2.530817

1.866077 0.7373 0.6028

F Value Pr > F
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The NPAR1WAY Procedure
Wilcoxon Scores (Rank Sums) for Variable nitrogen
Classified by Variable strain

Sum of Expected Std Dev Mean
strain N Scores Under HO Under HO Score
1 5 93.00 77.50 17.967883 18.60
2 5 57.00 77.50 17.967883 11.40
3 5 78.50 77.50 17.967883 15.70
4 5 93.00 77.50 17.967883 18.60
5 5 68.00 77.50 17.967883 13.60
6 5 75.50 77.50 17.967883 15.10

Average scores were used for ties.
Kruskal-Wallis Test
Chi-Square 2.5709
DF 5

Pr > Chi-Square 0.7658
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