PROBABILITY REVIEW

1. PROBABILITY

1.1. Sample Space, Events and Probabilities.

Definition 1.1. The sample space {2 is the set of all possible outcomes of a random experiment. Points
w € ) are called sample outcomes or elements. Subsets of ) are called events. ) and ¢ are called true
event and null event, respectively.

Example 1.2. If we toss a coin twice then the sample space Q = {HH, HT,TH,TT}. The event that “at
least one head appears” is A={HH,HT,TH}.

The sample space in the above example is discrete, and the number of elements || is finite. We can also
have countable infinite sample space or continuous (uncountable) sample space.

Example 1.3.

(1) If we toss a coin until we see the first head, then the sample space Q@ = {H,TH,TTH,TTTH,...} is
countable infinite.

(2) Let w be the waiting time for the next bus. Then Q = (0,00). The event that “next bus comes in less
than 5 minutes” is A = (0,5). Note that it usually does not hurt to make Q larger than needed.

Sometimes the sample space can be a mixture of discrete and continuous elements.

Example 1.4. In a random experiment we first toss a coin, and if it is head we randomly choose a number
from {1,2,...,6}, otherwise randomly select a real number from [0,1]. Then the sample space (the set of
all outcomes) Q@ = {1,2,...,6} U [0, 1].

Since events are subsets of €2, we need to review some set operations. Given events A, B and A; (i = 1,2,...):

o A°={weQ:w¢ A} is the complement of A;

e AUB={weQ:we Aorwe B} is the event that either A or B occurs;

e ANB={weN:we Aandw € B} is the event that both A and B occur (also denoted as AB);

e A-B={weN:we Aandw¢ B} is the event that A occurs and B does not occur;

e If for any w € A we have w € B as well, then we denote A C B. In other words, A is a subset of B.

o UZ A ={weD:we A for at least one i};

o N2 A ={weN:we A for all i};

o Ay, Ay, ... are disjoint or mutually exclusive if A; N A; = ¢ for all i # j.

e A partition of 2 is a sequence of disjoint sets A;, Ag, ... such that U2, A; = Q.

e A sequence of sets Aq, As, ... is monotone increasing if A1 C As C A3z C ... and we define A =
limy, oo Ap = U2, Ai; A sequence of sets Aj, As, ... is monotone decreasing if A; D Ay D ... and

we define A = lim,,_,o0 A, = N2, A;. The former can be written as A, T A and the latter can be
written as A,, | A, and either case can be written as A, — A.

Example 1.5. Let Q = R and let A; = [0,1/i) for ¢ = 1,2,.... Then A;, Ag, ... are monotone decreasing
and U2, A; =[0,1) and N2, A; = {0}. If instead we define A; = (0,1/7) then we have U2; A; = (0,1) and
m?ilAi = ¢.

Definition 1.6. Given a set (an event) A, the indicator function of A is defined as

1 ifwedAd
IA(w)_I(wEA)_{ 0 ifwd A
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Note. Later we will see that indicator function can help us understand the connection between probability
and expectation. It can also be useful in proving some inequalities.

We want to assign a real number P(A) to every event A' so that it can be used to measure the “volume or
size” of the event.

Definition 1.7. A probability measure or probability distribution is a real-valued function on events
A C  that satisfies the following three axioms:

(1) P(A) > 0 for every A

(2) P(2)=1
(3) If Ay, Ag, ... is a sequence of mutually exclusive events then

z IA Z]P)

Note. The first axiom specifies that P(A) is nonnegative; the second axiom defines the probability of the
true event ) to be 1; and the last axiom is about “countable additivity”. Also note that countable additivity
implies finite additivity: if Ay, As,..., A, are disjoint, then P(U?_; 4;) = > 1 | P(4;).

Theorem 1.8. (Properties of Probability)

(1) P(A°) =1 —TP(A) (and thus P(¢) = 0)

(2) 0<P(A) <1

(3) If AN B = ¢ then P(AU B) =P(A4) + P(B)

(4) For any two events A and B, P(AU B) = P(A) + P(B) — P(AB).

Proof. We only prove (4):
P(AUB) = P(A°NB)U(ANB)U (AN B%)
= PA°NB)+PANB)+P(ANB°)+P(ANB)—-P(ANB)
= P((A°NB)U(ANB))+P(ANB°)U(ANB))—P(ANB)
= P(A)+P(B)-P(ANB).

O

Example 1.9. If we toss a die twice, then the sample space Q = {(4,5) : 4,5 € {1,2,...,6}}. If we further
assume that the die is fair and each outcome is equally likely, then P(A) = |A|/36 where |A| denotes the
number of elements in A. For example, if A is the event that the sum of the dice is greater than 10, then
P(A) = 3/36 = 1/12.

Note. ) in the above example is called a uniform probability distribution, due to the fact that each
outcome is equally likely.

1.2. Independence and Conditional Probability.

Definition 1.10. Two events A and B are independent if P(AB) = P(A)P(B). A set of events {A; : i € I'}
is independent if P(NjesA;) = [[;c;P(4;) for every finite subset J C I.

Note. There is also “pairwise independent” which is weaker. A set of events {A; : i € I'} is said to be pairwise
independent if every pair of events A;, A;(i # j) is independent.

Intuitively, if A and B are independent, then whether A happens or not does not affect the likelihood of B
occurring. Suppose two events A and B with positive probability (P(4) > 0 and P(B) > 0) that are disjoint,
then they cannot be independent (prove it). Independence can be used to simplify computation, as shown
in the following example.

1Technically speaking, not every event can be assigned a probability. We only assign probabilities to sets in a o-field.
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Example 1.11. Flip a fair coin 10 times. Let A be the event that at least one head occurs, and let B; be
the event that the j-th toss results in a tail. Then

P(A) - 1-P(A%)
1~ P(B1Bs... Bio)
1~ P(B1)P(B) ... P(Bo)

by independence

= 1-2710
Definition 1.12. If P(B) > 0 then the conditional probability of A given B is
P(AB)
P(A|B) = .

Think of P(A|B) as the fraction of times A occurs among those in which B occurs. Note that (1) for any
two events A and B we have P(AB) = P(A|B)P(B) = P(B|A)P(A); (2) if events A and B are independent,
then we have P(A|B) = P(A).

Theorem 1.13. (The Law of Total Probability) Let Ay, Aa, ..., A, be a partition of Q2. Then for any event

B we have
n

P(B) =Y P(B|A;)P(4,).

=1

Proof. Since BA1,BAsy,...,BA, is a partition of B, we have
P(B) =Y P(BA;) =Y P(B|A)P(A).
i=1 i=1

O
Theorem 1.14. (Bayes Theorem) Let Ay, ..., A, be a partition of Q such that P(A4;) > 0 for each i. If
P(B) > 0 then, for eachi=1,... n,
P(B|A;)P(A;)
> i1 P(B|Aj)P(4;)

P(4:|B) =

Proof. By the definition of conditional probability we have
P(A;B) P(B|A;)P(4;)

B(AilB) = 505 T S P(BA;)P(4;)

2. RANDOM VARIABLES

2.1. Distribution and Probability Functions.

Definition 2.1. A random variable is a mapping® X : Q — R that assigns a real number X (w) to each
outcome w.

After random variables are introduced, we often work directly with them and not mention the sample space
any more. However, it is important to keep in mind that any random variable is associated with some
underlying sample space.

Example 2.2. Toss a die twice, and let X (w) be the sum of the dice. For example, if w = (1,5) then
X (w) = 6. For continuous sample space, let Q = {(z,y) : 22 + y* < 1} be the unit disk. Any outcome w
can be written in the form of w = (z,y). Some examples of random variables are X (w) = z, Y (w) = v,
Z(w) = 2%y, etc.

3Technically speaking, a random variable must be a measurable function.
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Given a random variable X and a subset A of the real line, define X ~1(A4) = {w € Q: X (w) € A}. Also we
use the notations

P(XecA) = PX 'A)=P{we: X(w)ec A})
P(X=z2) = P(X Y2)=PH{we: X(w)=a}).
Notice that we use X to denote the random variable and x to denote its realization (a particular value of
X).
Example 2.3. Let X be the number of heads in two fair coin tosses. Then we have
PX=0) = Plwe:X(w)=0}H=P{TT})=1/4
P(X =1) PlweQ: X(w)=1}) =P{TH,HT})=1/2
PX=2) = Plwe:X(w)=2})=P{HH})=1/4.

Definition 2.4. Given a random variable X, the cumulative distribution function (cdf) is the function
Fx : R — [0,1] defined by
Fx(z) =P(X < x).

Theorem 2.5. Let X have a cdf F and letY have cdf G. If F(x) = G(z) for allx thenP(X € A) =P(Y € A)
for all AS.

The above theorem says that cdf completely determines the distribution of a random variable.

Theorem 2.6. (Properties of CDF) A function F : R — [0,1] is a cdf for some probability P if and only if
F satisfies the following three conditions:

(i) F is non-decreasing: x1 < xo implies F(z1) < F(z2).

(i) F is normalized:

lim F(z) = 0
lim F(z) = 1.

(iii) F is right-continuous: F(x) = F(z%) for all x, where F(z") = lim, |, F(y).

Proof. Omitted. O

Definition 2.7. A random variable X is discrete if it takes countably many values. The probability mass
function (pmf) is then defined as fx(z) = P(X = z). We often use f(z) to denote fx(x) for simplicity.

Example 2.8. Flip a fair coin twice and X be the sum of the heads. Then its pmf is

1/4 x=0
)2 =1
IX@ =911 s=2

0 otherwise.

Definition 2.9. A random variable X is continuous if there exists a function fx such that fx(x) > 0 for
all 2, [ fx(x)dz =1 and for every a < b,

b
Pla< X <b) = / fx(z)dx.
The function fx is called the probability density function (pdf). Furthermore, we have
Fy(z) = / Fx(t)dt

and fx(z) = Fi () at all points  at which Fy is differentiable.

Note. For continuous random variable X we have P(X = x) = 0 for every z! Also in the case of continuous
variables, fx(z) does not mean P(X = x). Actually fx(z) can take any positive value or even unbounded.

5Technically it only holds for every measurable set A.
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Example 2.10. Suppose X has pdf

1 0<z<1
0 otherwise.

) = {

Clearly we have fx(z) > 0 and [ fx(z)dz = 1. This random variable is said to have a Uniform(0,1)
distribution.

Definition 2.11. Let X be a random variable with cdf F. The inverse cdf or quantile function is
defined by

F~Yq) = inf{z: F(z) > ¢}
for ¢ € [0,1]. If F is strictly increasing and continuous then F~1(g) is the unique real number x such that

F(x) = q. In particular, we call F~1(1/4) the first quantile, F'~1(1/2) the median (or second quantile),
and F~1(3/4) the third quantile.

We use X ~ F to denote that a random variable X has distribution F'. In the following we review some
important random variables that will be used in this course.

2.2. Some Important Discrete Random Variables.

2.2.1. The Point Mass Distribution X ~ §.. X has a point mass distribution at a if P(X = ¢) = 1. Tts pmf

° f@):{l rec

0 otherwise.

2.2.2. The Discrete Uniform Distribution X ~ Uniform({c1,...,cx}). X has a uniform distribution on
{c1,...,ci} if its pmf is given by

f(a:)_{ 1/k forx =cy,...,ck

0 otherwise.

2.2.3. The Bernoulli Distribution X ~ Bernoulli(p). X is a Bernoulli random variable with parameter p €
[0,1] if its pmf is given by
p r=1
flay=¢ 1-p z=0
0 otherwise.
Sometimes we use the simplified notation f(x) = p®(1 — p)! =% for x = 0, 1. Bernoulli random variables are
often used to model binary outputs, such as the result of tossing a coin.

2.2.4. The Binomial Distribution X ~ Binomial(n,p). X is a Binomial random variable with parameters
n € N and p € [0,1] if its pmf is given by

n —X
flz) = <x)pz(1_p)n forx=0,1,...,n
0 otherwise
where ( Z ) = 71!(:iz)!. The Binomial random variable counts the number of successes in n independent

Bernoulli random variables with parameter p. Verify that >/, f(z) = 1.

2.2.5. The Geometric Distribution X ~ Geometric(p). X has a Geometric distribution with parameter p €
(0,1) if its pmf is given by

[ pA—=p)*t forz=1,2,...
fla) = { 0 otherwise.

Think of X as the number of flips needed to see a head when flipping a coin. Verify that > 7 | f(z) = 1.
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2.2.6. The Poisson Distribution X ~ Poisson(A). X has a Poisson distribution with parameter A > 0 if its

pmf is given by
k)\m

x> 0.

fla) =<

Note that >°7 | f(z) = e} 327, 2. =1 by the definition of the exponential function. The Poisson is often
used to model the counts of rare event.

2.3. Some Important Continuous Random Variables.

2.3.1. The Uniform Distribution X ~ Uniform(a,b). X has a Uniform(a,b) distribution (a < b) if its pdf is

given by .
= T €a,b]
=)= { bO otherwise.
Its cdf is
0 r<a
F(z) = =2 z€a,b]
1 x> b.

2.3.2. The Ezponential Distribution X ~ Exp(). X has an exponential distribution with parameter 8 > 0

if its pdf is given by
1 —z/p
flx) = =e , x> 0.

It is often used to model the waiting time and has the so-called memoryless property: given X ~ Exp(f) we
have P(X >t +s|X > t) =P(X > s).

2.3.3. The Normal/Gaussian Distribution X ~ N(u,0?). X has a normal (or Gaussian) distribution with
parameters p € R and o > 0 if it has the following pdf

flx) = \/2;76)@ (—%) , veR

Parameter 4 is the mean of the distribution and o is the standard deviation of the distribution (refer to later
part of the notes if you do not remember the definitions of mean and standard deviation). X is said to have
a standard normal distribution if X ~ N(0,1). The pdf and cdf of standard normal are denoted by ¢(z)
and ®(z), respectively.

The normal distribution is the most important distribution in statistics, as many statistics have approxi-
mately normal distributions. Below we list some properties of the normal distribution.

Theorem 2.12. (Properties of the Normal Distribution)

(1) If X ~ N(u,0?), then Z = (X — p)/o ~ N(0,1).

(2) If Z ~N(0,1), then X = p+ 0Z ~ N(p,0?).

(3) If X; ~ N(pi,0?), i =1,...,n are independent, then Y . | X; ~ Ny pi, >y 07).

3. BIVARIATE AND MULTIVARIATE RANDOM VARIABLES

3.1. Bivariate/Multivariate Distributions.

Definition 3.1. For any random variables X and Y, the joint distribution function F(z,y) is given by

Similar to the case of univariate random variable, a bivariate (or multivariate) random variable can be
discrete, continuous, or neither.

Definition 3.2. Given a pair of discrete random variables X and Y. The joint probability mass function
for X and Y is given by

fxy(z,y) =P(X =2,Y =y).
We often use f(z,y) to denote fx y(z,y) for simplicity.
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Example 3.3. Flip a unfair coin twice, which has probability 1/3 to be head and 2/3 to be tail. Let X and
Y be the results of the first and second flip. Let use 0 to denote “tail” and 1 to denote “head”. The joint pmf
of (X,Y) is listed in the following table:

| [ Y=0[V-1] |
0] 4/9 | 2/9 [2/3
1] 2/9 | 1/9 |1/3
2/3 | 1/3 | I

X
X

Definition 3.4. Let X and Y be continuous random variables with joint distribution function F(z,y). We
call a function f(z,y) a joint pdf for the random variables (X,Y) if

T Yy
F(x,y) = / / [ty to)dtadty, x,y € R,

Example 3.5. Let (X,Y) be uniform on the unit square, that is,

. 1 =zye€ [Ov 1]
fxy(z,y) = { 0 otherwise.

Clearly we have [ [ fxy(z,y)dzdy = 1.

All above definitions can be easily generalized to multivariate random variables. For example, the probability

—

distribution function for random variables X = (X3, Xo,..., X,,) is given by
F(zi,...,x2n) =P(X1 <z1,..., X, <), 1,...,2, € R

3.2. Marginal Distributions.

Definition 3.6. If discrete random variables (X,Y) has joint distribution with pmf fx y(z,y), then the
marginal mass functions for X and Yare defined by

fX(x) = P(XZLL')ZZ]P)(X:,T,Y:y)ZZf(,T,y)

Iy = PY =y => PX=2Y=y)=> f(xy)

Example 3.7. Suppose fx y is given in the table below. Then the marginal mass function for X is the sum

of the columns
2/3 z=0

fx(x)y=4¢ 1/3 z=1
0 otherwise.
and the marginal mass function for Y is the sum of the rows
2/3 y=20

y)=9 1/3 y=1
0 otherwise.

| [Y-0]V=-1] |
0] 4/9 | 2/9 [2/3
1] 2/9 | 1/9 |1/3
2/3 | 1/3 | I

X
X

Definition 3.8. If continuous random variables (X, Y") has joint distribution with pdf fx y(x,y), then the
marginal density functions for X and Y are defined by

fx(x) = /:30 fxy(z,y)dy, fv(y)= /700 Ixy(z,y)de.

Example 3.9. Let fxy(z,y) = e @™ for ;4 > 0. Then we have fx(z) = fooo fxy(z,y)dy =
fooo e Te Vdy =e"".
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3.3. Conditional Distributions.
For discrete random variables X and Y, we already introduced conditional probability P(X = z|Y = y).
Similarly we can define conditional distribution.

Definition 3.10. The conditional probability mass function is given by

PX =2Y=y) fxy(,y)

fxpy(zly) = P(X = 2|Y =y) = PY=y) fr(y)

if fy(y) > 0.

Example 3.11. Toss a coin twice. Let X be the first result (again we use 1 for head, 0 for tail) and Y be
the sum of the two results. Then P(X =0|Y =0)=1,P(X =1Y =0)=0,P(X =0]Y =1) =1/2 and
P(X=1Y=1)=1/2.

The conditional distribution in the continuous case need to be defined in terms of pdf to avoid some techni-
calities.

Definition 3.12. For continuous random variables X and Y, the conditional probability density func-
tion is given by
fxy(z,y)
Ixpy (@ly) = ————
| fy ()
assuming that fy (y) > 0. Then P(X € AlY =y) = [, fx|v(z|y)dz.

Example 3.13. Let X ~ Uniform(0,1), and given X = z, we generate Y |X = z ~ Uniform(z,1). Compute
the marginal distribution of Y.
Since fx(z) =1 for z € [0,1] and fy|x(y|z) = 1/(1 — ) for y € [z, 1], we have

O<z<y<l1
otherwise.

fxy(@y) = frix(yle)fx(z) = { 1/(10_ g

So the marginal distribution of Y is fy(y) = [ 1/(1 — 2)dz = — fllfy 4t = —log(1 —y).

3.4. Independent Random Variables.

Definition 3.14. The random variables Xq,..., X, are independent if for all A;,..., A, we have
P(X;€A,....X,€A,) =P(X; € 4)...P(X,, € A,).

It is difficult to apply the above definition to check independence. Instead, we often use the following

theorem.

Theorem 3.15. Random variables X1, ..., X, are independent if and only if the cdf can be factorized as

FX1 ..... Xn(xla"'axn):FX1(x1)"'FXn(I")'

3.5. Two Important Multivariate Distributions.
3.5.1. The Multinomial Distribution. The multinomial distribution is a natural generalization of the binomial
distribution.

Definition 3.16. The random vector X = (X1,..., X}) is said to have a multinomial distribution with
parameters n € N and pq,...,pr (where p; > 0 for all ¢ and Zle p; = 1) if its pmf is given by

(@) = ﬁpgflpi’“ ifzq,...,2, € Nand Y x;=n
0 otherwise.
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Consider drawing a ball from an urn which has balls with & different colors. Let p = (p1,...,pr) where
p; > 0 and Z?lej = 1 and suppose p; is the probability of drawing a ball of color j. If we draw n times
(with replacement) and let X = (X1,..., X)) where X; is the number of times that we see a color j ball.
Then we say X ~ Multinomial(n, ).

The multinomial distribution is the multivariate generalization of the binomial distribution (e.g., it specializes
to binomial if k =2, py =p and po =1 — p).

Theorem 3.17. Suppose X ~ Multinomial(n, p), where X = (X1,...,Xk) and 9= (p1,...,pr). Then the
marginal distribution of X; is Binomial(n, p;).

3.5.2. The Multivariate Normal Distribution X ~ N
multivariate normal distribution with parameters ji € R
definite matrix'') has the pdf

(@) = W exp (‘%(f— HrsHE - ﬁ))

where |.| is the matrix determinant and ¥~! is the inverse matrix of ¥.

(ji,¥). The random vector X = (X1,...,X,) has a
™ and ¥ (which is a n X n symmetric, positive

Similar to the case of a univariate normal random variable, we have
E(X) =
V(X) = %
In particular, ¥, ; = V(X;) and %; ; = Cov(X;, X;).

We already know that if two random variables X1, ..., X,, are independent, then Cov(X;, X;) = 0 for i # j.

=

The reverse is not true in general! But if we also know that X = (X1,...,X,) follows a multivariate normal
distribution N(ii, X)), then the reverse holds.

Theorem 3.18. If X = (X1,...,Xpn) ~N(ji,X) where 3; ; =0 for all i # j (e.g., ¥ is a diagonal matriz),
then X1,...,X, are independent.

It then follows that when X is a diagonal matrix with ;; = 02, we have

fz(@) = f[lfxi () = f[l \/1— exp <—%) :

2
2mo;

4. FUNCTIONS OF RANDOM VARIABLES
Given a random variable X, let Y = g(X) be a function of X, such as Y = X2. The resulting function Y is
also a random variable. The question is, how do we calculate the distribution (pdf/pmf and cdf) of Y'?
For the discrete case it can be easily seen that
fry) =P =y) =Pg(X)=y) =P({z:g(x) =y}) = > fx(x)
z:g(z)=y
Example 4.1. Let X be the number of heads in two coin tosses. Then we have fx(0) =1/4, fx(1) =1/2
and fx(2) =1/4. f Y = (X — 1)? then we have fy(0) = 1/2 and fy (1) = 1/2.

For continuous case we following three steps to obtain fy:

1. For each y, find the set A, = {z: g(z) < y}.
2. Find the cdf by definition

Fy(y) =P(Y <y) = P(g(X) <y) =P({z: g(x) <y}) = /A fx (z)dz.

HUThis is the only place we use “positive definite” in this course, and there are a few places we use “matrix determinant”.
Please refer to any linear algebra book for the detailed definitions.
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3. Differentiate to get pdf: fy(y) = Fy (y).

Example 4.2. Let X ~ Uniform(—1,3) and find the pdf of Y = X2, The cdf Fy(y) = P(X? < y) is easy
to compute in separate steps. Clearly y € (0,9), and we consider two cases. When 0 < y < 1 we have

Fy(y) =P(—y < X </y) = /y/2. When 1 <y <9 we have Fy(y) =P(-1 < X < /y) = (1+ /y)/4
Take derivative with respect to y we get

1
@ 0< Yy <1

) =3 557 1<y<9
0 otherwise.

The above procedure is applicable to every case. When the function g¢(.) satisfies certain conditions the
calculation can be simplified by the result of the following theorem.

Theorem 4.3. Let X have pdf fx(x) andY = g(X), where g is a strictly monotone increasing or decreasing
function. Suppose the inverse g~ is differentiable on the range of X, then the pdf of Y is given by

fy<y>—-fx<91@»>\§§g1@o\.

Proof. Suppose g is a strictly monotone increasing function, we have

Fy(y) =P(g(X) <y) =P(X < g7 (y)) = Fx(9~'(¥)

and thus
/ d 1 chain rule —1 d 1
) =Fyly) = —Fx(g () =" fx(g~ ¥) =79 ()
dy dy
Similarly we can show that if g is a strictly monotone decreasing function we have fy (y) = —fx (g7 (v)) %g_l (y).

1

By using the property that the derivative of an increasing (decreasing) function g—' is positive (negative)

and putting them together we have
_ d _
r(o) = It 0700

O

Example 4.4. Let fx(z) = e ® for z > 0 and let Y = g(X) = log X. Because g is strictly monotone
increasing, we have fy (y) = fx(e¥)e? = e¥e—¢" for y € R.

We can also apply the above results to functions of random vector (several random variables). For example,
if X and Y are random variables, we might want to know X +Y, XY, max{X,Y} or min{X,Y}. The three
steps procedure still applies with slight modification:

1. For each z, find the set A, = {(z1,...,2n) 1 g(x1,...,2n) < 2z}
2. Find the cdf by definition
Fi(s) = PB(Z<2)=PB(g(Xi,. ., Xn) <

z)
= P({(wl,-..wn):g(wl,..-,wn)gz})z/.../A i x, (@1, wy)dey . day,.

3. Differentiate to get pdf: fz(z) = F/(z).

There is also a multivariate version of theorem 4.3:



englishPROBABILITY REVIEW!4 11

Theorem 4.5. Let X = (X1,..., X,) be a random vector with pdf fe(x1,...,2,). Let §(Z) = (g1(Z), ..., gn(Z))
where g : R™ — R™ is an invertible and differentiable mapping in the range ofX (one-to-one mapping) then

—

there exists an inverse G+ = (h1(%), ..., hn(7)) : R* = R". Let Y = (Y1,...,Y,) = §(X), then
fe@) = f=(@ @I

where J is the Jacobian of the inverse mapping defined as

Ohi(§)  Oh(F) Oh1 (%)
Jy1 Oy2 T Oy,
Oha(§)  Oh2(§) Oh2 (%)
N 3 o Do
g=| ?
Ohn(§)  Ohn(¥) Ohn (§)
dy1 0y2 o OYn

e.g., J is the determinant of a n X n matriz.

Proof. Similarly to the univariate case by applying the chain rule. O

Note. There is one inconvenience of the theorem. For example, in order to compute the pdf of Z = X +Y you
need to define another random variable such as W = X — Y, to use the Jacobian (which is the determinant
of a n X n square matrix).

5. EXPECTATION

5.1. Expectation and Variance.

Definition 5.1. The expectation (mean or first moment) of a random variable X is defined to be

E(X) = Yooxf(x) if X is discrete
| Jaf(z)dz if X is continuous.

Note. We assume that the sum or integral exists (well-defined). The expectation is a one-number summary
of the distribution that tells the mean or average of a random variable.

Example 5.2. For X ~ Bernoulli(p) we have E(X) = > _,,2f(z) = 0x (1—-p)+1xp =p. For

X ~ Uniform(a,b) we have E(X) = [af(z)dz = [* 2da = 4L,

Theorem 5.3. (The Law of the Unconscious Statistician) Let Y = g(X). Then the expected value of Y is
B YL@ f(x) if X is discrete

E(Y) =E(9(X)) = { Jg(x)f(z)dz if X is continuous.

Example 5.4. Let X ~ Uniform(0,1) and let Y = g(X) = e*. Then we have
1
E(Y)=E(eX) = / efdr =e—1.
0

Alternatively we can first calculate fy(y) = 1/y and then E(Y) = [ y%dy =e—1.

Theorem 5.5. If X1,..., X, are random variables and c1,...,c, are constants, then
n n
i=1 i=1

Example 5.6. Let X ~ Binomial(n,p). Since X = X; +...+ X,, where X; ~ Bernoulli(p) (why?), applying
the above rule we have E(X) = > | E(X;) = np. Use the pmf of the binomial distribution to verify the
result.

Theorem 5.7. If X1,...,X,, are independent random variables, then

E (ﬁ Xl-> = ﬁE(Xi).
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Definition 5.8. The variance of a random variable X is defined by
V(X) = E((X —E(X))?).

The standard deviation is sd(X) = /V(X).

The variance of a random variable summarizes the scale of the distribution, or how values are spread around
the expectation.

Theorem 5.9. Assuming the variance is well-defined. Then

(1) V(X) = E(X?) - E(X)"

(2) If X1,...,X,, are independent random variables and c1,...,c, are constants, then V(3 I, ¢;X;) =
Yin1 GV (Xi).

Note. Unlike the expectation, the summation rule requires the independence. Also notice that V(aX +b) =
a®?V(X) by treating constant b as a random variable with mean E(b) = b and V(b) = 0.

Example 5.10. Let X ~ Binomial(n,p). We have X = """ , X; where X;’s are independent Bernoulli
random variables: X; ~ Bernoulli(p). So we have V(X) =V(}_, X;) = >, V(X;) = Y, (E(X?) — E(X;)?) =
np(1 — p). Use direct calculation to verify the result.

Definition 5.11. The covariance of two random variables X and Y is defined as
Cov(X,Y) = E((X — E(X))(Y —E(Y))
and the correlation coefficient is defined as

Cov(X,Y)

pxy = p(X,Y) = X))

Clearly covariance is a generalization of variance, e.g. Cov(X, X) = V(X).

Theorem 5.12. (Properties of Covariance)

(1) Cov(X,Y) =E(XY) —-E(X)E(Y).

(2) If X and Y are independent, then Cov(X,Y) = 0.

(8) The correlation coefficient satisfies: —1 < pxy < 1, and |px,y| = 1 if there is a linear relationship
between X and Y, e.g. Y =aX +b.

Note that although independent random variables have covariance 0, but the reverse is not true!
Theorem 5.13. For random variables X1, ..., Xn,

A% (i 01X1> = i C?V(XJ + 2 i Z CiCjCOV(Xi, XJ>

i=1 i=1 i=1 j#i

The concepts of expectation and variance can be easily generalized to random vectors:

Definition 5.14. The expectation of a random vector X = (X1,...,Xy) is just the vector of the

—

expectations of each element: E(X) = (E(X1),...,E(X,)). The variance-covariance matrix ¥ is defined
as
V(Xl) COV(Xl,XQ) AP COV(Xl,Xn)
. COV(XQ,Xl) V(XQ) AP COV(XQ,Xn)
Y =V(X) = . . . .
Cov(X,,X;) Cov(X,,X2) ... V(X,)

Notice that ¥ is symmetric as Cov(X;, X;) = Cov(X;, X;).
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5.2. Conditional Expectation and Variance.
Definition 5.15. The conditional expectation of X given Y = y is defined by

N DY fo‘Y(Jj|y) discrete case
E(X]Y =y) = { Jxfxy(zly)de continuous case.

Furthermore, if g(z) is a function of 2 then

E(g(X)|Y =y) = { E g(x )fX|Y(33|y) discrete case

fg z)fx |y (z|ly)dz continuous case.

Note. E(X|Y = y) is a function of y and E(X|Y") is a function of the random variable Y. As a result, we
have E(X|Y) itself a random variable. So we can study its mean and variance, etc.

Theorem 5.16. (The Rule of Iterated Expectation or Double Expectation) For random variables X and Y,
assuming the exrpectations exist, we have

E(E(X|Y)) = E(X).
Example 5.17. Let X ~ Uniform(0,1) and Y|X = x ~ Uniform(0,z). We have E(Y) = E(E(Y|X)) =
E(X/2) = 1/4. Verity the result by first deriving fy (y).
Definition 5.18. The conditional variance is defined as

_ v Xe—u(y)?fxy(aly)  discrete case
VXY =y) = { J (@ — pu(y))? fx)y(zly)dz  continuous case.
where u(y) = E(X|Y =y).
Theorem 5.19. (Conditional Variance) For random variables X and Y,
V(X)) =EWV(XI|Y)) + V(E(X|Y)).
Example 5.20. Let X ~ Uniform(0,1) and Y |X = 2 ~ Uniform(0,z). Compute V(Y).
We have
V() = E(V(Y]X))+ V(EY|X))

= E(X?/12) +V(X/2)

= i X l + l X i

1273 47 12

= 7/144.

Verify the result by direct calculation using fy (y).

5.3. Moment Generating Functions.

Definition 5.21. The k-th moment of a random variable X is defined to be E(X%); the k-th central
moment is defined to be E((X — E(X))¥).

It is easy to see that expectation is the 1st moment and variance is the 2nd central moment.

Definition 5.22. The moment generating function (mgf) or Laplace transform of random variable
X is defined by

m(t) = E(e'), t e R.
We say that a moment-generating function for Y exists if there exists an open interval (—e¢,€) such that
m(t) is finite for ¢ € (—¢,€). In what follows we assume that the mgf exists. The name “moment generating
function” comes from the fact that

m/(0) = EIE(efX) li—o=E (%e ) li—o= E(X).

Continue in this way we will get m(®)(0) = E(X*), k =0,1,....

Theorem 5.23. (Properties of MGF)
(1) If Y = aX + b, then my (t) = e®*mx/(at).
(2) If X1, ..., X, are independent and Y ="' | X;, then my (t) = [\, mx, (t).
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Example 5.24. Let X ~ Binomial(n,p). Since X = Y | X; where X; ~ Bernoulli(p) (i = 1,...,n) are
independent Bernoulli random variables, we have

mx (t) = [T mx () = (0 x e + (1 —p))".
i=1

The result of next example is often useful.

Example 5.25. Let X ~ N(u,0?), then we have

mx(t) = /00 exp(tw)ﬁ exp (—%) dx

— 0o

< 1 - to?))? t?0% + 2ut
/ e <_<fﬂ(ﬁ;+>>> exp (%) i
— 0 TOo g

= exp (ut+0t*/2).

Theorem 5.26. Let X and Y be random variables. If mx (t) = my (t) for all t in an open interval around
0, then X and Y have the same distribution function (and pdf/pmf).

The above theorem provides another way to calculate the probability distribution functions of random
variables based on the mgf.

Theorem 5.27. Let X; ~ N(u;,02) be independent random variables for i = 1,...,n and c1,...,c, € R.

Then we have . . .
Y = ZciXi ~ N (ZC“J@,ZC?O’?) .
i=1 i=1 i=1

Proof. Let Y; = ¢;X; ~ Normal(c;pi, c?o?). So we have my, (t) = exp(cipit + c?02t?/2). By the properties of

mgf we have
my (t) = H my, (t) = exp (Z Cipit + Z 0120?752/2)
i=1 i=1 i=1

which is the same as the mgf of Normal(}~, ciu;, >, c?0?) (We used the fact that Y;’s are independent.
Why?). By the theorem we conclude that Y =3, ¢;X; ~ Normal(}_; cips, >, c7o?). O



