- 1. Let f(x) and F(x) denote, respectively, the pdf and the distribution function of the random variable X. The conditional pdf of X given $X > x_0$, x_0 a fixed number, is defined by $f(x|X > x_0) = f(x)/[1 F(x_0)]$, $x > x_0$, zero elsewhere. This kind of pdf finds application in a problem of time until death, given survival until time x_0 .
 - (a) show that $f(x|X > x_0)$ is a pdf.
 - (b) Let $f(x) = e^{-x}$, $0 < x < \infty$, zero elsewhere. Compute P(X > 2|X > 1).
- 2. If the correlation coefficient ρ of X and Y exits, show that $|\rho| \leq 1$. Hint: Consider the discriminant of the nonnegative quadratic function $h(v) = E\{[(X-\mu_1)+v(Y-\mu_2)]^2\}$, where v is real and is not a function of X nor of Y.
- 3. Let X and Y have the joint pdf $f(x,y) = e^{-2}/[x!(y-x)!]$, $y = 0,1,2,\ldots; x = 0,1,\ldots,y$, zero elsewhere.
 - (a) Find the moment-generating function $M(t_1, t_2)$ of this joint distribution.
 - (b) Compute the means, the variances, and the correlation coefficient of X and Y.
 - (c) Determine the conditional mean E(X|Y=y). Hint: Note that $\sum_{x=0}^{y} [\exp(t_1x)]y!/[x!(y-x)!] = [1 + \exp(t_1)]^y$.
- 4. Let X_1 and X_2 denote a random sample of size 2 from a distribution with pdf f(x) = 1, 0 < x < 1, zero elsewhere. Find the distribution function and the pdf of $Y = X_1/X_2$.
- 5. Let U and V be two independent random variables, each having a normal distribution with mean zero and variance one. Show that the moment generating function $E(e^{t(UV)})$ of the product UV is $(1-t^2)^{-1/2}$, -1 < t < 1. Hint: Compare $E(e^{t(UV)})$ with the integral of a bivariate normal pdf that has mean equal to zero.