Lecture 2: Basic Concepts and Simple Comparative Experiments

Montgomery: Chapter 2

Random Variable and Probability Distribution

Discrete random variable Y:

- Finite possible values $\{y_1, y_2, y_3, \ldots, y_k\}$
- Probability mass function $\{p(y_1), p(y_2), \dots p(y_k)\}$ satisfying

$$p(y_i) \ge 0 \text{ and } \sum_{i=1}^k p(y_i) = 1$$

Continuous random variable Y:

- Possible values form an interval
- Probability density function f(y) satisfying

$$f(y) \geq 0 \text{ and } \int f(y) dy = 1.$$

Mean and Variance

Mean $\mu = E(Y)$: center, location, etc.

Variance $\sigma^2 = \operatorname{Var}(Y)$: spread, dispersion, etc.

Discrete Y:

$$\mu = \sum_{i=1}^{k} y_i p(y_i); \ \sigma^2 = \sum_{i=1}^{k} (y_i - \mu)^2 p(y_i)$$

Continuous Y:

$$\mu = \int y f(y) dy; \ \sigma^2 = \int (y-\mu)^2 f(y) dy$$

Formulas for calculating mean and variance

If Y_1 and Y_2 are **independent**, then

$$- \operatorname{E}(Y_1 Y_2) = \operatorname{E}(Y_1) \operatorname{E}(Y_2)$$

- $\operatorname{Var}(aY_1 \pm bY_2) = a^2 \operatorname{Var}(Y_1) + b^2 \operatorname{Var}(Y_2)$

Other formulas refer to Page 28 (Montgomery, 6th Edition)

Statistical Analysis and Inference:

Learn about population from (randomly) drawn data/sample

Model and parameter:

Assume population (Y) follows a certain model (distribution) that depends on a set of unknown constants (parameters) denoted by θ : $Y \sim f(y, \theta)$.

Example 1:
$$Y \sim N(\mu, \sigma^2)$$

 $Y \sim \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{(y-\mu)^2}{2\sigma^2}\};$ where $\theta = (\mu, \sigma^2)$

Example 2: Y_1 and Y_2 are mean yields of tomato plants fed with fertilizer mixtures A and B, respectively:

$$Y_{1} = \mu_{1} + \epsilon_{1}; \ \epsilon_{1} \sim N(0, \sigma_{1}^{2})$$
$$Y_{2} = \mu_{2} + \epsilon_{2}; \ \epsilon_{2} \sim N(0, \sigma_{2}^{2})$$
$$\theta = (\mu_{1}, \sigma_{1}^{2}, \mu_{2}, \sigma_{2}^{2})$$

Random sample or observations

Random Sample (conceptual)

$$X_1, X_2, \ldots, X_n \sim f(x, \theta)$$

Random Sample (realized)

$$x_1, x_2, \ldots, x_n \sim f(x, \theta)$$

Example 1:

Example 2:

Statistical Inference: Estimating Parameter θ

- Statistics: a statistic is a function of the sample. $Y_1, \ldots, Y_n: \hat{\theta} = g(Y_1, Y_2, \ldots, Y_n)$ called estimator $y_1, \ldots, y_n: \hat{\theta} = g(y_1, y_2, \ldots, y_n)$ called estimate
- Example 1:

Estimators for μ and σ^2

$$\hat{\mu} = \bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{n}; \ \hat{\sigma}^2 = S^2 = \frac{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}{n-1}$$

Estimates

$$\hat{\mu} = \bar{y} = 1.01; \hat{\sigma}^2 = s^2 = 3.49$$

• Example 2:

Estimators:

$$\hat{\mu}_i = \bar{Y}_i = \frac{\sum_{j=1}^{n_i} Y_{ij}}{n_i}; \ \hat{\sigma}_i^2 = S_i^2 = \frac{\sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_i)^2}{n_i - 1}$$

for i = 1, 2.

Estimates:

$$\bar{y}_1 = 18.73; s_1^2 = 1.50; \bar{y}_2 = 19.91; s_2^2 = 1.30;$$

Assume $\sigma_1^2 = \sigma_2^2$:

$$S_{pool}^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}; \ s_{pool}^2 = 1.40$$

Statistical Inference: Testing Hypotheses

Use test statistics and their distributions to judge hypotheses regarding parameters.

• H_0 : null hypothesis vs H_1 : alternative hypothesis Example 1: $H_0: \mu = 0$ vs $H_1: \mu \neq 0$ Example 2.1: $H_0: \mu_2 = \mu_1$ vs $H_1: \mu_2 > \mu_1$

Example 2.2: $H_0: \sigma_1^2 = \sigma_2^2 \text{ vs } H_1: \sigma_1^2 \neq \sigma_2^2$

Details refer to Table 2-3 on Page 47 and Table 2-7 on Page 53

• Test statistics:

Measures the amount of deviation of estimates from H_0 Example 1:

$$T = \frac{\bar{Y} - 0}{S/\sqrt{n}} ~~ \sim^{H_0} ~~ t(n-1); ~~ T_{obs} = 1.71$$

Example 2:

$$T = \frac{(\bar{Y}_2 - \bar{Y}_1) - 0}{S_{pool}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \quad \sim^{H_0} \quad t(n_1 + n_2 - 2); \quad T_{obs} = 2.22$$

• Decision Rules

- Given significance level α , there are two approaches:
- Compare observed test statistic with critical value
- Compute the P-value of observed test statistic
 - * Reject H_0 , if the *P*-value $\leq \alpha$.

Statistical Inference: Testing Hypotheses

• *P*-value is the probability that test statistic takes on a value that is at least as extreme as the observed value of the statistic when H_0 is true.

"Extreme" in the sense of the alternative hypothesis H_1 .

Example 1:

$$P - \text{value} = \mathsf{P}(T \le -1.71 \text{ or } T \ge 1.71 \mid t(9)) = .12$$

Conclusion: fail to reject H_0 because 12% \geq 5%.

Example 2:

$$P - \text{value} = \mathsf{P}(T \ge 2.22 \mid t(18)) = 0.02$$

Conclusion: reject H_0 because 2% \leq 5%.

Type I Error, Type II Error and Power of a Decision Rule

Type I error: when H_0 is true, reject H_0 .

 $\alpha = P(\text{type I error}) = P(\text{reject } H_0 \mid H_0 \text{ is true})$

Type II error: when H_0 is false, not reject H_0 .

$$\beta = P(\text{type II error}) = P(\text{not reject } H_0 \mid H_0 \text{ is false})$$

Power

Power =
$$1 - \beta = P(\text{reject } H_0 \mid H_0 \text{ is false})$$

Details refer to Chapter 2, Stat511, etc.

In testing hypotheses, we usually control α (the significance level) and prefer decision rules with small β (or high power). Requirements on β (or power) are usually used to calculate necessary sample size.

Statistical Inference: Confidence Intervals:

Interval statements regarding parameter θ

100(1- α **) percent confidence interval for** θ **: (**L**,** U**)** Both L and U are statistics (calculated from a sample), such that

$$P(L < \theta < U) = 1 - \alpha$$

Given a real sample x_1, x_2, \ldots, x_n , $l = L(x_1, \ldots, x_n)$ and $u = U(x_1, \ldots, x_n)$ lead to a confidence interval (l, u). Question:

$$P(l < \theta < u) = ?$$

Example 1.

A 95% Confidence Interval for μ :

$$(L,U) = (\overline{Y} - t_{0.025}(9)\frac{S}{\sqrt{n}}, \overline{Y} + t_{0.025}(9)\frac{S}{\sqrt{n}})$$

For the given sample;

$$(l, u) = (1.01 - 2.26 * \frac{1.87}{\sqrt{10}}, 1.01 + 2.26 * \frac{1.87}{\sqrt{10}}) = (-.33, 2.35)$$

Example 2.

A 95% Confidence interval for
$$\mu_2 - \mu_1$$
:
 $(L, U) = \overline{Y}_2 - \overline{Y}_1 \pm t_{0.025} (18) S_{pool} \sqrt{1/n_1 + 1/n_2}$
 $(l, u) = (19.91 - 18.83) \pm 2.10 * 1.18 * \sqrt{1/10 + 1/10} = (.07, 2.29)$

Connection between two-sided hypothesis testing and C.I.

If the C.I. contains zero, fail to reject H_0 ; otherwise, reject H_0 .

Sampling Distributions

Distributions of statistics used in estimation, testing and C.I. construction

Random sample:
$$Y_1, Y_2, \ldots, Y_n \sim N(\mu, \sigma^2)$$

Sample mean $\overline{Y} = (Y_1 + Y_2 + \cdots + Y_n)/n$
 $E(\overline{Y}) = E(\frac{1}{n}\sum Y_i) = \frac{1}{n}\sum E(Y_i) = \frac{1}{n}n\mu = \mu$
 $\operatorname{Var}(\overline{Y}) = \operatorname{Var}(\frac{1}{n}\sum Y_i) = \frac{1}{n^2}\sum \operatorname{Var}(Y_i) = \frac{1}{n^2}n\sigma^2 = \sigma^2/n$

 \overline{Y} follows $N(\mu,\frac{\sigma^2}{n})$

The Central Limit Theorem

 Y_1, Y_2, \ldots, Y_n are *n* independent and identically distributed random variables with $E(Y_i) = \mu$ and $Var(Y_i) = \sigma^2$. Then

$$Z_n = \frac{\overline{Y} - \mu}{\sigma/\sqrt{n}}$$

approximately follows the standard normal distribution N(0, 1).

Remark

1. Do not need to assume the original population distribution is normal 2. When the population distribution is normal, then Z_n exactly follows N(0, 1).

Sampling Distributions: Sample Variance

$$S^{2} = \frac{(Y_{1} - \overline{Y})^{2} + (Y_{2} - \overline{Y})^{2} + \dots + (Y_{n} - \overline{Y})^{2}}{n - 1}$$

$$E(S^2) = \sigma^2$$

$$\frac{(n-1)S^2}{\sigma^2} = \frac{\sum_{i=1}^n (Y_i - \overline{Y})^2}{\sigma^2} \sim \chi_{n-1}^2$$

Chi-squared distribution

If Z_1 , Z_2 , \ldots , Z_k are i.i.d as N(0,1), then

$$W = Z_1^2 + Z_2^2 + \dots + Z_k^2$$

follows a Chi-squared distribution with degree of freedom k, denoted by χ^2_k

Density functions of χ^2_k

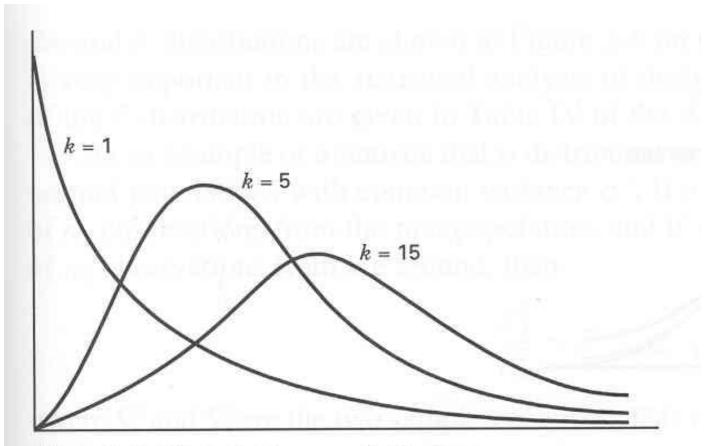


Figure 2-6 Several chi-square distributions.

Sampling Distributions

• *t*-distribution: t(k)

If $Z \sim N(0,1), \, W \sim \chi^2_k$ and Z and W independent, then

$$T_k = \frac{Z}{\sqrt{W/k}}$$

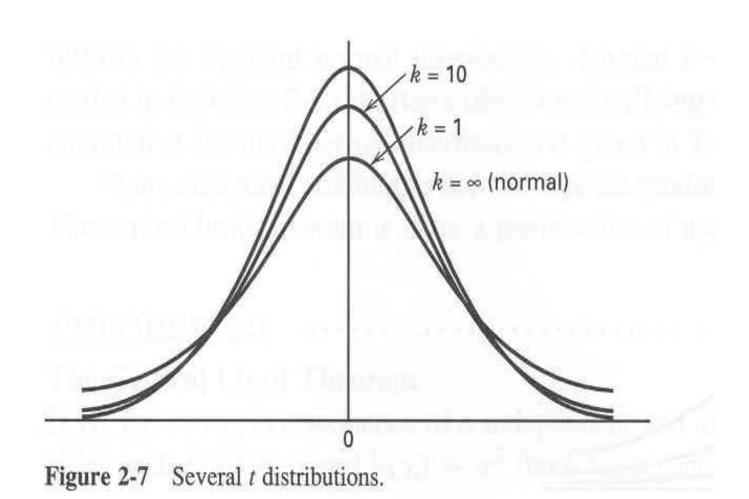
follows a t-distribution with d.f. k, i.e., t(k).

For example, in *t*-test:

$$T = \frac{\overline{Y} - \mu_0}{S/\sqrt{n}} = \frac{\sqrt{n}(\overline{Y} - \mu_0)/\sigma}{\sqrt{S^2/\sigma^2}} = \frac{Z}{\sqrt{W/(n-1)}} \sim t(n-1)$$

Remark:

As n goes to infinity, t(n-1) converges to ${\cal N}(0,1).$



Density functions of t(k) distributions

Sampling Distribution

• F-distributions: F_{k_1,k_2}

Suppose random variables $W_1\sim \chi^2_{k_1}$, $W_2\sim \chi^2_{k_2}$, and W_1 and W_2 are independent, then

$$F = \frac{W_1/k_1}{W_2/k_2}$$

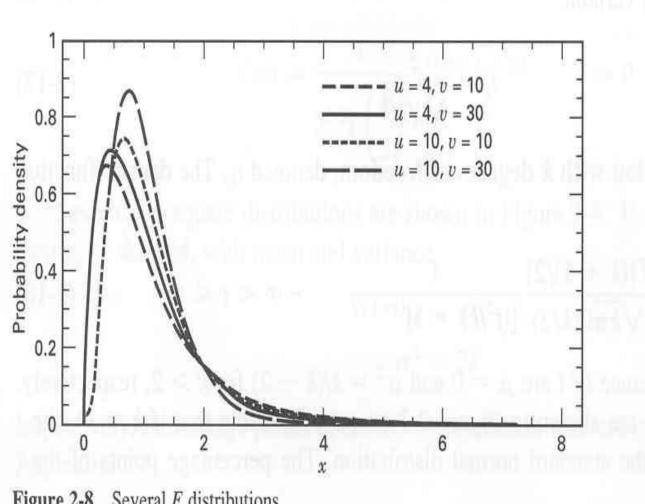
follows F_{k_1,k_2} with numerator d.f. k_1 and denominator d.f. k_2 .

• **Example:** $H_0: \sigma_1^2 = \sigma_2^2$, the test statistic is

$$F = \frac{S_1^2}{S_2^2} = \frac{S_1^2/\sigma^2}{S_2^2/\sigma^2} = \frac{W_1/(n_1 - 1)}{W_2/(n_2 - 1)} \sim F_{n_1 - 1, n_2 - 1}$$

Refer to Section 2.6 for details.

Density functions of $F\mbox{-}distributions$



Normal Probability Plot

used to check if a sample is from a normal distribution

 Y_1, Y_2, \ldots, Y_n is a random sample from a population with mean μ and variance σ^2 .

Order Statistics: $Y_{(1)}, Y_{(2)}, \ldots, Y_{(n)}$ where $Y_{(i)}$ is the *i*th smallest value.

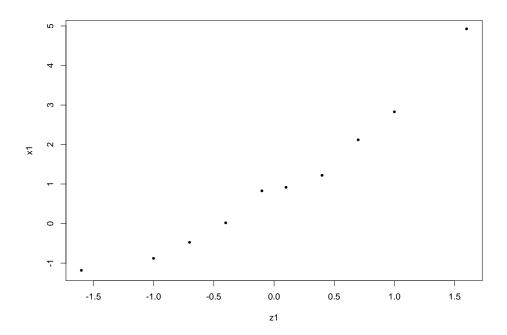
if the population is normal, i.e., $N(\mu,\sigma^2)$, then

 $E(Y_{(i)}) \approx \mu + \sigma r_{\alpha_i}$ with $\alpha_i = \frac{i-3/8}{n+1/4}$ where r_{α_i} is the 100 α_i th percentile of N(0, 1) for $1 \le i \le n$.

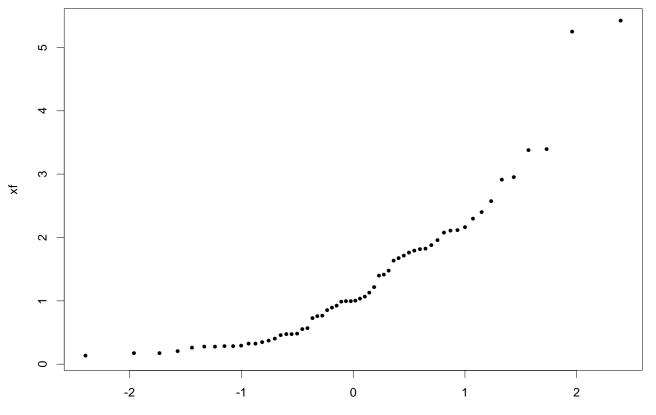
Given a sample y_1, y_2, \ldots, y_n , the plot of $(r_{\alpha_i}, y_{(i)})$ is called the normal probability plot or QQ plot.

the points falling around a straight line indicate normality of the population; Deviation from a straight line pattern indicates non-normality (the pen rule)

Example 1										
$y_{(i)}$	-1.2	-0.9	-0.5	0.0	0.8	0.9	1.2	2.1	2.8	4.9
$lpha_i$.06	.16	.26	.35	.45	.55	.65	.74	.84	.94
r_{lpha_i}	-1.6	-1.0	7	4	1	.1	.4	.7	1.0	1.6
Note: r_{lpha_i} were obtained from the Z -chart (table)										

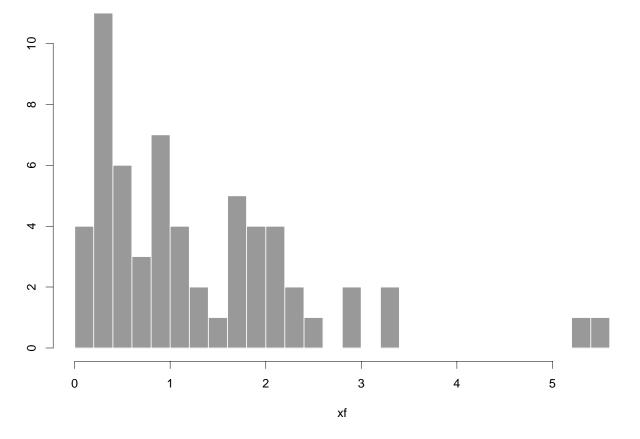


QQ Plot 1



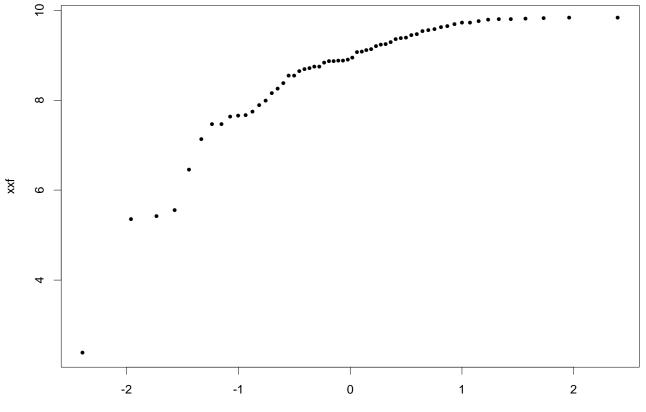
Quantiles of Standard Normal

QQ Plot 1 (continued): True Population Distribution



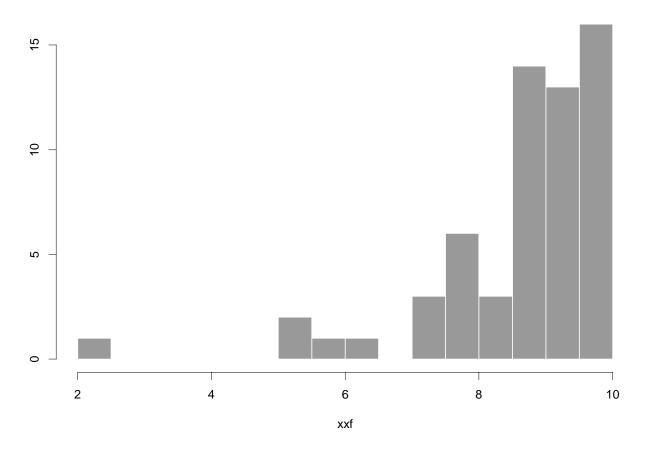
Concave-upward shape indicates right-skewed distn

QQ plot 2.



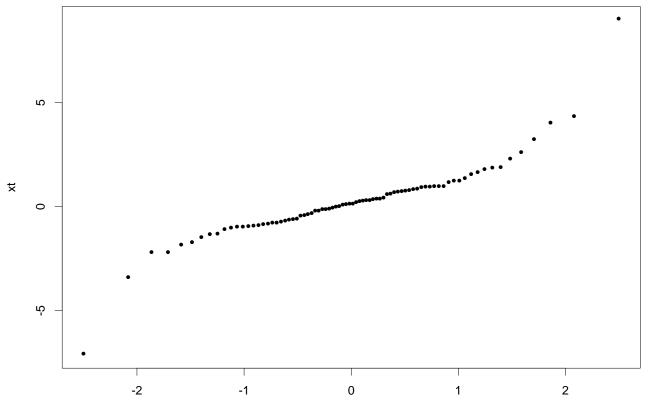
Quantiles of Standard Normal

QQ plot 2 (continued)



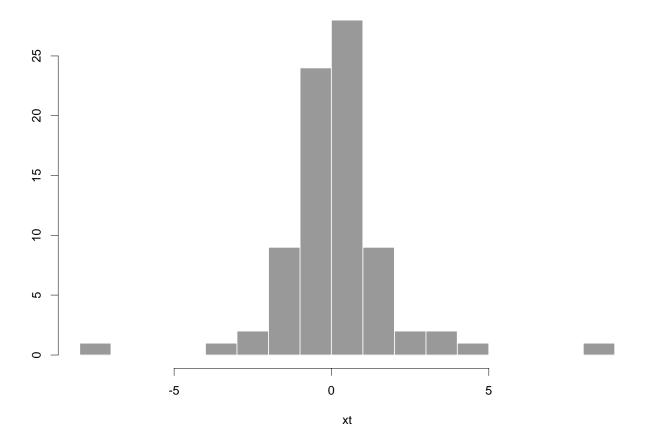
Concave-downward shape indicates left-skewed distn

QQ plot 3.



Quantiles of Standard Normal

QQ plot 3 (continued)



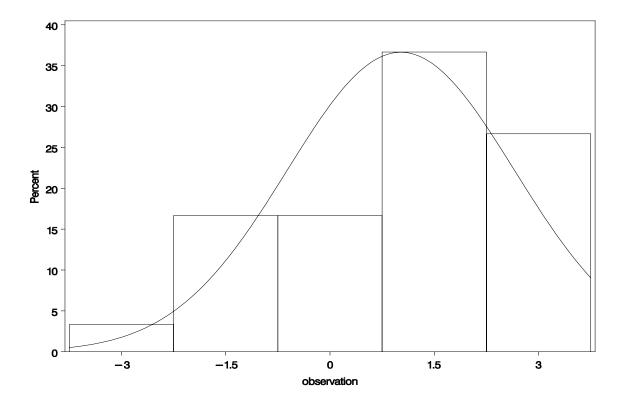
flipped S shape indicates a distribution with two heavier tails

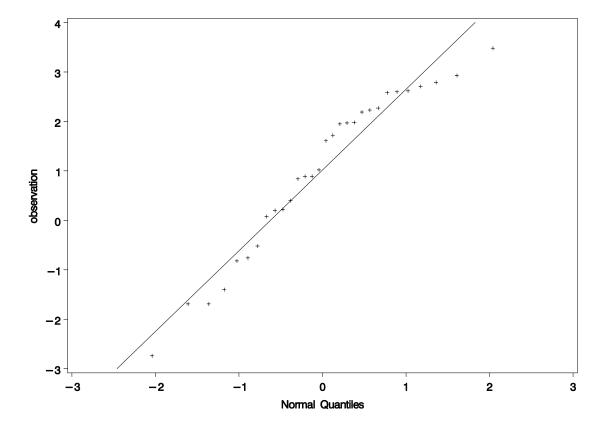
SAS Code for QQ plot

```
data one;
input observation @@;
datalines;
0.89 2.79 2.27 2.58 1.72 2.93 -0.82 -1.40 0.08 1.97
0.84 -2.74 2.62 3.48 1.95 2.23 1.02 -0.76 0.20 -1.69
-1.69 0.89 1.98 1.61 0.22 2.60 -0.52 0.40 2.71 2.19
;
```

```
proc univariate data=one;
var observation;
histogram observation / normal;
qqplot observation /normal (L=1 mu=est sigma=est);
run;
quit;
```

Output





Determine Sample Size

• Type II error: β =P(fail to reject $H_0 \mid H_1$ is correct)

In testing hypotheses, one first wants to control type I error. If type II error is too large, the conclusion would be too conservative.

- Example 2 $H_0: \mu_2 \mu_1 = 0$ vs $H_1: \mu_2 \mu_1 \neq 0$
 - Significance level: $\alpha=5\%$
 - For convenience, we assume two samples have the same size n
 - Decision Rule based on two-sample t-test:

reject H_0 , if $\frac{\overline{Y}_2 - \overline{Y}_1}{S_{pool}\sqrt{1/n + 1/n}} > t_{0.025}(2n - 2)$ or $< -t_{0.025}(2n - 2)$

Equivalently

fail to reject
$$H_0$$
 if $-t_{0.025}(2n-2) \le \frac{\overline{Y}_2 - \overline{Y}_1}{S_{pool}\sqrt{1/n + 1/n}} \le t_{0.025}(2n-2)$

The type I error of the decision rule is 5%, we want to know how large n should be so that the decision rule has type II error less than a threshold, say, 5%.

Recall

$$\beta = P(\text{type II}) = P(\text{ accept } H_0 | H_1 \text{ holds })$$

Hence

$$\beta = P(-t_{0.025}(2n-2) \le \frac{\overline{Y}_2 - \overline{Y}_1}{S_{pool}\sqrt{1/n + 1/n}} \le t_{0.025}(2n-2) \mid H_1)$$

Under H_1 , the test statistic does not follow t(2n-2), in fact, it follows a noncentral t-distribution with df 2n-2 and noncentral parameter $\delta = \frac{|\mu_2 - \mu_1|}{\sigma\sqrt{2/n}}$. Hence β is a function of $|\mu_2 - \mu_1|/2\sigma$, and n,

$$\beta = \beta(|\mu_2 - \mu_1|/2\sigma, n)$$

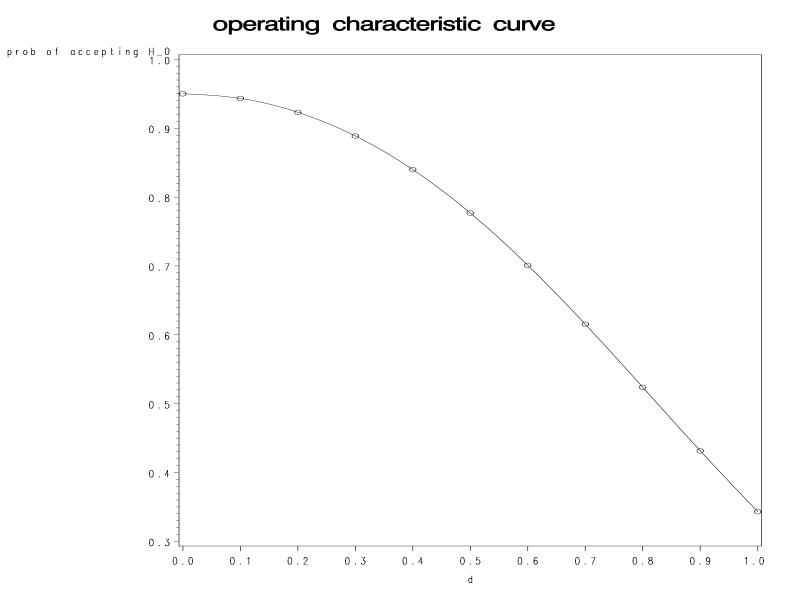
Determine Sample Size (continued)

- Let $d = \frac{|\mu_2 \mu_1|}{2\sigma}$. So $\beta = \beta(d, n)$, which is the probability of type II error when μ_1 and μ_2 are apart by d. Intuitively, the smaller d is, the larger n needs to be such that $\beta \leq 5\%$.
- In terms of power (1- $\beta(d, n)$). The smaller d is, the larger n needs to be in order to detect μ_1 and μ_2 are different from each other.
- Suppose we are interested in making the correct decision when μ_1 and μ_2 are apart by at least d = 1 with high probability (power), that is, we want to guarantee the type II error at d = 1, $\beta(1, n)$ to be small enough, say < 5%. How many data points we need to collect?:

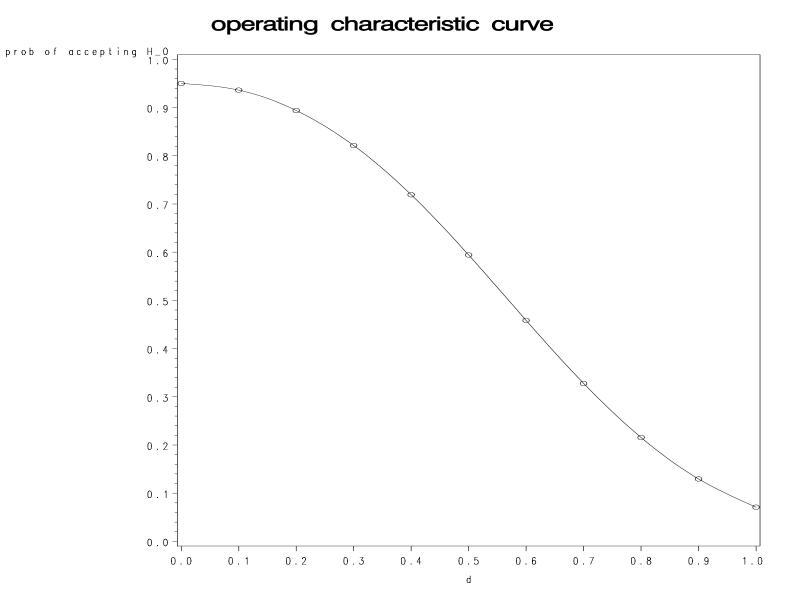
Find the smallest n such that $\beta(1,n) < 5\%$

• Calculate $\beta(d, n)$ for d > 0 and fixed n and plot $\beta(d, n)$ against d, until the smallest n is found.

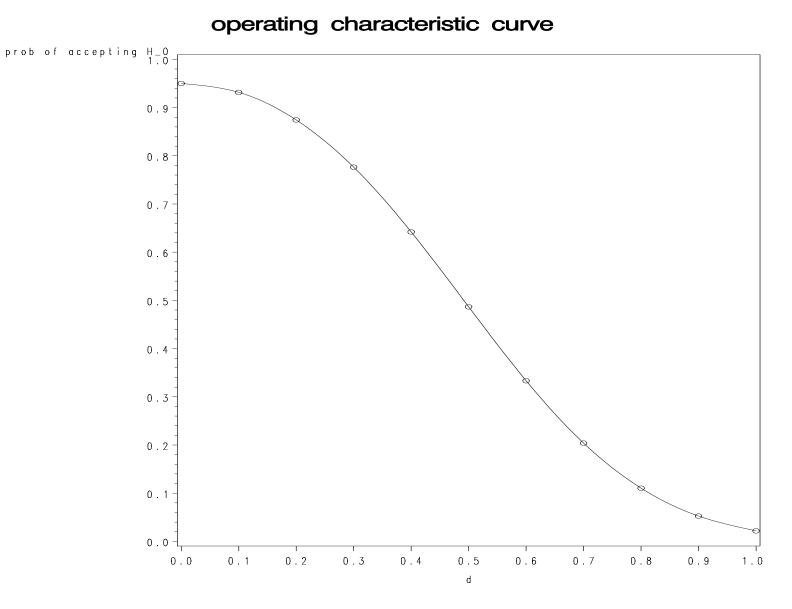
• Case 1: n=4



Case 2: n=7



Case 3: n=9



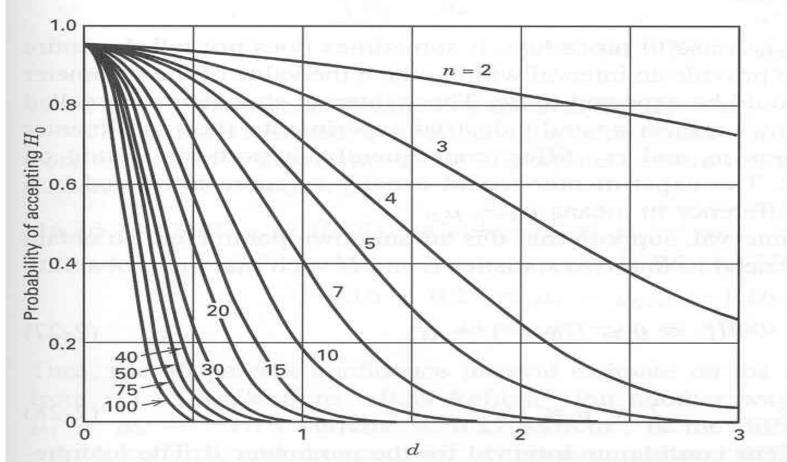
Operating characteristic Curves

- Curves of $\beta(d, n)$ versus d for various given n are called operating characteristic curves, **O.C. Curves**, which can be used to determine sample size
- O.C. Curves for two-sided *t* test (next slide)
- $n = n_1 + n_2 1$. From the curves,

$$n_1 + n_2 - 1 \approx 16$$

If equal sample size is required, then $n_1 = n_2 \approx 9$.

• O.C. Curves for ANOVA involving fixed effects and random effects are given in Tables V-VI in the Appendix (not required).



O.C. Curves for two-sided t test

Figure 2-12 Operating characteristic curves for the two-sided *t*-test with $\alpha = 0.05$. (Reproduced with permission from "Operating Characteristics for the Common Statistical Tests of Significance," C. L. Ferris, F. E. Grubbs, and C. L. Weaver, *Annals of Mathematical Statistics*, June 1946.)

SAS code for plotting O.C. Curves

```
data one;
n=9;df=2*(n-1);alpha=0.05;
do d=0 to 1 by 0.10;
nc=d*sqrt(2*n);
rlow=tinv(alpha/2,df); rhigh=tinv(1-alpha/2,df);
p=probt(rhigh,df,nc)-probt(rlow,df,nc);
output;
end;
proc print data=one;
symbol1 v=circle i=sm5;
title1 'operating characteristic curve';
axis1 label=('prob of accepting H 0'); axis2 label=('d');
proc qplot;
plot p*d/haxis=axis2 vaxis=axis1;
run;
quit;
```