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Randomized Complete Block 2k Design

• There are n blocks

• Within each block, all treatments (level combinations) are conducted.

• Run order in each block must be randomized

• Analysis follows general block factorial design

• When k is large, cannot afford to conduct all the treatments within each block.

Other blocking strategy should be considered.
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Filtration Rate Experiment (revisited)

factor

A B C D original response

− − − − 45

+ − − − 71

− + − − 48

+ + − − 65

− − + − 68

+ − + − 60

− + + − 80

+ + + − 65

− − − + 43

+ − − + 100

− + − + 45

+ + − + 104

− − + + 75

+ − + + 86

− + + + 70

+ + + + 96
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• Suppose there are two batches of raw material. Each batch can be used for

only 8 runs. It is known these two batches are very different. Blocking should

be employed to eliminate this variability.

• How to select 8 treatments (level combinations, or runs) for each block?
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22 Design with Two Blocks

Suppose there are two factors (A, B) each with 2 levels, and two blocks (b1, b2) each

containing two runs (treatments). Since b1 and b2 are interchangeable, there are three

possible blocking scheme:

blocking scheme

A B response 1 2 3

− − y
−−

b1 b1 b2

+ − y+− b1 b2 b1

− + y
−+ b2 b1 b1

+ + y++ b2 b2 b2

Comparing blocking schemes:

Scheme 1:

• block effect: b = ȳb2 − ȳb1 = 1

2
(−y

−−
− y+− + y

−+ + y++)

• main effect: B = 1

2
(−y

−−
− y+− + y

−+ + y++)

• B and b are not distinguishable, or, confounded.
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Comparing Blocking Schemes (continued)

Scheme 2:

block effect: b = ȳb2 − ȳb1 =
1

2
(−y

−−
+ y+− − y

−+ + y++)

main effect: A =
1

2
(−y

−−
+ y+− − y

−+ + y++)

A and b are not distinguishable, or confounded.

Scheme 3:

block effect: b = ȳb2 − ȳb1 =
1

2
(y
−−

− y+− − y
−+ + y++)

interaction: AB =
1

2
(y
−−

− y+− − y
−+ + y++)
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AB and b become indistinguishable, or confounded.

The reason for confounding: the block arrangement matches the contrast of some factorial

effect.

Confounding makes the effect Inestimable.

Question: which scheme is the best (or causes the least damage)?
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2k Design with Two Blocks via Confounding

Confound blocks with the effect (contrast) of the highest order

Block 1 consists of all treatments with the contrast coefficient equal to -1
Block 2 consists of all treatments with the contrast coefficient equal to 1

Example 1. Block 23 Design
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factorial effects (contrasts)

I A B C AB AC BC ABC

1 -1 -1 -1 1 1 1 -1

1 1 -1 -1 -1 -1 1 1

1 -1 1 -1 -1 1 -1 1

1 1 1 -1 1 -1 -1 -1

1 -1 -1 1 1 -1 -1 1

1 1 -1 1 -1 1 -1 -1

1 -1 1 1 -1 -1 1 -1

1 1 1 1 1 1 1 1

Defining relation: b = ABC :

Block 1: (−−−), (+ + −), (+ − +), (− + +)

Block 2: (+ −−), (− + −), (− + +), (+ + +)

Example 2: For 24 design with factors: A, B, C , D, the defining contrast
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(optimal) for blocking factor (b) is

b = ABCD

In general, the optimal blocking scheme for 2k design with two blocks is given by

b = AB . . .K , where A, B, ..., K are the factors.
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Analyze Unreplicated Block 2k Experiment

Filtration Experiment (four factors: A, B, C , D):

• Use defining relation: b = ABCD, i.e., if a treatment satisfies

ABCD = −1, it is allocated to block 1(b1); if ABCD = 1, it is allocated

to block 2 (b2).

• (Assume that, all the observations in block 2 will be reduced by 20 because of

the poor quality of the second batch of material, i.e. the true block effect=-20).
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factor blocks

A B C D b = ABCD response

− − − − 1=b2 45-20=25

+ − − − -1=b1 71

− + − − -1=b1 48

+ + − − 1=b2 65-20=45

− − + − -1=b1 68

+ − + − 1=b2 60-20=40

− + + − 1=b2 80-20=60

+ + + − -1=b1 65

− − − + -1=b1 43

+ − − + 1=b2 100-20=80

− + − + 1=b2 45-20=25

+ + − + -1=b1 104

− − + + 1=b2 75-20=55

+ − + + -1=b1 86

− + + + -1=b1 70

+ + + + 1=b2 96-20=76

Page 12



Statistics 514: Blocking in 2
k Factorial Design

SAS File for Block Filtration Experiment

goption colors=(none);

data filter;

do D = -1 to 1 by 2;do C = -1 to 1 by 2;

do B = -1 to 1 by 2;do A = -1 to 1 by 2;

input y @@; output;

end; end; end; end;

cards;

25 71 48 45 68 40 60 65 43 80 25 104 55 86 70 76

;

data inter;

set filter; AB=A*B; AC=A*C; AD=A*D; BC=B*C; BD=B*D; CD=C*D ; ABC=AB*C;

ABD=AB*D; ACD=AC*D; BCD=BC*D; block=ABC*D;

proc glm data=inter;

class A B C D AB AC AD BC BD CD ABC ABD ACD BCD block;

model y=block A B C D AB AC AD BC BD CD ABC ABD ACD BCD; run;

proc reg outest=effects data=inter;
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model y=A B C D AB AC AD BC BD CD ABC ABD ACD BCD block;

data effect2; set effects; drop y intercept _RMSE_;

proc transpose data=effect2 out=effect3;

data effect4; set effect3; effect=col1*2;

proc sort data=effect4; by effect;

proc print data=effect4;

data effect5; set effect4; where _NAME_ˆ=’block’;

proc print data=effect5; run;

proc rank data=effect5 normal=blom;

var effect; ranks neff;

symbol1 v=circle;

proc gplot; plot effect*neff=_NAME_; run;
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SAS output: ANOVA Table

Source DF Squares Mean Square F Value Pr > F

Model 15 7110.937500 474.062500 . .

Error 0 0.000000 .

Co Total 15 7110.937500

Source DF Type I SS Mean Square F Value Pr > F

block 1 1387.562500 1387.562500 . .

A 1 1870.562500 1870.562500 . .

B 1 39.062500 39.062500 . .

C 1 390.062500 390.062500 . .

D 1 855.562500 855.562500 . .

AB 1 0.062500 0.062500 . .

AC 1 1314.062500 1314.062500 . .

AD 1 1105.562500 1105.562500 . .

BC 1 22.562500 22.562500 . .

BD 1 0.562500 0.562500 . .

CD 1 5.062500 5.062500 . .

ABC 1 14.062500 14.062500 . .
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ABD 1 68.062500 68.062500 . .

ACD 1 10.562500 10.562500 . .

BCD 1 27.562500 27.562500

proportion of variance explained by blocks

1387.5625

7110.9375
= 19.5%

Similarly proportion of variance can be calculated for other effects.
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SAS output: factorial effects and block effect

Obs _NAME_ COL1 effect

1 block -9.3125 -18.625

2 AC -9.0625 -18.125

3 BCD -1.3125 -2.625

4 ACD -0.8125 -1.625

5 CD -0.5625 -1.125

6 BD -0.1875 -0.375

7 AB 0.0625 0.125

8 ABC 0.9375 1.875

9 BC 1.1875 2.375

10 B 1.5625 3.125

11 ABD 2.0625 4.125

12 C 4.9375 9.875

13 D 7.3125 14.625

14 AD 8.3125 16.625

15 A 10.8125 21.625

Factorial effects are exactly the same as those from the original data (why?)
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blocking effect: -18.625=ȳb2 − ȳb1 , is in fact

−20(true blocking effect) + 1.375(some interaction of ABC)

This is caused by confounding between b and ABC .
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SAS output: QQ plot without Blocking Effect

significant effects are:

A, C, D, AC, AD
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2k Design with Four Blocks

Need two 2-level blocking factors to generate 4 different blocks.

Confound each blocking factors with a high order factorial effect.

The interaction between these two blocking factors matters.

The interaction will be confounded with another factorial effect.

Optimal blocking scheme has least confounding severity.

24 design with four blocks: factors are A, B, C , D and the blocking factors are b1 and b2

A B C D AB AC .......CD ABC ABD ACD BCD ABCD

-1 -1 -1 -1 1 1 1 -1 -1 -1 -1 1

1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 b1 b2 blocks

-1 1 -1 -1 -1 1 1 1 1 -1 1 -1 -1 -1 1

1 1 -1 -1 1 -1 1 -1 -1 1 1 1 1 -1 2

-1 1 3

................................................. 1 1 4

-1 -1 1 1 1 -1 1 1 1 -1 -1 1

1 1 1 1 -1 1 1 -1 -1 1 -1 -1

-1 -1 1 1 -1 -1 1 -1 -1 -1 1 -1

1 1 1 1 1 1 1 1 1 1 1 1
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possible blocking schemes:

Scheme 1:

defining relations: b1 = ABC , b2 = ACD; induce confounding

b1b2 = ABC ∗ ACD = A
2
BC

2
D = BD

Scheme 2:

Defining relations: b1 = ABCD, b2 = ABC , induce confounding

b1b2 = ABCD ∗ ABC = D

Which is better?
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2k Design with 2p Blocks

• k factors: A,B,...K , and p is usually much less than k.

• p blocking factors: b1, b2,...bp with levels -1 and 1

• confound blocking factors with k chosen high-order factorial effects, i.e., b1=effect1,

b2=effect2, etc.(p defining relations)

• These p defining relations induce another 2p
− p − 1 confounding.

• treatment combinations with the same values of b1,...bp are allocated to the same

block. Within each block.

• each block consists of 2k−p treatment combinations (runs)

• Given k and p, optimal schemes are tabulated, e.g., Montgomery Table 7.8, or

Wu&Hamada Appendix 3A
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