
Statistics 514: Basis Concepts and Comparative Experiments

Lecture 2: Basic Concepts and Simple Comparative Experiments

Montgomery: Chapter 2
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Random Variable and Probability Distribution

Discrete random variable Y :

– Finite possible values {y1, y2, y3, . . . , yk}
– Probability mass function {p(y1), p(y2), . . . p(yk)} satisfying

p(yi) ≥ 0 and

k∑
i=1

p(yi) = 1.

Continuous random variable Y :

– Possible values form an interval

– Probability density function f(y) satisfying

f(y) ≥ 0 and

∫
f(y)dy = 1.
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Mean and Variance

Mean µ = E(Y ): center, location, etc.

Variance σ2 = Var(Y ): spread, dispersion, etc.

Discrete Y :

µ =
∑k

i=1 yip(yi); σ2 =
∑k

i=1 (yi − µ)2p(yi)

Continuous Y :

µ =
∫

yf(y)dy; σ2 =
∫

(y − µ)2f(y)dy

Formulas for calculating mean and variance

If Y1 and Y2 are independent , then

– E(Y1Y2) = E(Y1)E(Y2)

– Var(aY1 ± bY2) = a2Var(Y1) + b2Var(Y2)

Other formulas refer to Page 28 (Montgomery, 6th Edition)
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Statistical Analysis and Inference :

Learn about population from (randomly) drawn data/sample

Model and parameter :

Assume population (Y ) follows a certain model (distribution) that depends on a

set of unknown constants (parameters) denoted by θ: Y ∼ f(y, θ).

Example 1: Y ∼ N(µ, σ2)
Y ∼ 1√

2πσ2 exp{− (y−µ)2

2σ2 }; where θ = (µ, σ2)

Example 2: Y1 and Y2 are mean yields of tomato plants fed with fertilizer

mixtures A and B, respectively:

Y1 = µ1 + ε1; ε1 ∼ N(0, σ2
1)

Y2 = µ2 + ε2; ε2 ∼ N(0, σ2
2)

θ = (µ1, σ
2
1 , µ2, σ

2
2)
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Random sample or observations

Random Sample (conceptual)

X1, X2, . . . , Xn ∼ f(x, θ)

Random Sample (realized)

x1, x2, . . . , xn ∼ f(x, θ)

Example 1:

0.0 4.9 -0.5 -1.2 2.1 2.8 1.2 0.8 0.9 -0.9

Example 2:

A: 19.6 17.9 18.0 20.3 19.3 17.1 16.7 19.2 19.9 19.3

B: 19.6 19.9 21.8 18.4 19.4 21.4 20.5 20.0 18.2 19.9
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Statistical Inference: Estimating Parameter θ

• Statistics : a statistic is a function of the sample.

Y1, . . . , Yn: θ̂ = g(Y1, Y2, . . . , Yn) called estimator

y1, . . . , yn: θ̂ = g(y1, y2, . . . , yn) called estimate

• Example 1 :

Estimators for µ and σ2

µ̂ = Ȳ =
∑n

i=1 Yi

n
; σ̂2 = S2 =

∑n
i=1(Yi − Ȳ )2

n − 1

Estimates

µ̂ = ȳ = 1.01; σ̂2 = s2 = 3.49
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• Example 2 :

Estimators:

µ̂i = Ȳi =

∑ni

j=1 Yij

ni
; σ̂2

i = S2
i =

∑ni

j=1(Yij − Ȳi)2

ni − 1

for i = 1, 2.

Estimates:

ȳ1 = 18.73; s2
1 = 1.50; ȳ2 = 19.91; s2

2 = 1.30;

Assume σ2
1 = σ2

2 :

S2
pool =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
; s2

pool = 1.40
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Statistical Inference: Testing Hypotheses

Use test statistics and their distributions to judge hypotheses regarding

parameters.

• H0: null hypothesis vs H1: alternative hypothesis

Example 1: H0 : µ = 0 vs H1 : µ 6= 0
Example 2.1: H0 : µ2 = µ1 vs H1 : µ2 > µ1

Example 2.2: H0 : σ2
1 = σ2

2 vs H1 : σ2
1 6= σ2

2

Details refer to Table 2-3 on Page 47 and Table 2-7 on Page 53

• Test statistics:

Measures the amount of deviation of estimates from H0

Example 1:

T =
Ȳ − 0
S/

√
n

∼H0 t(n − 1); Tobs = 1.71
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Example 2:

T =
(Ȳ2 − Ȳ1) − 0

Spool

√
1

n1
+ 1

n2

∼H0 t(n1 + n2 − 2); Tobs = 2.22

• Decision Rules

– Given significance level α, there are two approaches:

– Compare observed test statistic with critical value

– Compute the P -value of observed test statistic

∗ Reject H0, if the P -value ≤ α.
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Statistical Inference: Testing Hypotheses

• P -value is the probability that test statistic takes on a value that is at least as

extreme as the observed value of the statistic when H0 is true.

“Extreme” in the sense of the alternative hypothesis H1.

Example 1:

P − value = P(T ≤ −1.71 or T ≥ 1.71 | t(9)) = .12

Conclusion: fail to reject H0 because 12% ≥ 5%.

Example 2:

P − value = P(T ≥ 2.22 | t(18)) = 0.02

Conclusion: reject H0 because 2% ≤ 5%.
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Type I Error, Type II Error and Power of a Decision Rule

Type I error : when H0 is true, reject H0.

α = P (type I error) = P (reject H0 | H0 is true)

Type II error : when H0 is false, not reject H0.

β = P (type II error) = P (not reject H0 | H0 is false)

Power

Power = 1 − β = P (reject H0 | H0 is false)

Details refer to Chapter 2, Stat511, etc.

In testing hypotheses, we usually control α (the significance level) and prefer

decision rules with small β (or high power). Requirements on β (or power) are

usually used to calculate necessary sample size.

Page 11



Statistics 514: Basis Concepts and Comparative Experiments

Statistical Inference: Confidence Intervals:

Interval statements regarding parameter θ

100(1-α) percent confidence interval for θ: (L, U )

Both L and U are statistics (calculated from a sample), such that

P (L < θ < U) = 1 − α

Given a real sample x1, x2, . . . , xn, l = L(x1, . . . , xn) and

u = U(x1, . . . , xn) lead to a confidence interval (l, u).
Question:

P (l < θ < u) =?
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Example 1.

A 95% Confidence Interval for µ:

(L, U) = (Y − t0.025(9) S√
n
, Y + t0.025(9) S√

n
)

For the given sample;

(l, u) = (1.01 − 2.26 ∗ 1.87√
10

, 1.01 + 2.26 ∗ 1.87√
10

) = (−.33, 2.35)

Example 2.

A 95% Confidence interval for µ2 − µ1:

(L, U) = Y 2 − Y 1 ± t0.025(18)Spool

√
1/n1 + 1/n2

(l, u) = (19.91− 18.83)± 2.10 ∗ 1.18 ∗√
1/10 + 1/10 = (.07, 2.29)

Connection between two-sided hypothesis testing and C.I.

If the C.I. contains zero, fail to reject H0; otherwise, reject H0.
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Sampling Distributions

Distributions of statistics used in estimation, testing and C.I. construction

Random sample: Y1, Y2, . . . , Yn ∼ N(µ, σ2)

Sample mean Y = (Y1 + Y2 + · · · + Yn)/n

E(Y ) = E(
1
n

∑
Yi) =

1
n

∑
E(Yi) =

1
n

nµ = µ

Var(Y ) = Var(
1
n

∑
Yi) =

1
n2

∑
Var(Yi) =

1
n2

nσ2 = σ2/n

Y follows N(µ, σ2

n )

Page 14



Statistics 514: Basis Concepts and Comparative Experiments

The Central Limit Theorem

Y1, Y2, . . . , Yn are n independent and identically distributed random

variables with E(Yi) = µ and Var(Yi) = σ2. Then

Zn =
Y − µ

σ/
√

n

approximately follows the standard normal distribution N(0, 1).

Remark

1. Do not need to assume the original population distribution is normal

2. When the population distribution is normal, then Zn exactly follows

N(0, 1).
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Sampling Distributions: Sample Variance

S2 =
(Y1 − Y )2 + (Y2 − Y )2 + · · · + (Yn − Y )2

n − 1

E(S2) = σ2

(n − 1)S2

σ2
=

∑n
i=1(Yi − Y )2

σ2
∼ χ2

n−1

Chi-squared distribution

If Z1, Z2, . . . , Zk are i.i.d as N(0, 1), then

W = Z2
1 + Z2

2 + · · · + Z2
k

follows a Chi-squared distribution with degree of freedom k, denoted by χ2
k
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Density functions of χ2
k
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Sampling Distributions

• t-distribution: t(k)

If Z ∼ N(0, 1), W ∼ χ2
k and Z and W independent, then

Tk =
Z√
W/k

follows a t-distribution with d.f. k, i.e., t(k).

For example, in t-test :

T =
Y − µ0

S/
√

n
=

√
n(Y − µ0)/σ√

S2/σ2
=

Z√
W/(n − 1)

∼ t(n − 1)

Remark:

As n goes to infinity, t(n − 1) converges to N(0, 1).
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Density functions of t(k) distributions
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Sampling Distribution

• F -distributions: Fk1,k2

Suppose random variables W1 ∼ χ2
k1

, W2 ∼ χ2
k2

, and W1 and W2 are

independent, then

F =
W1/k1

W2/k2

follows Fk1,k2 with numerator d.f. k1 and denominator d.f. k2.

• Example: H0 : σ2
1 = σ2

2 , the test statistic is

F =
S2

1

S2
2

=
S2

1/σ2

S2
2/σ2

=
W1/(n1 − 1)
W2/(n2 − 1)

∼ Fn1−1,n2−1

Refer to Section 2.6 for details.
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Density functions of F -distributions
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Normal Probability Plot

used to check if a sample is from a normal distribution

Y1, Y2, . . . , Yn is a random sample from a population with mean µ and

variance σ2.

Order Statistics : Y(1), Y(2), . . . , Y(n) where Y(i) is the ith smallest value.

if the population is normal, i.e., N(µ, σ2), then

E(Y(i)) ≈ µ + σrαi
with αi = i−3/8

n+1/4

where rαi
is the 100αi th percentile of N(0, 1) for 1 ≤ i ≤ n.

Given a sample y1, y2, . . . , yn, the plot of (rαi , y(i)) is called the normal

probability plot or QQ plot.

the points falling around a straight line indicate normality of the

population; Deviation from a straight line pattern indicates

non-normality (the pen rule)
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Example 1

y(i) -1.2 -0.9 -0.5 0.0 0.8 0.9 1.2 2.1 2.8 4.9

αi .06 .16 .26 .35 .45 .55 .65 .74 .84 .94

rαi
-1.6 -1.0 -.7 -.4 -.1 .1 .4 .7 1.0 1.6

Note: rαi
were obtained from the Z-chart (table)

•
•

•

•

• •
•

•

•

•

z1

x1

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1
0

1
2

3
4

5
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QQ Plot 1
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QQ Plot 1 (continued): True Population Distribution

0 1 2 3 4 5

0
2

4
6

8
10

xf

Concave-upward shape indicates right-skewed distn

Page 25



Statistics 514: Basis Concepts and Comparative Experiments

QQ plot 2.
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QQ plot 2 (continued)

2 4 6 8 10

0
5

10
15
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Concave-downward shape indicates left-skewed distn
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QQ plot 3.
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QQ plot 3 (continued)

-5 0 5
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xt

flipped S shape indicates a distribution with two heavier tails
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SAS Code for QQ plot

data one;

input observation @@;

datalines;

0.89 2.79 2.27 2.58 1.72 2.93 -0.82 -1.40 0.08 1.97

0.84 -2.74 2.62 3.48 1.95 2.23 1.02 -0.76 0.20 -1.69

-1.69 0.89 1.98 1.61 0.22 2.60 -0.52 0.40 2.71 2.19

;

proc univariate data=one;

var observation;

histogram observation / normal;

qqplot observation /normal (L=1 mu=est sigma=est);

run;

quit;
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Output
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Determine Sample Size

• Type II error: β=P( fail to reject H0 | H1 is correct)

In testing hypotheses, one first wants to control type I error. If type II error is

too large, the conclusion would be too conservative.

• Example 2 H0 : µ2 − µ1 = 0 vs H1 : µ2 − µ1 6= 0

– Significance level: α = 5%

– For convenience, we assume two samples have the same size n

– Decision Rule based on two-sample t-test:

reject H0, if Y 2−Y 1

Spool

√
1/n+1/n

> t0.025(2n−2) or < −t0.025(2n−2)

Equivalently

fail to reject H0 if −t0.025(2n−2) ≤ Y 2−Y 1

Spool

√
1/n+1/n

≤ t0.025(2n−2)

The type I error of the decision rule is 5%, we want to know how large n

should be so that the decision rule has type II error less than a

threshold, say, 5%.
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Recall

β = P (type II) = P ( accept H0|H1 holds )

Hence

β = P (−t0.025(2n − 2) ≤ Y 2 − Y 1

Spool

√
1/n + 1/n

≤ t0.025(2n − 2) | H1)

Under H1, the test statistic does not follow t(2n − 2), in fact, it follows a

noncentral t-distribution with df 2n − 2 and noncentral parameter

δ = |µ2−µ1|
σ
√

2/n
. Hence β is a function of |µ2 − µ1|/2σ, and n,

β = β(|µ2 − µ1|/2σ, n)
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Determine Sample Size (continued)

• Let d = |µ2−µ1|
2σ . So β = β(d, n), which is the probability of type II error

when µ1 and µ2 are apart by d. Intuitively, the smaller d is, the larger n

needs to be such that β ≤ 5%.

• In terms of power (1-β(d, n)). The smaller d is, the larger n needs to be in

order to detect µ1 and µ2 are different from each other.

• Suppose we are interested in making the correct decision when µ1 and µ2

are apart by at least d = 1 with high probability (power), that is, we want to

guarantee the type II error at d = 1, β(1, n) to be small enough, say < 5%.

How many data points we need to collect?:

Find the smallest n such that β(1, n) < 5%

• Calculate β(d, n) for d > 0 and fixed n and plot β(d, n) against d, until the

smallest n is found.

Page 35



Statistics 514: Basis Concepts and Comparative Experiments

• Case 1: n=4
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Case 2: n=7
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Case 3: n=9
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Operating characteristic Curves

• Curves of β(d, n) versus d for various given n are called operating

characteristic curves, O.C. Curves , which can be used to determine sample

size

• O.C. Curves for two-sided t test (next slide)

• n = n1 + n2 − 1. From the curves,

n1 + n2 − 1 ≈ 16

If equal sample size is required, then n1 = n2 ≈ 9.

• O.C. Curves for ANOVA involving fixed effects and random effects are given in

Tables V-VI in the Appendix (not required).
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O.C. Curves for two-sided t test
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SAS code for plotting O.C. Curves

data one;

n=9;df=2*(n-1);alpha=0.05;

do d=0 to 1 by 0.10;

nc=d*sqrt(2*n);

rlow=tinv(alpha/2,df); rhigh=tinv(1-alpha/2,df);

p=probt(rhigh,df,nc)-probt(rlow,df,nc);

output;

end;

proc print data=one;

symbol1 v=circle i=sm5;

title1 ’operating characteristic curve’;

axis1 label=(’prob of accepting H_0’); axis2 label=(’d’);

proc gplot;

plot p*d/haxis=axis2 vaxis=axis1;

run;

quit;
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