
Statistics 514: Nested and Split-Plot Designs

Lecture 11: Nested and Split-Plot Designs

Montgomery, Chapter 14
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Crossed vs Nested Factors

• Factors A (a levels)and B (b levels) are considered crossed if

Every combinations of A and B (ab of them) occurs.

An example:

Factor A

Factor B 1 2 3 4

1 xx xx xx xx

2 xx xx xx xx

3 xx xx xx xx

A 1 2 3 4

B 1 2 3 1 2 3 1 2 3 1 2 3

x x x x x x x x x x x x

x x x x x x x x x x x x
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• Factor B is considered nested under A (a levels) if

1. under each fixed level (i) of A, B has bi levels.

2. the levels of B under the same level of A are comparable.

3. under a level of A, the levels of B can be arbitrarily numbered.

A 1 2 3 4

B 1 2 3 4 5 6 7 8 9 10 11 12

x x x x x x x x x x x x

x x x x x x x x x x x x

Page 3



Statistics 514: Nested and Split-Plot Designs

Material Purity Experiment

Consider a company that buys raw material in batches from three different

suppliers. The purity of this raw material varies considerably, which causes

problems in manufacturing the finished product. We wish to determine if the

variability in purity is attributable to difference between the suppliers. Four

batches of raw material are selected at random from each supplier, three

determinations of purity are made on each batch. The data, after coding by

subtracting 93 are given below.
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Supplier 1 Supplier 2 Supplier 3

—————- ————— —————

Batches 1 2 3 4 1 2 3 4 1 2 3 4

1 -2 -2 1 1 0 -1 0 2 -2 1 3

-1 -3 0 4 -2 4 0 3 4 0 -1 2

0 -4 1 0 -3 2 -2 2 0 2 2 1

————— ————— —————

yij. 0 -9 -1 5 -4 6 -3 5 6 0 2 6

yi.. -5 4 14
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Other Examples for Nested Factors

1 Drug company interested in stability of product

– Two manufacturing sites

– Three batches from each site

– Ten tablets from each batch

2 Stratified random sampling procedure

– Randomly sample five states

– Randomly select three counties

– Randomly select two towns

– Randomly select five households

Page 6



Statistics 514: Nested and Split-Plot Designs

Statistical Model

• Two factor nested model

yijk = µ + τi + βj(i) + εk(ij)




i = 1, 2, . . . , a

j = 1, 2, . . . , b

k = 1, 2, . . . , n

• Bracket notation represents nested factor

• Cannot include interaction

• Factors may be random or fixed

• Can use EMS algorithm to derive tests
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Sum of Squares Decomposition

yijk = ȳ... + (ȳi.. − ȳ...) + (ȳij. − ȳi..) + (yijk − ȳij.).

a∑
i=1

b∑
j=1

n∑
k=1

(yijk − ȳ...)
2 = bn

a∑
i=1

(ȳi.. − ȳ...)
2 + n

a∑
i=1

b∑
j=1

(ȳij. − ȳi..)
2

+

a∑
i=1

b∑
j=1

n∑
k=1

(yijk − ȳij.)
2

SST = SSA + SSB(A) + SSE
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Analysis of Variance Table

Source of Sum of Degrees of Mean F0

Variation Squares Freedom Square

A SSA a − 1 MSA

B(A) SSB(A) a(b − 1) MSB(A)

Error SSE ab(n − 1) MSE

Total SST abn − 1

SST =
∑ ∑ ∑

y2
ijk − y2

.../abn

SSA = 1
bn

∑
y2

i.. − y2
.../abn

SSB(A) = 1
n

∑ ∑
y2

ij. − 1
bn

∑
y2

i..

SSE =
∑ ∑ ∑

y2
ijk − 1

n

∑ ∑
y2

ij.

• Use EMS to define proper tests
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Two-Factor Nested Model with Fixed Effects:

yijk = µ + τi + βj(i) + εk(ij)

where (1)
∑a

i=1 τi = 0, (2)
∑b

j=1 βj(i) = 0 for each i.

F F R

a b n

term i j k EMS

τi 0 b n σ2 +
bnΣτ2

i
a−1

βj(i) 1 0 n σ2 +
nΣΣβ2

j(i)
a(b−1)

εk(ij) 1 1 1 σ2

• Estimates: τ̂i = ȳi.. − ȳ...; β̂j(i) = ȳij. − ȳi...

• Tests: MSA/MSE for τi = 0; MSB(A)/MSE for βj(i) = 0.

Page 10



Statistics 514: Nested and Split-Plot Designs

Two-Factor Nested Model with Random Effects:

yijk = µ + τi + βj(i) + εk(ij)

where τi ∼ N(0, σ2
τ ) and βj(i) ∼ N(0, σ2

β).

R R R

a b n

term i j k EMS

τi 1 b n σ2 + nσ2
β + bnσ2

τ

βj(i) 1 1 n σ2 + nσ2
β

εk(ij) 1 1 1 σ2

• Estimates: σ̂2
τ = (MSA − MSB(A))/nb; σ̂2

β = (MSB(A) − MSE)/n.

• tests: MSA/MSB(A) for σ2
τ = 0; MSB(A)/MSE for σ2

β = 0.

Page 11



Statistics 514: Nested and Split-Plot Designs

Two-Factor Nested Model with Mixed Effects:

yijk = µ + τi + βj(i) + εk(ij)

where
∑a

i=1 τi = 0, and βj(i) ∼ N(0, σ2
β).

F R R

a b n

term i j k EMS

τi 0 b n σ2 + nσ2
β +

bnΣτ2
i

a−1

βj(i) 1 0 n σ2 + nσ2
β

εk(ij) 1 1 1 σ2

• Estimates: τ̂i = ȳi.. − ȳ...; σ̂2
β = (MSB(A) − MSE)/n.

• Tests: MSA/MSB(A) for τi = 0; MSB(A)/MSE for σ2
β = 0.

Page 12



Statistics 514: Nested and Split-Plot Designs

SAS Code for Purity Experiment

option nocenter ps=40 ls=72;

data purity;

input supp batch resp@@;

datalines;

1 1 1 1 1 -1 1 1 0

1 2 -2 1 2 -3 1 2 -4

1 3 -2 1 3 0 1 3 1

1 4 1 1 4 4 1 4 0

2 1 1 2 1 -2 2 1 -3

2 2 0 2 2 4 2 2 2

2 3 -1 2 3 0 2 3 -2

2 4 0 2 4 3 2 4 2

3 1 2 3 1 4 3 1 0

3 2 -2 3 2 0 3 2 2

3 3 1 3 3 -1 3 3 2

3 4 3 3 4 2 3 4 1
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;

proc mixed method=type1;

class supp batch;

model resp=;

random supp batch(supp);

run;

proc mixed method=type1;

class supp batch;

model resp=supp;

random batch(supp);

run;

quit;
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Both suppliers and batches are random effects

Sum of

Source DF Squares Mean Square

supp 2 15.055556 7.527778

batch(supp) 9 69.916667 7.768519

Residual 24 63.333333 2.638889

Source Expected Mean Square Error Term

supp Var(Residual) + 3 Var(batch(supp)) MS(batch(supp))

+ 12 Var(supp)

batch(supp) Var(Residual) + 3 Var(batch(supp)) MS(Residual)

Residual Var(Residual) .

Source DF F Value Pr > F

supp 9 0.97 0.4158

batch(supp) 24 2.94 0.0167

Residual . . .
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Covariance Parameter Estimates

Cov Parm Estimate

supp -0.02006

batch(supp) 1.7099

Residual 2.6389
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Suppliers are fixed effects and batches are random

Sum of

Source DF Squares Mean Square

supp 2 15.055556 7.527778

batch(supp) 9 69.916667 7.768519

Residual 24 63.333333 2.638889

Source Expected Mean Square Error Term

supp Var(Residual) + 3 Var(batch(supp)) MS(batch(supp))

+ Q(supp)

batch(supp) Var(Residual) + 3 Var(batch(supp)) MS(Residual)

Residual Var(Residual)

Source DF F Value Pr > F

supp 9 0.97 0.4158

batch(supp) 24 2.94 0.0167

Residual . . .
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Covariance Parameter Estimates

Cov Parm Estimate

batch(supp) 1.7099

Residual 2.6389
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Results summary when suppliers are fixed effects

• Estimates:

τ̂1 = ȳ1.. − ȳ... = −28/36

τ̂2 = ȳ2.. − ȳ... = −1/36

τ̂3 = ȳ3.. − ȳ... = −29/36

σ̂2
τ = MSE = 2.64

σ̂2
β =

MSB(A) − MSE

n
=

7.77 − 2.64

3
= 1.71

• Hypothesis test

Page 19



Statistics 514: Nested and Split-Plot Designs

H0 : τ1 = τ2 = τ3 = 0:

F0 = .97, P-value = 0.4158, Fail to reject H0

H0 : σ2
β = 0:

F0 = 2.94, P-value = 0.0167, Reject H0

• Suppliers are not different, variability due to batches.
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Other Scenarios for Nested Factors

• Staggered Nested Designs

• General m-Stage Nested Designs

yijkl = µ + τi + βj(i) + γk(ij) + εl(ijk)

• Designs with Both Nested and Factorial Factors

yijkl = µ + τi + βj + γk(j) + (τβ)ij + (τγ)ik(j) + εl(ijk)

• Sections 14.2, 14.3 in Montgomery.
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Split-Plot Designs

• Example 1: Study six corn varieties and four fertilizers and yield is the

response. Three replicates are needed.

Method 1 : completely randomized full factorial design, 24 level combinations

of variety and fertilizer are applied to 24*3=72 pieces of land (each to three).

Method 2 : Select three fields of large area. Each field is divided into four

areas (four whole-plots), four fertilizers are randomly assigned to the four

whole-plots. Each area is further divided into six subareas (sub-plots), and

the six varieties are randomly planted in these sub-plots.

This leads to a split-plot design:

• whole-plot (treatment) factor: fertilizer

• sub-plot (treatment) factor: corn variety
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• Example 2: A paper manufacturer is investigating three different pulp

preparation methods and four different cooking temperatures for the pulp and

study their effect on the tensile strength of the paper. Three replicates are

needed.

• Because the pilot plant is only capable of making 12 runs per day, so the

experimenter decides to run one replicate on each of the three days and to

consider the days as blocks.

• On any day, a batch of pulp is produced by one of the the three methods (a

whole-plot). Then the batch is divided into four samples (four sub-plots), and

each sample is cooked at one of the four temperatures. Then a second batch

of pulp is made up using another of the three methods. This second batch is

also divided into four samples that are tested at the four temperatures. The

process is then repeated for the third method. The data is given below.

• whole-plot factor: preparation method

• sub-plot factor: cooking temperature
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Day 1 Day 2 Day 3

———— ———– ———–

Method 1 2 3 1 2 3 1 2 3

Temp

200 30 34 29 28 31 31 31 35 32

225 35 41 26 32 36 30 27 40 34

250 27 38 33 40 42 32 41 39 39

275 36 42 36 41 40 40 40 44 45
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Split-Plot Structure

• factors are crossed (different than nested)

• randomization restriction (different than completely randomized)

• Information on factor effects from two levels (or strata).

• split-plot can be considered as two superimposed blocked designs:

– A: whole-plot factor(a); B: sub-plot factor (b), r replicates

– RCBDA: number of trt: a, number of blk: r.

– RCBDB : number of trt: b, number of blk: ra.

for whole-plots, subdivision to smaller sub-plots are ignored. For sub-plots,

whole-plots considered blocks.

• More power for main subplot effect and interaction

• Should use design only for practical reasons

• Randomized factorial design more powerful if feasible
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A typical Data Layout

Block 1 Block 2 Block 3

———— ———– ———–

WP-Factor A 1 2 3 1 2 3 1 2 3

SP-Factor B

1 y111 y121 . . . . . . y331

2 y112 y122 . . . . . . y332

3 y113 y123 . . . . . . y333

4 y114 y124 . . . . . . y334

In general:

yijk where i denotes Block i, j denotes the jth level of the whole-plot factor A,

and k denotes the kth level of the sub-plot factor B.
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Statistical Model I

•

yijk = µ + ri + αj + (rα)ij + βk + (rβ)ik + (αβ)jk + (rαβ)ijk + εijk

i = 1, 2, . . . , r, j = 1, 2, . . . , a, k = 1, 2, . . . , b

– ri: block effects (random) ∼ N(0, σ2
r)

– αj : whole-plot factor (A) main effects (fixed)

– (rα)ij : whole-plot error (random) ∼ normal with σ2
rα.

– βk: sub-plot factor (B) main effects (fixed)

– (rβ)ik: block-B interaction (random) ∼ normal with σ2
rβ .

– (αβ)jk Interaction between A and B (fixed)

– (rαβ)ijk: sub-plot error (random) ∼ normal with σ2
rαβ

– εijk: random error ∼ N(0, σ2)
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Sum of Squares

• SSr = ab
∑

i(ȳi.. − ȳ...)2, df=r-1.

• SSA = rb
∑

j(ȳ.j. − ȳ...)2, df=a-1.

• SSrA = b
∑

i,j(ȳij. − ȳi.. − ȳ.j. + ȳ...)2, df=(r-1)(a-1)

• SSB = ar
∑

k(ȳ..k − ȳ...)2, df=(b-1)

• SSrB = a
∑

i,k(ȳi.k − ȳi.. − ȳ..k + ȳ...)2 df=(r-1)(b-1)

• SSAB = r
∑

j,k(ȳ.jk − ȳ.j. − ȳ..k + ȳ...)2 df=(a-1)(b-1)

• SSrAB =
∑

i,j,k(yijk − ȳij. − ȳi.k − ȳ.jk + ȳi.. + ȳ.j. + ȳ..k − ȳ...)2,

df=(r-1)(a-1)(b-1).

• SSE =?
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Expected mean squares (restricted)

r a b 1

R F F R

term i j k h E(MS)

ri 1 a b 1 σ2 + abσ2
r

whole plot αj r 0 b 1 σ2 + bσ2
rα + rbΣα2

j

a−1

(rα)ij 1 0 b 1 σ2 + bσ2
rα

βk r a 0 1 σ2 + aσ2
rβ + raΣβ2

k

b−1

(rβ)ik 1 a 0 1 σ2 + aσ2
rβ

subplot (αβ)jk r 0 0 1 σ2 + σ2
rαβ + rΣΣ(αβ)2jk

(a−1)(b−1)

(rαβ)ijk 1 0 0 1 σ2 + σ2
rαβ

εijk 1 1 1 1 σ2 (not estimable)
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Estimates and tests of fixed effects

• α̂j = ȳ.j. − ȳ... for j = 1, 2, . . . , a

• β̂k = ȳ..k − ȳ... for k = 1, 2, . . . , b

• ˆ(αβ)jk = ȳ.jk − ȳ.j. − ȳ..k + ȳ....

• Test αj = 0, F0 = MSA/MSrA

• Test βk = 0, F0 = MSB/MSrB

• Test (αβ)jk = 0, F0 = MSAB/MSrAB.
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SAS Code

data paper;

input block method temp resp@@;

datalines;

1 1 1 30 1 1 2 35 1 1 3 37 1 1 4 36

1 2 1 34 1 2 2 41 1 2 3 38 1 2 4 42

1 3 1 29 1 3 2 26 1 3 3 33 1 3 4 36

2 1 1 28 2 1 2 32 2 1 3 40 2 1 4 41

2 2 1 31 2 2 2 36 2 2 3 42 2 2 4 40

2 3 1 31 2 3 2 30 2 3 3 32 2 3 4 40

3 1 1 31 3 1 2 37 3 1 3 41 3 1 4 40

3 2 1 35 3 2 2 40 3 2 3 39 3 2 4 44

3 3 1 32 3 3 2 34 3 3 3 39 3 3 4 45

;

proc glm data=paper;

class block method temp;

Page 31



Statistics 514: Nested and Split-Plot Designs

model resp=block method block*method temp block*temp

method*temp block*method*temp;

random block block*method block*temp block*method*temp;

test h=method e=block*method;

test h=temp e=block*temp;

test h=method*temp e=block*method*temp;

run;
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SAS Output

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 35 822.9722222 23.5134921 . .

Error 0 0.0000000 .

CoTotal 35 822.9722222

Source DF Type III SS Mean Square F Value Pr > F

block 2 77.5555556 38.7777778 . .

method 2 128.3888889 64.1944444 . .

block*method 4 36.2777778 9.0694444 . .

temp 3 434.0833333 144.6944444 . .

block*temp 6 20.6666667 3.4444444 . .

method*temp 6 75.1666667 12.5277778 . .

blo*meth*tmp 12 50.8333333 4.2361111 . .
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Tests Using the Type III MS for block*method as Error Term

Source DF Type III SS Mean Square F Value Pr > F

method 2 128.3888889 64.1944444 7.08 0.0485

Tests Using the Type III MS for block*temp as Error Term

Source DF Type III SS Mean Square F Value Pr > F

temp 3 434.0833333 144.6944444 42.01 0.0002

Tests Using the Type III MS for block*method*temp as E.Term

Source DF Type III SS Mean Square F Value Pr > F

method*temp 6 75.16666667 12.52777778 2.96 0.0520
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Statistical Model II

•

yijk = µ + ri + αj + (rα)ij + βk + (αβ)jk + εijk

– ri: block effects (random) ∼ N(0, σ2
r)

– αj : whole-plot factor (A) main effects (fixed)

– (rα)ij : whole plot error ∼ normal with σ2
rα

– βk : sub-plot factor (B) main effects (fixed)

– (αβ)jk: A and B interaction (fixed)

– εijk : sub-plot error N(0, σ2
ε ).

• Expected mean square
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Term E(MS)

ri σ2
ε + abσ2

r

αj (A) σ2
ε + bσ2

rα +
rbΣα2

j

a−1

(rα)ij σ2
ε + bσ2

rα (whole plot error)

βk (B) σ2
ε +

raΣα2
j

b−1

(αβ)jk (AB) σ2
ε +

rΣΣ(αβ)2jk

(a−1)(b−1)

εijk σ2
ε (subplot error)
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General Split-Plot Designs

• Can have > one whole-plot factor and > one subplot factor with various

blocking schemes.

• split-plot design consists of two superimposed blocked design

Whole Plot

– CRD, RCBD, Factorial D, BIBD, etc.

Subplot

– RCBD, BIBD, Factorial Design, etc.

• Analysis of Covariance

– Covariate linear with response in subplot and whole plot
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Other Variations

• Split-split-plot design

1. randomization restriction can occur at any number of levels within the

experiment

2. two-level: split-split-plot design

• Strip-split-plot design ( or Criss cross design, or Split-block design)

Example: we want to compare the yield of a certain crop under different

systems of soil preparation (A : a1, a2, a3, a4) and different density of

seeding (B: b1, b2, b3, b4, b5). Both operations (tilling and seeding) are done

mechanically and it is impossible to perform both on small pieces of land. The

arrangement shown below (strip-split-plot design) is then replicated r times,

each time using different randomizations for A and B.
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a4b1 a4b4 a4b2 a4b3 a4b5

a1b1 a1b4 a1b2 a1b3 a1b5

a2b1 a2b4 a2b2 a2b3 a2b5

a3b1 a3b4 a3b2 a3b3 a3b5

• For statistical models and analyses, refer to other books.
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