STAT 417—Practice Midterm

Name:

Section:

1. (10 Points) Let $X_1, X_2, ..., X_n$ be a random sample from a normal distribution $N(0, \theta)$ with mean 0 and variance θ , where $0 < \theta < \infty$. The $N(0, \theta)$ pdf is given by

$$f(x;\theta) = \frac{1}{\sqrt{2\pi\theta}} e^{-\frac{x^2}{2\theta}}, \quad -\infty < x < \infty.$$

(a). Find the MLE $\hat{\theta}$ of θ .

(b). Is the MLE $\hat{\theta}$ an unbiased estimator of θ ? Why? $\begin{bmatrix} \text{If } Z \sim N(0, 1), \text{ then } Z^2 \sim \chi_1^2. \text{ The mean and variance of a } \chi_1^2 \text{ random variable are 1 and} \\ 2, \text{ respectively.} \end{bmatrix}$

2. (10 Points) $X \sim N(\mu, 1)$. We want to estimate $\theta = E(X^2)$ on the basis of a random sample X_1, X_2, \ldots, X_n . Determine the MLE of θ and show that it is biased. Can you construct an unbiased estimator of θ ?

3. (10 Points) In a study of anemia in cattle, researchers measured concentration of selenium in blood of 36 cows that had been given a dietary supplement of selenium. The cows were of the same breed (Santa Gertrudis) and had borne their first calf during the year. The mean selenium concentration was 6.21 g/mLi and the standard deviation was 1.84 g/mLi.

a) Construct a 95% confidence interval for the population mean.

b) Estimate how many cows should be used in the study for the standard error of the sample mean to be smaller than 0.2 g/mLi?

4. (10 Points) Let X_1, X_2, \ldots, X_n be a random sample from a Gamma population

with the **KNOWN** parameter α , where the pdf of Gamma(α, β) is

$$f(x) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-x/\beta}, \quad x > 0, \quad \beta > 0.$$

The mean and the variance of a Gamma random variable are $E(X_1) = \alpha\beta$ and $Var(X_1) = \alpha\beta^2$, respectively.

- (a). Find the maximum likelihood estimator (MLE) for β .
- (b). Is the MLE in (a) an unbiased estimator of β ? Why?
- (c). Find the MLE for $\tau = (2\beta 1)^2$.

5. (10 Points) A polling firm conducts a poll to determine what proportion θ of voters in a given population will vote in an upcoming election. A random sample of n = 250 was taken from the population and 155 answered yes. Assess the hypothesis $H_0: \theta = 0.65$ and report the P-value. Construct an approximate 0.90-confidence interval for θ .