# Lecture 12: Blocking and Confounding in $2^k$ design

Montgomery: Chapter 7

# Randomized Complete Block $2^k$ Design

- There are *n* blocks
- Within each block, all treatments (level combinations) are conducted.
- Run order in each block must be randomized
- Analysis follows general block factorial design
- When k is large, cannot afford to conduct all the treatments within each block.
   Other blocking strategy should be considered.

|   | fac | tor |   |                   |
|---|-----|-----|---|-------------------|
| A | B   | C   | D | original response |
| _ | _   | _   | _ | 45                |
| + | _   | _   | _ | 71                |
| _ | +   | _   | _ | 48                |
| + | +   | _   | _ | 65                |
| _ | —   | +   | _ | 68                |
| + | _   | +   | _ | 60                |
| — | +   | +   | — | 80                |
| + | +   | +   | — | 65                |
| — | —   | —   | + | 43                |
| + | —   | —   | + | 100               |
| _ | +   | —   | + | 45                |
| + | +   | —   | + | 104               |
| — | —   | +   | + | 75                |
| + | —   | +   | + | 86                |
| _ | +   | +   | + | 70                |
| + | +   | +   | + | 96                |

### Filtration Rate Experiment (revisited)

- Suppose there are two batches of raw material. Each batch can be used for only 8 runs. It is known these two batches are very different. Blocking should be employed to eliminate this variability.
- How to select 8 treatments (level combinations, or runs) for each block?

# $2^2\ {\rm Design}$ with Two Blocks

Suppose there are two factors (A, B) each with 2 levels, and two blocks  $(b_1, b_2)$  each containing two runs (treatments). Since  $b_1$  and  $b_2$  are interchangeable, there are three possible blocking scheme:

|   |   |          | blocking scheme |       |       |  |  |
|---|---|----------|-----------------|-------|-------|--|--|
| A | В | response | 1               | 2     | 3     |  |  |
| _ | _ | $y_{}$   | $b_1$           | $b_1$ | $b_2$ |  |  |
| + | _ | $y_{+-}$ | $b_1$           | $b_2$ | $b_1$ |  |  |
| _ | + | $y_{-+}$ | $b_2$           | $b_1$ | $b_1$ |  |  |
| + | + | $y_{++}$ | $b_2$           | $b_2$ | $b_2$ |  |  |

Comparing blocking schemes:

Scheme 1:

- block effect:  $b = \bar{y}_{b_2} \bar{y}_{b_1} = \frac{1}{2}(-y_{--} y_{+-} + y_{-+} + y_{++})$
- main effect:  $B = \frac{1}{2}(-y_{--} y_{+-} + y_{-+} + y_{++})$
- B and b are not distinguishable, or, confounded.

### **Comparing Blocking Schemes (continued)**

Scheme 2:

block effect: 
$$b = \bar{y}_{b_2} - \bar{y}_{b_1} = \frac{1}{2}(-y_{--} + y_{+-} - y_{-+} + y_{++})$$

main effect: 
$$A = \frac{1}{2}(-y_{--} + y_{+-} - y_{-+} + y_{++})$$

 $\boldsymbol{A}$  and  $\boldsymbol{b}$  are not distinguishable, or confounded.

Scheme 3:

block effect: 
$$b = \bar{y}_{b_2} - \bar{y}_{b_1} = \frac{1}{2}(y_{--} - y_{+-} - y_{-+} + y_{++})$$

interaction: 
$$AB = \frac{1}{2}(y_{--} - y_{+-} - y_{-+} + y_{++})$$

AB and b become indistinguishable, or confounded.

The reason for confounding: the block arrangement matches the contrast of some factorial effect.

Confounding makes the effect **Inestimable**.

Question: which scheme is the best (or causes the least damage)?

# $2^k$ Design with Two Blocks via Confounding

Confound blocks with the effect (contrast) of the highest order

Block 1 consists of all treatments with the contrast coefficient equal to -1 Block 2 consists of all treatments with the contrast coefficient equal to 1

Example 1. Block  $2^3$  Design

|   | factorial effects (contrasts) |                |    |    |    |    |    |  |  |  |  |  |  |
|---|-------------------------------|----------------|----|----|----|----|----|--|--|--|--|--|--|
| I | А                             | B C AB AC BC A |    |    |    |    |    |  |  |  |  |  |  |
| 1 | -1                            | -1             | -1 | 1  | 1  | 1  | -1 |  |  |  |  |  |  |
| 1 | 1                             | -1             | -1 | -1 | -1 | 1  | 1  |  |  |  |  |  |  |
| 1 | -1                            | 1              | -1 | -1 | 1  | -1 | 1  |  |  |  |  |  |  |
| 1 | 1                             | 1              | -1 | 1  | -1 | -1 | -1 |  |  |  |  |  |  |
| 1 | -1                            | -1             | 1  | 1  | -1 | -1 | 1  |  |  |  |  |  |  |
| 1 | 1                             | -1             | 1  | -1 | 1  | -1 | -1 |  |  |  |  |  |  |
| 1 | -1                            | 1              | 1  | -1 | -1 | 1  | -1 |  |  |  |  |  |  |
| 1 | 1                             | 1              | 1  | 1  | 1  | 1  | 1  |  |  |  |  |  |  |

Defining relation: b = ABC:

Block 1: (---), (++-), (+-+), (-++)Block 2: (+--), (-+-), (-++), (+++)

Example 2: For  $2^4$  design with factors: A, B, C, D, the defining contrast

(optimal) for blocking factor (b) is

b = ABCD

In general, the optimal blocking scheme for  $2^k$  design with two blocks is given by  $b = AB \dots K$ , where  $A, B, \dots, K$  are the factors.

## Analyze Unreplicated Block $2^k$ Experiment

Filtration Experiment (four factors: A, B, C, D):

- Use defining relation: b = ABCD, i.e., if a treatment satisfies ABCD = -1, it is allocated to block 1( $b_1$ ); if ABCD = 1, it is allocated to block 2 ( $b_2$ ).
- (Assume that, all the observations in block 2 will be reduced by 20 because of the poor quality of the second batch of material, i.e. the true block effect=-20).

|   | fac | ctor |   | blocks            |           |
|---|-----|------|---|-------------------|-----------|
| A | B   | C    | D | b = ABCD          | response  |
| _ | _   | _    | _ | 1=b <sub>2</sub>  | 45-20=25  |
| + | _   | _    | _ | -1=b <sub>1</sub> | 71        |
| — | +   | _    | _ | -1=b <sub>1</sub> | 48        |
| + | +   | —    | _ | 1=b <sub>2</sub>  | 65-20=45  |
| — | —   | +    | — | -1=b <sub>1</sub> | 68        |
| + | —   | +    | — | 1=b <sub>2</sub>  | 60-20=40  |
| _ | +   | +    | — | 1=b <sub>2</sub>  | 80-20=60  |
| + | +   | +    | — | -1=b <sub>1</sub> | 65        |
| _ | —   | —    | + | -1=b <sub>1</sub> | 43        |
| + | —   | —    | + | 1=b <sub>2</sub>  | 100-20=80 |
| _ | +   | —    | + | 1=b <sub>2</sub>  | 45-20=25  |
| + | +   | —    | + | -1=b <sub>1</sub> | 104       |
| — | —   | +    | + | 1=b <sub>2</sub>  | 75-20=55  |
| + | —   | +    | + | -1=b <sub>1</sub> | 86        |
| _ | +   | +    | + | -1=b <sub>1</sub> | 70        |
| + | +   | +    | + | 1=b <sub>2</sub>  | 96-20=76  |

#### **SAS File for Block Filtration Experiment**

```
goption colors=(none);
data filter;
 do D = -1 to 1 by 2;do C = -1 to 1 by 2;
 do B = -1 to 1 by 2; do A = -1 to 1 by 2;
 input y @@; output;
 end; end; end; end;
cards;
25 71 48 45 68 40 60 65 43 80 25 104 55 86 70 76
;
data inter;
set filter; AB=A*B; AC=A*C; AD=A*D; BC=B*C; BD=B*D; CD=C*D; ABC=AB*C;
ABD=AB*D; ACD=AC*D; BCD=BC*D; block=ABC*D;
proc glm data=inter;
```

class A B C D AB AC AD BC BD CD ABC ABD ACD BCD block; model y=block A B C D AB AC AD BC BD CD ABC ABD ACD BCD; run;

proc reg outest=effects data=inter;

```
model y=A B C D AB AC AD BC BD CD ABC ABD ACD BCD block;
data effect2; set effects; drop y intercept _RMSE_;
proc transpose data=effect2 out=effect3;
data effect4; set effect3; effect=col1*2;
proc sort data=effect4; by effect;
proc print data=effect4;
```

data effect5; set effect4; where \_\_NAME\_^='block';
proc print data=effect5; run;

```
proc rank data=effect5 normal=blom;
var effect; ranks neff;
```

```
symbol1 v=circle;
proc gplot; plot effect*neff=_NAME_; run;
```

## SAS output: ANOVA Table

| Source<br>Model<br>Error | DF<br>15 | Squares<br>7110.937500<br>0 | Mean Square<br>474.062500<br>0.000000 | F Value | Pr > F |
|--------------------------|----------|-----------------------------|---------------------------------------|---------|--------|
| Co Total                 | 15       | 7110.937500                 |                                       |         |        |
| Source                   | DF       | Type I SS                   | Mean Square                           | F Value | Pr > F |
| block                    | 1        | 1387.562500                 | 1387.562500                           |         | •      |
| A                        | 1        | 1870.562500                 | 1870.562500                           | •       | •      |
| В                        | 1        | 39.062500                   | 39.062500                             | •       | •      |
| С                        | 1        | 390.062500                  | 390.062500                            | •       | •      |
| D                        | 1        | 855.562500                  | 855.562500                            | •       | •      |
| AB                       | 1        | 0.062500                    | 0.062500                              | •       | •      |
| AC                       | 1        | 1314.062500                 | 1314.062500                           | •       | •      |
| AD                       | 1        | 1105.562500                 | 1105.562500                           | •       | •      |
| BC                       | 1        | 22.562500                   | 22.562500                             | •       |        |
| BD                       | 1        | 0.562500                    | 0.562500                              | •       | •      |
| CD                       | 1        | 5.062500                    | 5.062500                              |         | •      |
| ABC                      | 1        | 14.062500                   | 14.062500                             | •       | •      |

| ABD | 1 | 68.062500 | 68.062500 |
|-----|---|-----------|-----------|
| ACD | 1 | 10.562500 | 10.562500 |
| BCD | 1 | 27.562500 | 27.562500 |

proportion of variance explained by blocks

$$\frac{1387.5625}{7110.9375} = 19.5\%$$

Similarly proportion of variance can be calculated for other effects.

• •

•

•

### SAS output: factorial effects and block effect

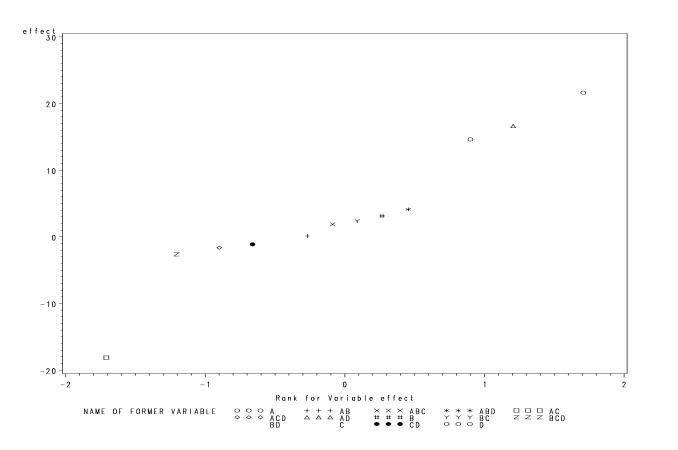
| Obs | _NAME_ | COL1    | effect  |
|-----|--------|---------|---------|
| 1   | block  | -9.3125 | -18.625 |
| 2   | AC     | -9.0625 | -18.125 |
| 3   | BCD    | -1.3125 | -2.625  |
| 4   | ACD    | -0.8125 | -1.625  |
| 5   | CD     | -0.5625 | -1.125  |
| б   | BD     | -0.1875 | -0.375  |
| 7   | AB     | 0.0625  | 0.125   |
| 8   | ABC    | 0.9375  | 1.875   |
| 9   | BC     | 1.1875  | 2.375   |
| 10  | В      | 1.5625  | 3.125   |
| 11  | ABD    | 2.0625  | 4.125   |
| 12  | C      | 4.9375  | 9.875   |
| 13  | D      | 7.3125  | 14.625  |
| 14  | AD     | 8.3125  | 16.625  |
| 15  | A      | 10.8125 | 21.625  |

Factorial effects are exactly the same as those from the original data (why?)

blocking effect: -18.625= $\bar{y}_{b_2}$  –  $\bar{y}_{b_1}$ , is in fact

-20(true blocking effect) + 1.375(some interaction of ABC)

This is caused by confounding between b and ABC.



### SAS output: QQ plot without Blocking Effect

significant effects are:

A, C, D, AC, AD

## $2^k$ Design with Four Blocks

Need two 2-level blocking factors to generate 4 different blocks. Confound each blocking factors with a high order factorial effect. The interaction between these two blocking factors matters. The interaction will be confounded with another factorial effect.

Optimal blocking scheme has least confounding severity.

 $2^4$  design with four blocks: factors are A, B, C, D and the blocking factors are b1 and b2

| А     | В  | С     | D     | AB    | AC      | <br>'D    | ABC | ABD | ACD | BCD | ABCD |    |    |        |
|-------|----|-------|-------|-------|---------|-----------|-----|-----|-----|-----|------|----|----|--------|
| -1    | -1 | -1    | -1    | 1     | 1       | 1         | -1  | -1  | -1  | -1  | 1    |    |    |        |
| 1     | -1 | -1    | -1    | -1    | -1      | 1         | 1   | 1   | 1   | -1  | -1   | b1 | b2 | blocks |
| -1    | 1  | -1    | -1    | -1    | 1       | 1         | 1   | 1   | -1  | 1   | -1   | -1 | -1 | 1      |
| 1     | 1  | -1    | -1    | 1     | -1      | 1         | -1  | -1  | 1   | 1   | 1    | 1  | -1 | 2      |
|       |    |       |       |       |         |           |     |     |     |     |      | -1 | 1  | 3      |
| • • • |    | • • • | • • • | • • • | • • • • | <br>• • • |     |     |     |     |      | 1  | 1  | 4      |
| -1    | -1 | 1     | 1     | 1     | -1      | 1         | 1   | 1   | -1  | -1  | 1    |    |    |        |
| 1     | 1  | 1     | 1     | -1    | 1       | 1         | -1  | -1  | 1   | -1  | -1   |    |    |        |
| -1    | -1 | 1     | 1     | -1    | -1      | 1         | -1  | -1  | -1  | 1   | -1   |    |    |        |
| 1     | 1  | 1     | 1     | 1     | 1       | 1         | 1   | 1   | 1   | 1   | 1    |    |    |        |

possible blocking schemes:

Scheme 1:

defining relations: b1 = ABC, b2 = ACD; induce confounding

$$b1b2 = ABC * ACD = A^2BC^2D = BD$$

Scheme 2:

Defining relations: b1 = ABCD, b2 = ABC, induce confounding

$$b1b2 = ABCD * ABC = D$$

Which is better?

# $2^k \ \mathrm{Design} \ \mathrm{with} \ 2^p \ \mathrm{Blocks}$

- k factors:  $A, B, \dots K$ , and p is usually much less than k.
- p blocking factors: b1, b2,...bp with levels -1 and 1
- confound blocking factors with k chosen high-order factorial effects, i.e., b1=effect1, b2=effect2, etc.(p defining relations)
- These p defining relations induce another  $2^p p 1$  confounding.
- treatment combinations with the same values of b1,...bp are allocated to the same block. Within each block.
- each block consists of  $2^{k-p}$  treatment combinations (runs)
- Given k and p, optimal schemes are tabulated, e.g., Montgomery Table 7.8, or Wu&Hamada Appendix 3A