
PROBABILITY REVIEW1. Probability1.1. Sample Spa
e, Events and Probabilities.De�nition 1.1. The sample spa
e Ω is the set of all possible out
omes of a random experiment. Points
ω ∈ Ω are 
alled sample out
omes or elements. Subsets of Ω are 
alled events. Ω and φ are 
alled trueevent and null event, respe
tively.Example 1.2. If we toss a 
oin twi
e then the sample spa
e Ω = {HH, HT, TH, TT }. The event that �atleast one head appears� is A = {HH, HT, TH}.The sample spa
e in the above example is dis
rete, and the number of elements |Ω| is �nite. We 
an alsohave 
ountable in�nite sample spa
e or 
ontinuous (un
ountable) sample spa
e.Example 1.3.(1) If we toss a 
oin until we see the �rst head, then the sample spa
e Ω = {H, TH, TTH, TTTH, . . .} is
ountable in�nite.(2) Let ω be the waiting time for the next bus. Then Ω = (0,∞). The event that �next bus 
omes in lessthan 5 minutes� is A = (0, 5). Note that it usually does not hurt to make Ω larger than needed.Sometimes the sample spa
e 
an be a mixture of dis
rete and 
ontinuous elements.Example 1.4. In a random experiment we �rst toss a 
oin, and if it is head we randomly 
hoose a numberfrom {1, 2, . . . , 6}, otherwise randomly sele
t a real number from [0, 1]. Then the sample spa
e (the set ofall out
omes) Ω = {1, 2, . . . , 6} ∪ [0, 1].Sin
e events are subsets of Ω, we need to review some set operations. Given events A, B and Ai (i = 1, 2, . . .):

• Ac = {ω ∈ Ω : ω /∈ A} is the 
omplement of A;
• A ∪ B = {ω ∈ Ω : ω ∈ A or ω ∈ B} is the event that either A or B o

urs;
• A ∩ B = {ω ∈ Ω : ω ∈ A and ω ∈ B} is the event that both A and B o

ur (also denoted as AB);
• A − B = {ω ∈ Ω : ω ∈ A and ω /∈ B} is the event that A o

urs and B does not o

ur;
• If for any ω ∈ A we have ω ∈ B as well, then we denote A ⊂ B. In other words, A is a subset of B.
• ∪∞

i=1Ai = {ω ∈ Ω : ω ∈ Ai for at least one i};
• ∩∞

i=1Ai = {ω ∈ Ω : ω ∈ Ai for all i};
• A1, A2, . . . are disjoint or mutually ex
lusive if Ai ∩ Aj = φ for all i 6= j.
• A partition of Ω is a sequen
e of disjoint sets A1, A2, . . . su
h that ∪∞

i=1Ai = Ω.
• A sequen
e of sets A1, A2, . . . is monotone in
reasing if A1 ⊂ A2 ⊂ A3 ⊂ . . . and we de�ne A =

limn→∞ An = ∪∞
i=1Ai; A sequen
e of sets A1, A2, . . . is monotone de
reasing if A1 ⊃ A2 ⊃ . . . andwe de�ne A = limn→∞ An = ∩∞

i=1Ai. The former 
an be written as An ↑ A and the latter 
an bewritten as An ↓ A, and either 
ase 
an be written as An → A.Example 1.5. Let Ω = R and let Ai = [0, 1/i) for i = 1, 2, . . .. Then A1, A2, . . . are monotone de
reasingand ∪∞
i=1Ai = [0, 1) and ∩∞

i=1Ai = {0}. If instead we de�ne Ai = (0, 1/i) then we have ∪∞
i=1Ai = (0, 1) and

∩∞
i=1Ai = φ.De�nition 1.6. Given a set (an event) A, the indi
ator fun
tion of A is de�ned as

IA(ω) = I(ω ∈ A) =

{

1 if ω ∈ A
0 if ω /∈ A
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englishPROBABILITY REVIEW2 2Note. Later we will see that indi
ator fun
tion 
an help us understand the 
onne
tion between probabilityand expe
tation. It 
an also be useful in proving some inequalities.We want to assign a real number P(A) to every event A1 so that it 
an be used to measure the �volume orsize� of the event.De�nition 1.7. A probability measure or probability distribution is a real-valued fun
tion on events
A ⊂ Ω that satis�es the following three axioms:(1) P(A) ≥ 0 for every A(2) P(Ω) = 1(3) If A1, A2, . . . is a sequen
e of mutually ex
lusive events then

P(∪∞
i=1Ai) =

∞
∑

i=1

P(Ai).Note. The �rst axiom spe
i�es that P(A) is nonnegative; the se
ond axiom de�nes the probability of thetrue event Ω to be 1; and the last axiom is about �
ountable additivity�. Also note that 
ountable additivityimplies �nite additivity: if A1, A2, . . . , An are disjoint, then P(∪n
i=1Ai) =

∑n
i=1 P(Ai).Theorem 1.8. (Properties of Probability)(1) P(Ac) = 1 − P(A) (and thus P(φ) = 0)(2) 0 ≤ P(A) ≤ 1(3) If A ∩ B = φ then P(A ∪ B) = P(A) + P(B)(4) For any two events A and B, P(A ∪ B) = P(A) + P(B) − P(AB).Proof. We only prove (4):

P(A ∪ B) = P((Ac ∩ B) ∪ (A ∩ B) ∪ (A ∩ Bc))

= P(Ac ∩ B) + P(A ∩ B) + P(A ∩ Bc) + P(A ∩ B) − P(A ∩ B)

= P((Ac ∩ B) ∪ (A ∩ B)) + P((A ∩ Bc) ∪ (A ∩ B)) − P(A ∩ B)

= P(A) + P(B) − P(A ∩ B).

�Example 1.9. If we toss a die twi
e, then the sample spa
e Ω = {(i, j) : i, j ∈ {1, 2, . . . , 6}}. If we furtherassume that the die is fair and ea
h out
ome is equally likely, then P(A) = |A|/36 where |A| denotes thenumber of elements in A. For example, if A is the event that the sum of the di
e is greater than 10, then
P(A) = 3/36 = 1/12.Note. Ω in the above example is 
alled a uniform probability distribution, due to the fa
t that ea
hout
ome is equally likely.1.2. Independen
e and Conditional Probability.De�nition 1.10. Two events A and B are independent if P(AB) = P(A)P(B). A set of events {Ai : i ∈ I}is independent if P(∩j∈JAj) =

∏

j∈J P(Aj) for every �nite subset J ⊂ I.Note. There is also �pairwise independent� whi
h is weaker. A set of events {Ai : i ∈ I} is said to be pairwiseindependent if every pair of events Ai, Aj(i 6= j) is independent.Intuitively, if A and B are independent, then whether A happens or not does not a�e
t the likelihood of Bo

urring. Suppose two events A and B with positive probability (P(A) > 0 and P(B) > 0) that are disjoint,then they 
annot be independent (prove it). Independen
e 
an be used to simplify 
omputation, as shownin the following example.1Te
hni
ally speaking, not every event 
an be assigned a probability. We only assign probabilities to sets in a σ-�eld.



englishPROBABILITY REVIEW4 3Example 1.11. Flip a fair 
oin 10 times. Let A be the event that at least one head o

urs, and let Bi bethe event that the j-th toss results in a tail. Then
P(A) = 1 − P(Ac)

= 1 − P(B1B2 . . . B10)by independen
e
= 1 − P(B1)P(B2) . . . P(B10)

= 1 − 2−10.De�nition 1.12. If P(B) > 0 then the 
onditional probability of A given B is
P(A|B) =

P(AB)

P(B)
.Think of P(A|B) as the fra
tion of times A o

urs among those in whi
h B o

urs. Note that (1) for anytwo events A and B we have P(AB) = P(A|B)P(B) = P(B|A)P(A); (2) if events A and B are independent,then we have P(A|B) = P(A).Theorem 1.13. (The Law of Total Probability) Let A1, A2, . . . , An be a partition of Ω. Then for any event

B we have
P(B) =

n
∑

i=1

P(B|Ai)P(Ai).Proof. Sin
e BA1, BA2, . . . , BAn is a partition of B, we have
P(B) =

n
∑

i=1

P(BAi) =

n
∑

i=1

P(B|Ai)P(Ai).

�Theorem 1.14. (Bayes Theorem) Let A1, . . . , An be a partition of Ω su
h that P(Ai) > 0 for ea
h i. If
P(B) > 0 then, for ea
h i = 1, . . . , n,

P(Ai|B) =
P(B|Ai)P(Ai)

∑n
j=1 P(B|Aj)P(Aj)

.Proof. By the de�nition of 
onditional probability we have
P(Ai|B) =

P(AiB)

P(B)
=

P(B|Ai)P(Ai)
∑n

j=1 P(B|Aj)P(Aj)
.

�2. Random Variables2.1. Distribution and Probability Fun
tions.De�nition 2.1. A random variable is a mapping3 X : Ω → R that assigns a real number X(ω) to ea
hout
ome ω.After random variables are introdu
ed, we often work dire
tly with them and not mention the sample spa
eany more. However, it is important to keep in mind that any random variable is asso
iated with someunderlying sample spa
e.Example 2.2. Toss a die twi
e, and let X(ω) be the sum of the di
e. For example, if ω = (1, 5) then
X(ω) = 6. For 
ontinuous sample spa
e, let Ω = {(x, y) : x2 + y2 ≤ 1} be the unit disk. Any out
ome ω
an be written in the form of ω = (x, y). Some examples of random variables are X(ω) = x, Y (ω) = y,
Z(ω) = x2y, et
.3Te
hni
ally speaking, a random variable must be a measurable fun
tion.



englishPROBABILITY REVIEW6 4Given a random variable X and a subset A of the real line, de�ne X−1(A) = {ω ∈ Ω : X(ω) ∈ A}. Also weuse the notations
P(X ∈ A) = P(X−1(A)) = P({ω ∈ Ω : X(ω) ∈ A})
P(X = x) = P(X−1(x)) = P({ω ∈ Ω : X(ω) = x}).Noti
e that we use X to denote the random variable and x to denote its realization (a parti
ular value of

X).Example 2.3. Let X be the number of heads in two fair 
oin tosses. Then we have
P(X = 0) = P({ω ∈ Ω : X(ω) = 0}) = P({TT }) = 1/4

P(X = 1) = P({ω ∈ Ω : X(ω) = 1}) = P({TH, HT }) = 1/2

P(X = 2) = P({ω ∈ Ω : X(ω) = 2}) = P({HH}) = 1/4.De�nition 2.4. Given a random variable X , the 
umulative distribution fun
tion (
df) is the fun
tion
FX : R 7→ [0, 1] de�ned by

FX(x) = P(X ≤ x).Theorem 2.5. Let X have a 
df F and let Y have 
df G. If F (x) = G(x) for all x then P(X ∈ A) = P(Y ∈ A)for all A5.The above theorem says that 
df 
ompletely determines the distribution of a random variable.Theorem 2.6. (Properties of CDF) A fun
tion F : R 7→ [0, 1] is a 
df for some probability P if and only if
F satis�es the following three 
onditions:(i) F is non-de
reasing: x1 < x2 implies F (x1) ≤ F (x2).(ii) F is normalized:

lim
x→−∞

F (x) = 0

lim
x→∞

F (x) = 1.(iii) F is right-
ontinuous: F (x) = F (x+) for all x, where F (x+) = limy↓x F (y).Proof. Omitted. �De�nition 2.7. A random variable X is dis
rete if it takes 
ountably many values. The probability massfun
tion (pmf) is then de�ned as fX(x) = P(X = x). We often use f(x) to denote fX(x) for simpli
ity.Example 2.8. Flip a fair 
oin twi
e and X be the sum of the heads. Then its pmf is
fX(x) =















1/4 x = 0
1/2 x = 1
1/4 x = 2
0 otherwise.De�nition 2.9. A random variable X is 
ontinuous if there exists a fun
tion fX su
h that fX(x) ≥ 0 forall x, ∫∞

−∞ fX(x)dx = 1 and for every a ≤ b,
P(a < X < b) =

∫ b

a

fX(x)dx.The fun
tion fX is 
alled the probability density fun
tion (pdf). Furthermore, we have
FX(x) =

∫ x

−∞
fX(t)dtand fX(x) = F ′

X(x) at all points x at whi
h FX is di�erentiable.Note. For 
ontinuous random variable X we have P(X = x) = 0 for every x! Also in the 
ase of 
ontinuousvariables, fX(x) does not mean P(X = x). A
tually fX(x) 
an take any positive value or even unbounded.5Te
hni
ally it only holds for every measurable set A.



englishPROBABILITY REVIEW7 5Example 2.10. Suppose X has pdf
fX(x) =

{

1 0 ≤ x ≤ 1
0 otherwise.Clearly we have fX(x) ≥ 0 and ∫ fX(x)dx = 1. This random variable is said to have a Uniform(0, 1)distribution.De�nition 2.11. Let X be a random variable with 
df F . The inverse 
df or quantile fun
tion isde�ned by

F−1(q) = inf{x : F (x) > q}for q ∈ [0, 1]. If F is stri
tly in
reasing and 
ontinuous then F−1(q) is the unique real number x su
h that
F (x) = q. In parti
ular, we 
all F−1(1/4) the �rst quantile, F−1(1/2) themedian (or se
ond quantile),and F−1(3/4) the third quantile.We use X ∼ F to denote that a random variable X has distribution F . In the following we review someimportant random variables that will be used in this 
ourse.2.2. Some Important Dis
rete Random Variables.2.2.1. The Point Mass Distribution X ∼ δc. X has a point mass distribution at a if P(X = c) = 1. Its pmfis

f(x) =

{

1 x = c
0 otherwise.2.2.2. The Dis
rete Uniform Distribution X ∼ Uniform({c1, . . . , ck}). X has a uniform distribution on

{c1, . . . , ck} if its pmf is given by
f(x) =

{

1/k for x = c1, . . . , ck

0 otherwise.2.2.3. The Bernoulli Distribution X ∼ Bernoulli(p). X is a Bernoulli random variable with parameter p ∈
[0, 1] if its pmf is given by

f(x) =







p x = 1
1 − p x = 0

0 otherwise.Sometimes we use the simpli�ed notation f(x) = px(1 − p)1−x for x = 0, 1. Bernoulli random variables areoften used to model binary outputs, su
h as the result of tossing a 
oin.2.2.4. The Binomial Distribution X ∼ Binomial(n, p). X is a Binomial random variable with parameters
n ∈ N and p ∈ [0, 1] if its pmf is given by

f(x) =







(

n
x

)

px(1 − p)n−x for x = 0, 1, . . . , n

0 otherwisewhere ( n
x

)

= n!
x!(n−x)! . The Binomial random variable 
ounts the number of su

esses in n independentBernoulli random variables with parameter p. Verify that ∑n

x=0 f(x) = 1.2.2.5. The Geometri
 Distribution X ∼ Geometric(p). X has a Geometri
 distribution with parameter p ∈
(0, 1) if its pmf is given by

f(x) =

{

p(1 − p)x−1 for x = 1, 2, . . .
0 otherwise.Think of X as the number of �ips needed to see a head when �ipping a 
oin. Verify that ∑∞

x=1 f(x) = 1.



englishPROBABILITY REVIEW8 62.2.6. The Poisson Distribution X ∼ Poisson(λ). X has a Poisson distribution with parameter λ > 0 if itspmf is given by
f(x) =

eλλx

x!
x ≥ 0.Note that ∑∞

x=1 f(x) = eλ
∑∞

x=1
λx

x! = 1 by the de�nition of the exponential fun
tion. The Poisson is oftenused to model the 
ounts of rare event.2.3. Some Important Continuous Random Variables.2.3.1. The Uniform Distribution X ∼ Uniform(a, b). X has a Uniform(a, b) distribution (a < b) if its pdf isgiven by
f(x) =

{

1
b−a x ∈ [a, b]

0 otherwise.Its 
df is
F (x) =







0 x < a
x−a
b−a x ∈ [a, b]

1 x > b.2.3.2. The Exponential Distribution X ∼ Exp(β). X has an exponential distribution with parameter β > 0if its pdf is given by
f(x) =

1

β
e−x/β, x > 0.It is often used to model the waiting time and has the so-
alled memoryless property: given X ∼ Exp(β) wehave P(X > t + s|X > t) = P(X > s).2.3.3. The Normal/Gaussian Distribution X ∼ N(µ, σ2). X has a normal (or Gaussian) distribution withparameters µ ∈ R and σ > 0 if it has the following pdf

f(x) =
1√

2πσ2
exp

(

− (x − µ)2

2σ2

)

, x ∈ R.Parameter µ is the mean of the distribution and σ is the standard deviation of the distribution (refer to laterpart of the notes if you do not remember the de�nitions of mean and standard deviation). X is said to havea standard normal distribution if X ∼ N(0, 1). The pdf and 
df of standard normal are denoted by φ(z)and Φ(z), respe
tively.The normal distribution is the most important distribution in statisti
s, as many statisti
s have approxi-mately normal distributions. Below we list some properties of the normal distribution.Theorem 2.12. (Properties of the Normal Distribution)(1) If X ∼ N(µ, σ2), then Z = (X − µ)/σ ∼ N(0, 1).(2) If Z ∼ N(0, 1), then X = µ + σZ ∼ N(µ, σ2).(3) If Xi ∼ N(µi, σ
2
i ), i = 1, . . . , n are independent, then ∑n

i=1 Xi ∼ N(
∑n

i=1 µi,
∑n

i=1 σ2
i ).3. Bivariate and Multivariate Random Variables3.1. Bivariate/Multivariate Distributions.De�nition 3.1. For any random variables X and Y , the joint distribution fun
tion F (x, y) is given by

F (x, y) = P(X ≤ x, Y ≤ y), x, y ∈ R.Similar to the 
ase of univariate random variable, a bivariate (or multivariate) random variable 
an bedis
rete, 
ontinuous, or neither.De�nition 3.2. Given a pair of dis
rete random variables X and Y . The joint probability mass fun
tionfor X and Y is given by
fX,Y (x, y) = P(X = x, Y = y).We often use f(x, y) to denote fX,Y (x, y) for simpli
ity.



englishPROBABILITY REVIEW9 7Example 3.3. Flip a unfair 
oin twi
e, whi
h has probability 1/3 to be head and 2/3 to be tail. Let X and
Y be the results of the �rst and se
ond �ip. Let use 0 to denote �tail� and 1 to denote �head�. The joint pmfof (X, Y ) is listed in the following table:

Y = 0 Y = 1

X = 0 4/9 2/9 2/3
X = 1 2/9 1/9 1/32/3 1/3 1De�nition 3.4. Let X and Y be 
ontinuous random variables with joint distribution fun
tion F (x, y). We
all a fun
tion f(x, y) a joint pdf for the random variables (X, Y ) if

F (x, y) =

∫ x

−∞

∫ y

−∞
f(t1, t2)dt2dt1, x, y ∈ R.Example 3.5. Let (X, Y ) be uniform on the unit square, that is,

fX,Y (x, y) =

{

1 x, y ∈ [0, 1]
0 otherwise.Clearly we have ∫ ∫ fX,Y (x, y)dxdy = 1.All above de�nitions 
an be easily generalized to multivariate random variables. For example, the probabilitydistribution fun
tion for random variables ~X = (X1, X2, . . . , Xn) is given by

F (x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn), x1, . . . , xn ∈ R.3.2. Marginal Distributions.De�nition 3.6. If dis
rete random variables (X, Y ) has joint distribution with pmf fX,Y (x, y), then themarginal mass fun
tions for X and Y are de�ned by
fX(x) = P(X = x) =

∑

y

P(X = x, Y = y) =
∑

y

f(x, y)

fY (y) = P(Y = y) =
∑

x

P(X = x, Y = y) =
∑

x

f(x, y).Example 3.7. Suppose fX,Y is given in the table below. Then the marginal mass fun
tion for X is the sumof the 
olumns
fX(x) =







2/3 x = 0
1/3 x = 1
0 otherwise.and the marginal mass fun
tion for Y is the sum of the rows

fY (y) =







2/3 y = 0
1/3 y = 1
0 otherwise.

Y = 0 Y = 1

X = 0 4/9 2/9 2/3
X = 1 2/9 1/9 1/32/3 1/3 1De�nition 3.8. If 
ontinuous random variables (X, Y ) has joint distribution with pdf fX,Y (x, y), then themarginal density fun
tions for X and Y are de�ned by

fX(x) =

∫ ∞

−∞
fX,Y (x, y)dy, fY (y) =

∫ ∞

−∞
fX,Y (x, y)dx.Example 3.9. Let fX,Y (x, y) = e−(x+y) for x, y ≥ 0. Then we have fX(x) =

∫∞
0

fX,Y (x, y)dy =
∫∞
0

e−xe−ydy = e−x.



englishPROBABILITY REVIEW10 83.3. Conditional Distributions.For dis
rete random variables X and Y , we already introdu
ed 
onditional probability P(X = x|Y = y).Similarly we 
an de�ne 
onditional distribution.De�nition 3.10. The 
onditional probability mass fun
tion is given by
fX|Y (x|y) = P(X = x|Y = y) =

P(X = x, Y = y)

P(Y = y)
=

fX,Y (x, y)

fY (y)if fY (y) > 0.Example 3.11. Toss a 
oin twi
e. Let X be the �rst result (again we use 1 for head, 0 for tail) and Y bethe sum of the two results. Then P(X = 0|Y = 0) = 1, P(X = 1|Y = 0) = 0, P(X = 0|Y = 1) = 1/2 and
P(X = 1|Y = 1) = 1/2.The 
onditional distribution in the 
ontinuous 
ase need to be de�ned in terms of pdf to avoid some te
hni-
alities.De�nition 3.12. For 
ontinuous random variables X and Y , the 
onditional probability density fun
-tion is given by

fX|Y (x|y) =
fX,Y (x, y)

fY (y)assuming that fY (y) > 0. Then P(X ∈ A|Y = y) =
∫

A
fX|Y (x|y)dx.Example 3.13. Let X ∼ Uniform(0, 1), and given X = x, we generate Y |X = x ∼ Uniform(x, 1). Computethe marginal distribution of Y .Sin
e fX(x) = 1 for x ∈ [0, 1] and fY |X(y|x) = 1/(1 − x) for y ∈ [x, 1], we have

fX,Y (x, y) = fY |X(y|x)fX(x) =

{

1/(1 − x) 0 < x < y < 1
0 otherwise.So the marginal distribution of Y is fY (y) =

∫ y

0 1/(1 − x)dx = −
∫ 1−y

1
dt
t = − log(1 − y).3.4. Independent Random Variables.De�nition 3.14. The random variables X1, . . . , Xn are independent if for all A1, . . . , An we have

P(X1 ∈ A1, . . . , Xn ∈ An) = P(X1 ∈ A1) . . . P(Xn ∈ An).It is di�
ult to apply the above de�nition to 
he
k independen
e. Instead, we often use the followingtheorem.Theorem 3.15. Random variables X1, . . . , Xn are independent if and only if the 
df 
an be fa
torized as
FX1,...,Xn

(x1, . . . , xn) = FX1
(x1) . . . FXn

(xn).They are also independent if and only if the pdf 
an be fa
torized as
fX1,...,Xn

(x1, . . . , xn) = fX1
(x1) . . . fXn

(xn).3.5. Two Important Multivariate Distributions.3.5.1. The Multinomial Distribution. The multinomial distribution is a natural generalization of the binomialdistribution.De�nition 3.16. The random ve
tor ~X = (X1, . . . , Xk) is said to have a multinomial distribution withparameters n ∈ N and p1, . . . , pk (where pi ≥ 0 for all i and ∑k
i=1 pi = 1) if its pmf is given by

f(~x) =

{

n!
x1!...xk!p

x1

1 . . . pxk

k if x1, . . . , xk ∈ N and ∑ xj = n

0 otherwise.



englishPROBABILITY REVIEW12 9Consider drawing a ball from an urn whi
h has balls with k di�erent 
olors. Let ~p = (p1, . . . , pk) where
pj ≥ 0 and ∑k

j=1 pj = 1 and suppose pj is the probability of drawing a ball of 
olor j. If we draw n times(with repla
ement) and let ~X = (X1, . . . , Xk) where Xj is the number of times that we see a 
olor j ball.Then we say ~X ∼ Multinomial(n, ~p).The multinomial distribution is the multivariate generalization of the binomial distribution (e.g., it spe
ializesto binomial if k = 2, p1 = p and p2 = 1 − p).Theorem 3.17. Suppose ~X ∼ Multinomial(n, ~p), where ~X = (X1, . . . , Xk) and ~p = (p1, . . . , pk). Then themarginal distribution of Xj is Binomial(n, pj).3.5.2. The Multivariate Normal Distribution ~X ∼ N(~µ, Σ). The random ve
tor ~X = (X1, . . . , Xn) has amultivariate normal distribution with parameters ~µ ∈ R
n and Σ (whi
h is a n × n symmetri
, positivede�nite matrix11) has the pdf

f ~X(~x) =
1

(2π)n/2|Σ|1/2
exp

(

−1

2
(~x − ~µ)T Σ−1(~x − ~µ)

)where |.| is the matrix determinant and Σ−1 is the inverse matrix of Σ.Similar to the 
ase of a univariate normal random variable, we have
E( ~X) = ~µ

V( ~X) = Σ.In parti
ular, Σi,i = V(Xi) and Σi,j = Cov(Xi, Xj).We already know that if two random variables X1, . . . , Xn are independent, then Cov(Xi, Xj) = 0 for i 6= j.The reverse is not true in general! But if we also know that ~X = (X1, . . . , Xn) follows a multivariate normaldistribution N(~µ, Σ), then the reverse holds.Theorem 3.18. If ~X = (X1, . . . , Xn) ∼ N(~µ, Σ) where Σi,j = 0 for all i 6= j (e.g., Σ is a diagonal matrix),then X1, . . . , Xn are independent.It then follows that when Σ is a diagonal matrix with Σi,i = σ2
i , we have

f ~X(~x) =

n
∏

i=1

fXi
(xi) =

n
∏

i=1

1
√

2πσ2
i

exp

(

− (xi − µi)
2

2σ2
i

)

.4. Fun
tions of Random VariablesGiven a random variable X , let Y = g(X) be a fun
tion of X , su
h as Y = X2. The resulting fun
tion Y isalso a random variable. The question is, how do we 
al
ulate the distribution (pdf/pmf and 
df) of Y ?For the dis
rete 
ase it 
an be easily seen that
fY (y) = P(Y = y) = P(g(X) = y) = P({x : g(x) = y}) =

∑

x:g(x)=y

fX(x).Example 4.1. Let X be the number of heads in two 
oin tosses. Then we have fX(0) = 1/4, fX(1) = 1/2and fX(2) = 1/4. If Y = (X − 1)2 then we have fY (0) = 1/2 and fY (1) = 1/2.For 
ontinuous 
ase we following three steps to obtain fY :1. For ea
h y, �nd the set Ay = {x : g(x) ≤ y}.2. Find the 
df by de�nition
FY (y) = P(Y ≤ y) = P(g(X) ≤ y) = P({x : g(x) ≤ y}) =

∫

Ay

fX(x)dx.11This is the only pla
e we use �positive de�nite� in this 
ourse, and there are a few pla
es we use �matrix determinant�.Please refer to any linear algebra book for the detailed de�nitions.



englishPROBABILITY REVIEW13 103. Di�erentiate to get pdf: fY (y) = F ′
Y (y).Example 4.2. Let X ∼ Uniform(−1, 3) and �nd the pdf of Y = X2. The 
df FY (y) = P(X2 ≤ y) is easyto 
ompute in separate steps. Clearly y ∈ (0, 9), and we 
onsider two 
ases. When 0 < y < 1 we have

FY (y) = P(−√
y ≤ X ≤ √

y) =
√

y/2. When 1 < y < 9 we have FY (y) = P(−1 ≤ X ≤ √
y) = (1 +

√
y)/4.Take derivative with respe
t to y we get

fY (y) =











1
4
√

y 0 < y < 1
1

8
√

y 1 < y < 9

0 otherwise.The above pro
edure is appli
able to every 
ase. When the fun
tion g(.) satis�es 
ertain 
onditions the
al
ulation 
an be simpli�ed by the result of the following theorem.Theorem 4.3. Let X have pdf fX(x) and Y = g(X), where g is a stri
tly monotone in
reasing or de
reasingfun
tion. Suppose the inverse g−1 is di�erentiable on the range of X, then the pdf of Y is given by
fY (y) = fX(g−1(y))

∣

∣

∣

∣

d

dy
g−1(y)

∣

∣

∣

∣

.Proof. Suppose g is a stri
tly monotone in
reasing fun
tion, we have
FY (y) = P(g(X) ≤ y) = P(X ≤ g−1(y)) = FX(g−1(y))and thus

fY (y) = F ′
y(y) =

d

dy
FX(g−1(y))


hain rule
= fX(g−1(y))

d

dy
g−1(y).Similarly we 
an show that if g is a stri
tly monotone de
reasing fun
tion we have fY (y) = −fX(g−1(y)) d

dyg−1(y).By using the property that the derivative of an in
reasing (de
reasing) fun
tion g−1 is positive (negative)and putting them together we have
fY (y) = fX(g−1(y))

∣

∣

∣

∣

d

dy
g−1(y)

∣

∣

∣

∣

.

�Example 4.4. Let fX(x) = e−x for x > 0 and let Y = g(X) = log X . Be
ause g is stri
tly monotonein
reasing, we have fY (y) = fX(ey)ey = eye−ey for y ∈ R.We 
an also apply the above results to fun
tions of random ve
tor (several random variables). For example,if X and Y are random variables, we might want to know X +Y , XY , max{X, Y } or min{X, Y }. The threesteps pro
edure still applies with slight modi�
ation:1. For ea
h z, �nd the set Az = {(x1, . . . , xn) : g(x1, . . . , xn) ≤ z}.2. Find the 
df by de�nition
FZ(z) = P(Z ≤ z) = P(g(X1, . . . , Xn) ≤ z)

= P({(x1, . . . , xn) : g(x1, . . . , xn) ≤ z}) =

∫

. . .

∫

Az

fX1,...,Xn
(x1, . . . , xn)dx1 . . . dxn.3. Di�erentiate to get pdf: fZ(z) = F ′

Z(z).There is also a multivariate version of theorem 4.3:



englishPROBABILITY REVIEW14 11Theorem 4.5. Let ~X = (X1, . . . , Xn) be a random ve
tor with pdf f ~X(x1, . . . , xn). Let ~g(~x) = (g1(~x), . . . , gn(~x))where ~g : R
n 7→ R

n is an invertible and di�erentiable mapping in the range of ~X (one-to-one mapping) thenthere exists an inverse ~g−1 = (h1(~y), . . . , hn(~y)) : R
n 7→ R

n. Let ~Y = (Y1, . . . , Yn) = ~g( ~X), then
f~Y (~y) = f ~X(~g−1(~y))|J |where J is the Ja
obian of the inverse mapping de�ned as

J =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂h1(~y)
∂y1

∂h1(~y)
∂y2

. . . ∂h1(~y)
∂yn

∂h2(~y)
∂y1

∂h2(~y)
∂y2

. . . ∂h2(~y)
∂yn... ... . . . ...

∂hn(~y)
∂y1

∂hn(~y)
∂y2

. . . ∂hn(~y)
∂yn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣e.g., J is the determinant of a n × n matrix.Proof. Similarly to the univariate 
ase by applying the 
hain rule. �Note. There is one in
onvenien
e of the theorem. For example, in order to 
ompute the pdf of Z = X+Y youneed to de�ne another random variable su
h as W = X − Y , to use the Ja
obian (whi
h is the determinantof a n × n square matrix). 5. Expe
tation5.1. Expe
tation and Varian
e.De�nition 5.1. The expe
tation (mean or �rst moment) of a random variable X is de�ned to be
E(X) =

{
∑

x xf(x) if X is dis
rete
∫

xf(x)dx if X is 
ontinuous.Note. We assume that the sum or integral exists (well-de�ned). The expe
tation is a one-number summaryof the distribution that tells the mean or average of a random variable.Example 5.2. For X ∼ Bernoulli(p) we have E(X) =
∑

x=0,1 xf(x) = 0 × (1 − p) + 1 × p = p. For
X ∼ Uniform(a, b) we have E(X) =

∫

xf(x)dx =
∫ b

a
x

b−adx = a+b
2 .Theorem 5.3. (The Law of the Un
ons
ious Statisti
ian) Let Y = g(X). Then the expe
ted value of Y is

E(Y ) = E(g(X)) =

{
∑

x g(x)f(x) if X is dis
rete
∫

g(x)f(x)dx if X is 
ontinuous.Example 5.4. Let X ∼ Uniform(0, 1) and let Y = g(X) = eX . Then we have
E(Y ) = E(eX) =

∫ 1

0

exdx = e − 1.Alternatively we 
an �rst 
al
ulate fY (y) = 1/y and then E(Y ) =
∫ e

1
y 1

y dy = e − 1.Theorem 5.5. If X1, . . . , Xn are random variables and c1, . . . , cn are 
onstants, then
E

(

n
∑

i=1

ciXi

)

=
n
∑

i=1

ciE(Xi).Example 5.6. Let X ∼ Binomial(n, p). Sin
e X = X1 + . . . + Xn where Xi ∼ Bernoulli(p) (why?), applyingthe above rule we have E(X) =
∑n

i=1 E(Xi) = np. Use the pmf of the binomial distribution to verify theresult.Theorem 5.7. If X1, . . . , Xn are independent random variables, then
E

(

n
∏

i=1

Xi

)

=

n
∏

i=1

E(Xi).
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e of a random variable X is de�ned by
V(X) = E((X − E(X))2).The standard deviation is sd(X) =

√

V(X).The varian
e of a random variable summarizes the s
ale of the distribution, or how values are spread aroundthe expe
tation.Theorem 5.9. Assuming the varian
e is well-de�ned. Then(1) V(X) = E(X2) − E(X)2.(2) If X1, . . . , Xn are independent random variables and c1, . . . , cn are 
onstants, then V(
∑n

i=1 ciXi) =
∑n

i=1 c2
i V(Xi).Note. Unlike the expe
tation, the summation rule requires the independen
e. Also noti
e that V(aX + b) =

a2
V(X) by treating 
onstant b as a random variable with mean E(b) = b and V(b) = 0.Example 5.10. Let X ∼ Binomial(n, p). We have X =

∑n
i=1 Xi where Xi's are independent Bernoullirandom variables: Xi ∼ Bernoulli(p). So we have V(X) = V(
∑

i Xi) =
∑

i V(Xi) =
∑

i(E(X2
i ) − E(Xi)

2) =
np(1 − p). Use dire
t 
al
ulation to verify the result.De�nition 5.11. The 
ovarian
e of two random variables X and Y is de�ned as

Cov(X, Y ) = E((X − E(X))(Y − E(Y ))and the 
orrelation 
oe�
ient is de�ned as
ρX,Y = ρ(X, Y ) =

Cov(X, Y )
√

V(X)
√

V(Y )
.Clearly 
ovarian
e is a generalization of varian
e, e.g. Cov(X, X) = V(X).Theorem 5.12. (Properties of Covarian
e)(1) Cov(X, Y ) = E(XY ) − E(X)E(Y ).(2) If X and Y are independent, then Cov(X, Y ) = 0.(3) The 
orrelation 
oe�
ient satis�es: −1 ≤ ρX,Y ≤ 1, and |ρX,Y | = 1 if there is a linear relationshipbetween X and Y , e.g. Y = aX + b.Note that although independent random variables have 
ovarian
e 0, but the reverse is not true!Theorem 5.13. For random variables X1, . . . , Xn,

V

(

n
∑

i=1

ciXi

)

=

n
∑

i=1

c2
i V(Xi) + 2

n
∑

i=1

∑

j 6=i

cicjCov(Xi, Xj).The 
on
epts of expe
tation and varian
e 
an be easily generalized to random ve
tors:De�nition 5.14. The expe
tation of a random ve
tor ~X = (X1, . . . , Xn) is just the ve
tor of theexpe
tations of ea
h element: E( ~X) = (E(X1), . . . , E(Xn)). The varian
e-
ovarian
e matrix Σ is de�nedas
Σ = V( ~X) =











V(X1) Cov(X1, X2) . . . Cov(X1, Xn)
Cov(X2, X1) V(X2) . . . Cov(X2, Xn)... ... . . . ...
Cov(Xn, X1) Cov(Xn, X2) . . . V(Xn)











.Noti
e that Σ is symmetri
 as Cov(Xi, Xj) = Cov(Xj , Xi).
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tation and Varian
e.De�nition 5.15. The 
onditional expe
tation of X given Y = y is de�ned by
E(X |Y = y) =

{
∑

x xfX|Y (x|y) dis
rete 
ase
∫

xfX|Y (x|y)dx 
ontinuous 
ase.Furthermore, if g(x) is a fun
tion of x then
E(g(X)|Y = y) =

{
∑

x g(x)fX|Y (x|y) dis
rete 
ase
∫

g(x)fX|Y (x|y)dx 
ontinuous 
ase.Note. E(X |Y = y) is a fun
tion of y and E(X |Y ) is a fun
tion of the random variable Y . As a result, wehave E(X |Y ) itself a random variable. So we 
an study its mean and varian
e, et
.Theorem 5.16. (The Rule of Iterated Expe
tation or Double Expe
tation) For random variables X and Y ,assuming the expe
tations exist, we have
E(E(X |Y )) = E(X).Example 5.17. Let X ∼ Uniform(0, 1) and Y |X = x ∼ Uniform(0, x). We have E(Y ) = E(E(Y |X)) =

E(X/2) = 1/4. Verify the result by �rst deriving fY (y).De�nition 5.18. The 
onditional varian
e is de�ned as
V(X |Y = y) =

{
∑

x(x − µ(y))2fX|Y (x|y) dis
rete 
ase
∫

(x − µ(y))2fX|Y (x|y)dx 
ontinuous 
ase.where µ(y) = E(X |Y = y).Theorem 5.19. (Conditional Varian
e) For random variables X and Y ,
V(X) = E(V(X |Y )) + V(E(X |Y )).Example 5.20. Let X ∼ Uniform(0, 1) and Y |X = x ∼ Uniform(0, x). Compute V(Y ).We have

V(Y ) = E(V(Y |X)) + V(E(Y |X))

= E(X2/12) + V(X/2)

=
1

12
× 1

3
+

1

4
× 1

12
= 7/144.Verify the result by dire
t 
al
ulation using fY (y).5.3. Moment Generating Fun
tions.De�nition 5.21. The k-th moment of a random variable X is de�ned to be E(Xk); the k-th 
entralmoment is de�ned to be E((X − E(X))k).It is easy to see that expe
tation is the 1st moment and varian
e is the 2nd 
entral moment.De�nition 5.22. The moment generating fun
tion (mgf) or Lapla
e transform of random variable

X is de�ned by
m(t) = E(etX), t ∈ R.We say that a moment-generating fun
tion for Y exists if there exists an open interval (−ǫ, ǫ) su
h that

m(t) is �nite for t ∈ (−ǫ, ǫ). In what follows we assume that the mgf exists. The name �moment generatingfun
tion� 
omes from the fa
t that
m′(0) =

d

dt
E(etX) |t=0= E

(

d

dt
etX

)

|t=0= E(X).Continue in this way we will get m(k)(0) = E(Xk), k = 0, 1, . . ..Theorem 5.23. (Properties of MGF)(1) If Y = aX + b, then mY (t) = ebtmX(at).(2) If X1, . . . , Xn are independent and Y =
∑n

i=1 Xi, then mY (t) =
∏n

i=1 mXi
(t).



englishPROBABILITY REVIEW17 14Example 5.24. Let X ∼ Binomial(n, p). Sin
e X =
∑n

i=1 Xi where Xi ∼ Bernoulli(p) (i = 1, . . . , n) areindependent Bernoulli random variables, we have
mX(t) =

n
∏

i=1

mXi
(t) = (p × et + (1 − p))n.The result of next example is often useful.Example 5.25. Let X ∼ N(µ, σ2), then we have

mX(t) =

∫ ∞

−∞
exp(tx)

1√
2πσ2

exp

(

− (x − µ)2

2σ2

)

dx

=

∫ ∞

−∞

1√
2πσ2

exp

(

− (x − (µ + tσ2))2

2σ2

)

exp

(

t2σ2 + 2µt

2

)

dx

= exp
(

µt + σ2t2/2
)

.Theorem 5.26. Let X and Y be random variables. If mX(t) = mY (t) for all t in an open interval around
0, then X and Y have the same distribution fun
tion (and pdf/pmf).The above theorem provides another way to 
al
ulate the probability distribution fun
tions of randomvariables based on the mgf.Theorem 5.27. Let Xi ∼ N(µi, σ

2
i ) be independent random variables for i = 1, . . . , n and c1, . . . , cn ∈ R.Then we have

Y =

n
∑

i=1

ciXi ∼ N

(

n
∑

i=1

ciµi,

n
∑

i=1

c2
i σ

2
i

)

.Proof. Let Yi = ciXi ∼ Normal(ciµi, c
2
i σ

2
i ). So we have mYi

(t) = exp(ciµit + c2
i σ

2
i t2/2). By the properties ofmgf we have

mY (t) =
n
∏

i=1

mYi
(t) = exp

(

n
∑

i=1

ciµit +
n
∑

i=1

c2
i σ

2
i t2/2

)whi
h is the same as the mgf of Normal(
∑

i ciµi,
∑

i c2
i σ

2
i ) (We used the fa
t that Yi's are independent.Why?). By the theorem we 
on
lude that Y =

∑

i ciXi ∼ Normal(
∑

i ciµi,
∑

i c2
i σ

2
i ). �


